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Most of the problems in contemporary physics research become complicated due to their many-body character and require of an involved
treatment which—in many cases—Ileads to equally complicated algorithms encripting the physics before a partial solution is obtained. The
purpose of this paper is to remind on the usefulness of simple exploratory models for the analysis of complex problems before a more
sophisticated approach is developed. In this spirit, three examples are reviewed from the perspective of the author’s experience: (i) molecular
effects in the stopping power of heavy ions, (i) quantum-size effects in Wannier excitons and (iii) pressure effects on the properties of
molecular hydrogen. In the latter case, new results are reported for the electronic and vibrational properties of the ground-state hydrogen
molecule in a padded spherical box on the basis of a simple molecular confinement model.
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La mayoria de los problemas contempordneos de investigacién en fisica son complejos debido a las interacciones de muchos cuerpos,
requiriendo en general de tratamientos sofisticados, los cuales en muchas ocasiones conducen al desarrollo de algoritmos igualmente com-
plicados en los que queda encriptada la fisica antes de obtener una solucion parcial. El propésito de este trabajo es el de recordar sobre la
utilidad del uso de modelos exploratorios simples para el andlisis de problemas complicados, previo al desarrollo de tratamientos mas elabo-
rados. Dentro de este espiritu, se revisan tres ejemplos que de acuerdo a la experiencia del autor pueden ser de interés: (i) efectos moleculares
en el poder de frenamiento de iones pesados, (ii) efectos cudnticos de restriccidn espacial en excitones de Wannier y (iii) efecto de presién
sobre las propiedades del hidrégeno molecular. En el dltimo caso, empleando un modelo de confinamiento molecular sencillo, se reportan
resultados novedosos para las propiedades electrénicas y vibracionales del estado base de la molécula de hidrégeno confinada por una pared
esférica penetrable.

Descriptores: Poder de frenamiento; colisiones atémicas; excitones; puntos cudnticos: confinamiento molecular; altas presiones

PACS: 34.50.Bw, 34.10.+x; 62.50.+p; 71.35.-y; 73.61.Tm

1. Introduction Although the most realistic treatment of a problem cer-

tainly requires ol an approach with increasing complexity,

The advent of new—more powerful and sophisticated—
computational resources, as well as experimental techniques,
has motivated a deeper quest into complex problems whosc
many-body character requires of special treatment. This is
the case in a great variety of problems in condensed matter
physics, where the atomic and molecular structure play an
impotant role to establish the properties of a medium and the
way it responds to external perturbations. In this connection,
the techniques of quantum chemistry have proven to be very
uscful in dealing satisfactorily with extended systems formed
by a great number of atoms and where many-body interac-
tions are incorporated by solving selfconsistently the cor-
responding Schroedinger equation. Without digressing too
much, let me mention that there are, of course, other ab-initio
methods developed to analyze collective interactions and the
propertics of condensed matter systems, such as the quantum
Monte Carlo method (QMC) [1] and ab-initio molecular dy-
namics (AIMD) [2], among others. In all cases, the actual
limitation for the size of the system under study is dictated
mainly by the computational resources.

quite frequently the physics inherent to the problem remains
encripted in an algorithm or a numerical output demanding
for interpretation. This is critical when a new idea is put for-
ward, since a first survey of its adequacy should be advanced
before embarquing in a detailed calculation. To this end, it
is worth resorting to exploratory models whereby the rele-
vant physical quantities are clearly defined. An exploratory
model—if physically plausible—allows for proper orienta-
tion on the relative importance of the various relevant phys-
ical quantities involved. It also helps keeping the physical
perspective of the problem and its potentiality. Surprisingly,
a successful exploratory model may work better than ex-
pected both, qualitatively and quantitatively, when compared
to more sophisticated treatments.

The purpose of this contribution is to remind on the use-
fulness of simple exploratory models for the treatment of
complicated problems before more powerful treatments are
deployed. To this end, the author reviews three different re-
search problems where he has experienced the value of ex-
ploratory models. The first problem is presented in Sect. 2,
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and deals with chemical bond effects on the energy loss of
heavy ions while penetrating compound target materials. In
Sect. 3, semiconductor microcrystal quantum-size effects on
the energy levels of Wannier excitons are treated. In Sect. 4,
the pressure effects on the properties of molecular hydrogen
are discussed on the basis of a molecular confinement model.
Finally, the concusions of this paper are presented in Sect. 5.
Due to the different characteristics of the problems re-
viewed in this paper, major emphasis is kept in presenting
the main reasoning leading to the development of the corre-
sponding exploratory model and its predictions. A detailed
discussion is achievable through the source references. In
spite of this, complementary new results for the polarizability
and vibrational properties of compressed molecular hydrogen
obtained with the model discussed in Sect. 4 are reported.

2. Chemical bond effects on the low-energy
electron stopping power of heavy ions

When a zwift ion penetrates matter, it loses energy through
interactions with atoms and molecules forming the medium.
These interactions involve, of course, electrons and nuclei.
Assuming no nuclear reactions take place, the projectile-

target electron interactions play a dominant role in the stop- -

ping process (dE /dzx) (inelastic or electronic stopping). This
happens for a wide range of projectile energy values go-
ing from high to low energies, whereas the elastic (or nu-
clear) stopping becomes dominant only at very low energies
and is due to changes in trajectory imposed by the inter-
atomic potentials of the already neutralized projectile-target
system. Figure 1 shows schematically a typical electronic
stopping curve where the electronic stopping cross section
for a medium with n-scatterers per unit volume is defined
as [3]:
Se = S (D
n dx
From Fig. I, three characteristic regions are observed
in the stopping curve. The high-energy regime (Region III),
where the projectile practically remains as a bare charged par-
ticle and loses energy through ionization processes induced
in the target. The intermediate energy regime (Region II),
where electron-capture and loss, inner shell excitation, elec-
tron promotion and ionization mechanisms are admixtured
and the low-cnergy regime (Region I), in which projectile
and target are practically neutral and the stopping process is
more like that of a viscous interface. Clearly, the many-body
character of the problem demands of judicious approximate
treatments. It was Hans Bethe, in 1930 [4], who made the
first successlul approximate quantum mechanical approach
to the high-energy energy loss problem, demonstrating that
the main source of energy loss in this region comes rom indi-
vidual target-atom ionization. Since then, the theory has been
substantially advanced by different groups in the world, al-
though still no satisfactory theory exists to account for the
whole encrgy dependence of the various processes [3, 5].
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FIGURA 1. Typical stopping power curve for ions traversing a given
material. Three different regions are identified according to the ion
energy where different stopping processes participate (see text).
Note the region of dominance for nuclear stopping. The low-energy
region is currently defined for ion velocities v < vDZf/a where 7,
is the ion atomic number and v the Bohr velocity.

An additional problem, noticed relatively recently after
the advent of more precise experimental measurement tech-
niques, is the non-additivity of atomic contributions to the
electronic stopping cross section in the case of compound
materials [6]. Furthermore, target physical phase state effects
in Se play also an important role. These two effects are rele-
vant for projectile energies in the region below and around
the maximum of the stopping curve [7-9]. New ideas on
the partitioning of the stopping contribution into cores and
bonds (CAB) were put forward by various authors [10-15].
The first fundamental theoretical study to account for the de-
gree of participation of different bond types on proton stop-
ping in hydrocarbons was achieved by Oddershede and Sabin
in 1987 [12,13]. The first theoretical treatment of molecu-
lar effects on heavy ion stopping in the low-energy region
was done in 1993 by the present author and his collabora-
tors [16] using a relatively simple model which allows for
a qualitative and quantitative insight on the role of chemi-
cal bonds and projectile structure on the stopping process. As
the reader must be aware, the task in performing a detailed
calculation for such a many-body problem is formidable and
perhaps could only be accomplished by a dynamical quantum
chemistry calculation [17, 18]. The main assumptions of the
model as well as some of the relevant results are discussed
below. Further details may be found in Ref. 16.

2.1. The Firsov model

Suppose a given projectile, which has become practically
neutralized after a series of collision events and is moving
with an energy low enough such that in each individual en-
counter with a target atom or molecule, a deceleration takes
place due to a drag force produced by momentum exchange
involving projectile and target clectrons. Owing to the indis-
tinguishability of clectrons, this momentum exchange could
be regarded as an clectron exchange, i.e. as projectile and
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Hypothetical Plane

Electrostatic potentials

FIGURE 2. Schematic diagram showing the location of the hy-
pothetical Firsov plane between projectile and target at the point
where the electrostatic potentials are equal.

target approach each other, their electronic clouds start over-
lapping and an electron which originally belonged to one of
the systems, suddenly switches its parent atom carrying with
it a momentum mu, where m is the electron mass and u the
relative velocity of the two systems. The drag force is ob-
tained in terms of the flux of momentum % due to both pro-
jectile and target electrons. This idea was first proposed by
O.B. Firsov in 1959 [19] for low-energy stopping. Viewing
projectile and target as two Thomas-Fermi atoms, Firsov cal-
culated the momentum flux from one system to another by
locating a hypothetical plane perpendicular to the line join-
ing the nuclei and at a position where both the projectile and
target electrostatic potentials coincide (see Fig. 2). The in-
elastic energy transfer £(b) in a collision, for a given impact
parameter b, corresponds to the work of slowing down:

e(b)y=m /u-dR / do, (2)

where R is the relative position vector between target and
projectile and the flux integration is performed over the hypo-
thetical plane taking into account both the projectile and tar-
get electron velocity distributions [20]. The electronic stop-
ping cross section S, is then obtained as:

S 2t /E{b)b(ib. (3)

An interesting feature of this model is the possible dis-
tinction between the flux contribution from projectile and tar-
get, i.e. the total electronic stopping cross section may be
written as:

Se = Sﬂ,p A Se,t (4)

where the indices p and t stand for projectile and target, re-
spectively.

The adequacy of this simple model to describe experi-
mental measurements in the low-energy stopping regime has

been widely accepted. In this connection, let me briefly men-
tion that another important model based on the dielectric re-
sponse formalism was successfully developed by J. Lindhard
in 1954 [21, 22] whereby the induced electric field in the ma-
terial produces a retarding force on the projectile. The inter-
ested reader is kindly addressed to Ref. 3 for a review. We
now return to our main point of discussion.

Firsov’s idea is adequate for the treatment of molecular
stopping since it distinguishes between projectile and target
properties. In fact, in 1979 D.K. Brice and the present author
generalized Eqgs. (2) and (3) to account for molecular stop-
ping using a proper quantum description for the probability
current of bound-state wavefunctions in one direction across
the hypothetical surface and considering angular averaging
over all molecular orientations [23]. The model was applied
only to molecular hydrogen using a LCAO representation of
the molecular wavefunction. However, this molecular repre-
sentation made the mathematical treatment too involved and
only a non trivial numerical solution could render the final
values for the molecular contribution to S, for Hy. The an-
swer for other systems had to wait almost fifteen years until a
reasonable model for the molecular representation was used
as described below.

2.2. The FSGO representation of localized molecular or-
bitals

The floating spherical Gaussian orbital (FSGO) model was
first introduced by A. Frost in 1967 [24] in the ab-initio
study of the electronic and geometric structure of ground
state closed-shell molecules using localized orbitals. Within
this scheme, each doubly occupied localized orbital @ is
represented by a single normalized spherical Gaussian:

3/4 (r — R.)2
¢p(r —Ry) = (%}) exp [(r—zRi} O

k Tk
where @} is the radius of the orbital and Ry, the position of
its center. The set of orbitals {®;} is non-orthogonal and, ac-
cording to Frost, if S is the overlap matrix of the set and
T = S! its inverse, then the electronic energy for the
molecule is [25]:

Ea=23 (I Ti + 3 (blpo)l2TkiTrg
ik

k.tp.q

= qu ,I1Fp] (6)

where (j| k) are the one-electron integrals and (kl|pq) the two-
electron coulomb and exchange terms given as

(kl|pg) = / ®wdy, dv (7a)

(kllpq) = / (D) P(1)r75 ®,(2)®,(2) dvy dvz  (Tb)

with w the one-electron operator accounting for kinetic en-
ergy and electron-nuclear attraction, i.e. (atomic units):

= Zu
i = 75\_"' — Z ; (7¢)

.
v L
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FSGO REPRESENTATION OF THE PROPYLENE MOLECULE
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FIGURE 3. Doubly occupied Core and bond localized molecular
orbitals in the floating spherical Gaussian orbital (FSGO) repre-
sentation of the propylene molecule. Three functional groups are
identified as molecular fragments (see text).

Z, being the charge of nucleus v and r, the corresponding
electron-nucleus distance. After adding the internuclear re-
pulsion energy, the total energy becomes

Lt
u::Eﬂ-FZ '\ y, (8)

T
A<y e

In general, the total energy will be a function of the orbital ra-
dius (o), orbital positions (Rj) and nuclear positions (r, ).
Energy minimization relative to all quantities (o, R, 1)
provides the parameters defining the corresponding molec-
ular configuration. According to Frost, the use of a single
gaussian orbital per electron pair constitutes a subminimal
basis and hence the molecular energies are typically about
20% above the Hartree-Fock value. In spite of this, the elec-
tron density and molecular geometry are reasonably well de-
scribed. Using this procedure, Frost and coworkers reported
molecular parameters for a wide number of systems [24]. Fig-
ure 3 shows schematically the FSGO representation of core
and bond orbitals for the propylene molecule. Clearly, the
simple analytical expression for each orbital and the indi-
vidual orbital assignement to each molecular moiety (cores,
bonds and lone-pairs) are very useful characteristics of the
FSGO representation. Note also from Fig. 3 that some func-
tional groups may be distinguished and labeled as frag-
ments” (see below).

2.3. The model for molecular stopping

In constructing our exploratory model for molecular stop-
ping, two major issues had to be solved:

i) a proper description of atomic and molecular orbitals
which should be simple and tractable

if) arcasonable criterion to define the hypothetical surface
for flux evaluation.

Regarding point (i), for the molecular target the FSGO
representation of localized molecular orbitals was chosen,
For the atomic projectile orbitals, the analytical Hartree-
Fock-Slater representation [26] was used.

FIGURE 4. Schematic representation of the use of molecular frag-
ments to locate the corresponding hypothetical Firsov plane relative
to the projectile in the calculation of molecular stopping.

Concerning the position of the hypothetical surface
[point (if) above], the concept of molecular fragments was
used (14, 16]. A molecular fragment corresponds to a molec-
ular entity describable through localized orbitals acting as a
functional group within the molecule. Within the FSGO ap-
proach, a molecular fragment Eorresponds to the region cen-
tered on the nucleus of a heavy atom where the core and
other orbitals pack together (see Fig. 3). For each molecu-
lar fragment-projectile combination a given hypothetical sur-
face was set at a position dictated by the matching of the
corresponding electrostatic potentials [16]. Figure 4 shows
schematically this situation for an atomic projectile colliding
with a propylene molecule. The molecular fragments in this
figure are enclosed by shadowed areas for visual clarity.

The momentum flux evaluation for both projectile and
target was carried out through the previously generalized ex-
pression of Egs. (2) and (3) [14, 23]. I would like to stress at
this stage that, although these last steps required of previous
laborious work, the final clue to achieve a surveying answer
was the procedure mentioned further above,

Tables I-III display the predictions of the model de-
scribed here for He and Li projectiles incident on several
hydrocarbons and simpler molecular targets with a velocity
v = vy (vg is the Bohr velocity) [14-16]. Also shown in
this table are corresponding available experimental data. The
general agreement with experiment is reasonable, in spite of
the simplicity of the exploratory model employed. Note that
no adjustable parameters are used throughout the calculation.
An important outcome ot this simplified treatment is the pos-
sibility to analyze the relative importance of core, bond and
lone-pair orbitals in the stopping process. Table IV displays,
as an example, these quantities for NH;, H,O, CO, N, and
H:S and a set of low-energy heavy projectiles. In all these
cases the molecule was considered as a single fragment. For
second-row atoms the /v and L shells need a special treat-
ment within the FSGO approach so that sp? hybridization is
taken into account [27]. In this case, the & and L-shell con-
tributions (S sherr, S shell) L0 stopping must be calculated in
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TABLE 1. Comparison between experiment and theory for the elec-
tronic stopping cross section for He and Li incident on various hy-
drocarbons at v = wvo. All units in 107"® eVem®/molecule. (Re-
produced from Ref. 16.

TABLE 11. Comparison between theory and experiment for the
total electronic stopping cross section of He ions incident on
alcohol and amine molecules at v = wp, All units are in
10" eVem?/molecule. (Reproduced from Ref. 15).

Helium Lithium
Molecule Formula This  Exp.® This  Exp.*
work work
Alkanes
50.9
Methane CHjy 423 50.0 67.2 —
46.3
Ethane CaHg 76.9 850 1246 1248
76.6
Propane C3Hs 111.5 121.9 182.0 163.7
122.4
n-butane C4Hyo 146.1 158.1 2394 209.0
n-pentane CsHi2 180.7 —_ 296.7 263.6
n-hexane CgHia 215.3 - 354.1 3133
n-heptane CsHie 2499 — 411.4 356.2
n-octane CsgHizs 2845 — 468.8  408.0
n-pemadecane Ci5Has 526.7 — 870.4 740.0
isooctane CgHis 253.8 - 4164 407.0
103.9
Cyclopropane CaHg 103.8 1115 172.1 1449
102.3
Cyclobutane C4Hs 138.4 — 229.5 —
Cyclopentane CsHio 173.0 1773 286.8 2445

CgHiz 2076 2130 3442 2913
CsHis 2421 — 401.6 3364
CsHie 2767 2858 4589 386.7

Cyclohexane
Cycloheptane
Cyclooctane

Alkenes
122
Ethylene C2Hy4 69.3 739 1154 1024
65.3
Propylene CsHg 1039 1087 172.7 150.0
109.8
Butene CsHs 138.5 — 230.0 —
Pentene CsHio 173.1 — 2874 2469
Hexene CsHi2 207.7 — 3448 2955
Cyclopropene C3Hy 96.1 — 162.7 -
Cyclobutente C4Hs 130.7 — 220.1 —
Cyclopentene CsHs 1653 1634 2774 2275
Cyclohexene CgHio 1922 2026 3254 2729
Allene C3H4 96.2 102.1 1633 —
1e3-Butadiene C4Hg 1308 1334 2207 -
le3-Cyclo CeHs 2000 188.8 3348 —_
hexadiene
Alkynes
63.0
Acetylene C2H» 60.8 63.7 1044 —
57.3
Aromates
Benzene CsHg 1845 181.3 316.1 239.1
Toluene CsHs 219.0 2159 3732 2854
Phenylacetylene CgHs 2374 2298 4102 ——

“ See Ref. 16 for details.

Molecule Formula Theory Experiment®
Alcohols

Methanol CH3;0H 62.9 71.8
Ethanol C3Hs0H 97.5 107.3
Propanol C3H7OH 132.0 143.2
Dimethylether C2HgO 97.1 107.8
Diethylether C4H100 166.7 JTET
Amines

Methylamine CH3NH- 67.1 80.7
Dimethylamine (CH3)2NH 101.3 119.5
Trimethylamine (CH3)3N 135.5 147.4
Ethylamine CH3;CH>NH» 101.7 117.9

* See Ref. 15 for details.

TABLE I11. Comparison between theory and experiment for the to-
tal electronic stopping cross section of He and Li projectiles in-
cident on some simple molecular targets(v = wvp). All units in
10~ '® eVem*/molecule. (Reproduced from Ref. 16).

Projectile Molecule Theory Experiment®
He Na 50.2 49.7
45.0
40.6
He 0, 47.7 47.3
448
38.7
He coO 437 488
439
He H20 32.1 36.5
Li H20 58.0 46.8
He NH3 33.0 443
He H2S 48.5 62.1

“ See Ref. 16 for details.

place of that for core electrons [16]. Figure 5 shows the pre-
dicted stopping cross section behavior for different projec-
tiles (Z,) impinging on gaseous ethane (C;Hg) and toluene
(C7Hg) targets with v = vg. Also included in this figure
are corresponding predictions by the TRIM90 computer code
generated by Ziegler et al. [11] who used a semiempirical
scaling approach for the partitioning of core and bond con-
tributions to S... For light projectiles (Z, < 5) reasonable
agreement between both calculations is observed. However,
strong quantitative and qualitative differences are observed
for heavier projectiles. Unfortunately, so far no experiments
have been carried out for heavier ions than He and Li in order
to assess definite conclusions on this discrepancy.

In concluding this section, it is worth to be aware of the
limitations of the approximations made to survey such com-
plicated problem. First, we have assumed that both, projectile
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TABLE [V. Core, bond and lone-pair contributions to the stopping cross section for some low-energy (v = vg) heavy projectiles in simple
molecular targets. All units in 10~ 1% eVem?/bond. (Reproduced from Ref. 16).
Zy, O-H N-H C=0 N=N 0=0 S-H Ly(0) Ly(N) LyC) L) O N o Skshell  SkLshell
(H20) (NH3) (CO)  (Nz2)  (Oz) (H2S)
23945 5231 11.876 17.739 9976 6.588 3.818* 47547 4888 6.086 0377 0471 0607 0.147 2428
3.878" 4.748°
3.521¢
36379 9379 19.329 20.805 15.963 12041 6.707* 6.336% 6023 11.607 0430 0556 0735 0.162 2701
6.326" 5.335°
5.641°
7 8262 9.025 26993 30.786 22.381 16.347 9.237* 9.019¢ 8239 9773 0622 0879 1.183 0210 3.585
8.411° 7.531°
7.535°
8§ 8181 11920 26699 30310 22.182 15876 9.010° 8833 8153 9580 0646 0914 1201 0219 3.736
8.345" 7.454°
7.488¢
“H,0  "CO 02 “NH3  °Nj
A0 mension are mostly embedded in a medium which in turn has
a given atomic or molecular structure. Hence, a detailed study
) ] of the properties of nanostructures involves once again many-
é p— S body interactions. In this section, a simplified exploratory
B ] model to survey quantum size effects on the ground-state en-
3 ] ergy of excitons trapped within semiconductor microcrystal-
2 ] lites of spherical shape is presented. Further details may be
vy | - .
3 ™ %M{i assessed from Ref 28.
¥ W. A great deal of theoretical and experimental work has
been devoted to study the changes in optical properties of
Y e e T semiconductor microcrystallites as compared to those of the
0 s 10 15 e bulk material. It is deemed that electronic excitations in an

Projectile Atomic Number (Zp)
FIGURE 5. Electronic stopping cross section versus projectile
atomic number (Z},) for ethane (CzHg) and toluene (C7Hjg) as pre-
dicted by the exploratory model described in this work (full cir-
cles and triangles). Open circles and triangles are the predictions
by Ziegler et al. [11]. (Replotted from Ref. 16).

and target retain all their electrons during the collision pro-
cess (only momentum transfer is considered). Hence no
charge capture and loss mechanisms are taken into account.
Also, no electron promotion mechanisms in projectile and
target arc incorporated. In spite of this, we have been able to
explore some of the characteristics of heavy ion stopping in
compound materials at low energies.

3. Confinement of excitons in spherical quan-
tum dots

The actual techniques for preparation of nanostructured ma-
terials have opened an exciting spectrum of new properties
due to the reduced dimensions of the physical systems in-
volved (several atomic diameters), where quantum effects
dominate. On the other hand, these systems of reduced di-

inorganic semiconductor take place through loosely bounded
electron-hole pairs called Wannier-Mott (WM) excitons. A
characteristic of WM excitons is their strong delocalized na-
ture over the crystal, the e~/ correlation distance (D) being
much larger than the crystal lattice constant. Hence, as the
crystal size is reduced and approaches D g, quantum size ef-
fects on the e-h pair start becoming dominant. The various
theoretical approaches employed to analyze the size depen-
dence of the energy levels of excitons confined by spherical
quantum dots differ in degree of sophistication and it would
be impossible to give a complete account here. Let me sim-
ply state here that, for the purposes of this paper, it suffices to
discuss a very simple exploratory model proposed by Marin,
Riera and this author, based on the use of the direct varia-
tional method. For information on other equally important
treatments, the reader is kindly addressed to Refs, 29-37.

3.1. The model

Consider a WM exciton confined within a microcrystallite
of spherical shape, of radius ry embedded in an insulating
material. Assuming the validity of the effective mass approx-
imation (EMA) in the single-band scheme for all values of
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ro, a spherical shape and the same dielectric constant ¢ for
the crystallite as that of the bulk material, the model Hamil-
tonian for the system is written as (we shall consider here
i =e= 1).[28]:

T ETI.

h +Ve+ Vi, 9

El'f‘e == ?'hl
where 11, and m, are the electron and hole effective masses
relative to the free-electron mass, r. and rj, their respective
positions from the centre of the sphere and V,, V), are the bar-
rier heights associated to the confining potential for electron
and hole, respectively. Neglecting surface and image poten-
tial effects, we can consider the same barrier height for elec-
tron and hole, i.e. the confining potential for this system is

treated as:
0
V,=V, = {

Te'sTh S To (10)
Vi Tesmih =78

This confining potential step may be interpreted as an average
effect due to a difference in composition between the crystal-
lite and the host material.

The simplest approach to survey the quantum-size ef-
fects on the exciton energy is to use the direct variational
method with a proper ansatz wavefunction subject to the
corresponding boundary conditions. The variational method
has been widely used to tackle this problem, mainly using
Hylleraas coordinate transformations [32, 33, 35] or single-
particle wavefunction expansions [36, 37]. A much simpler
exploratory approach consists in recognizing that the struc-
ture of the Hamiltonian given by Eq. (9) is analogous to that
for the helium atom, except for the attractive e-h interaction
and zero nuclear charge in this case. This suggests that the
ground state wavefunction for the helium atom may be used
as a first trial wavefunction. Accordingly, the ground-state
wavefunction for the e-h system in the interior region was
proposed in [28] as:

U, = Aexp[—a(re + ru)](ro — are)(ro — arp);
(resrn < 70) (11a)
and for the exterior region:

T, = B(v-,,r;,)'lexp[—ﬁ('re +71p); (PesTh Birs) (11D)

where A and B are normalizing factors and « and /3 are vari-
ational parameters. The multiplying factors to the right of the
exponential term in Eq. (11a) are introduced to warrant that
the wavefunction goes to zero at the boundary when the po-
tential barrier height becomes infinite [38, 39].

The following subsidiary continuity condition on the
wavefunction and consevation of probability current across
the boundary is imposed:

1 1 v, 1 1 dy

= — at

—- Pe =T =iy (L2)
M P O : 3

m; P Org

where m;(m,) correspond to the interior (exterior) reduced
effective mass of the exciton to account for different electron

1.5
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Energy (eV)

0.5

0.0

Radius (A)

FIGURE 6. Exciton energy in CdS crystallites as a function of their
size. Symbols represent experimental measurements performed in
different host materials: (O) organic [30], (A) silicate glass [42].
(— ) EBOM calculations [31] (Vp, = 2.25 eV for higher curve;
Vo = 0.5 eV for lower curve). ( - - - ) Model described here [28]
(Vo = 2.25 eV for higher curve; Vy = 0.475 eV for lower curve).
(Replotted from Ref. 28).

and hole effective masses in two regions with different com-
position [36]. In fact, the variational parameters a and 3 are
related through Eq. (12) as:

My

(—) [(l —a)ro+a]l+a-1

m;

B= (13)

(1—a)r,
hence it is only required to minimize the energy with respect
to one variational parameter.

3.2. Three cases: CdS, CdSe, and PbS crystallites

The energy functional expression may be obtained analyti-
cally and the numerical values for the variational parameters
are obtained through a simple numerical search routine. Fig-
ures (6)—(8) show the predictions of this model for the exciton
ground-state energy for various crystallites embedded in dif-
ferent host materials as a function of their size. Also shown
are corresponding experimental data as well as other theoret-
ical predictions based on more detailed calculations. While
the experimental data and relevant quantities are properly in-
dicated in the figures, a brief description of the various the-
oretical approaches is worth mentioning. For the CdS crys-
tallites (Fig. 6), the theoretical calculations by Einevoll [31]
(continuous line) are based on a finite-barrier- height po-
tential and the effective bond-orbital method (EBOM) for
the hole and the effective-mass approximation (EMA) for
the electron. On the other hand, the corresponding calcula-
tions by Lippens and Lanoo [34] (labeled T.B.) make use of
the tight-binding method using an infinite-barrier-height po-
tential. The predictions of our exploratory model (assuming
me/m; = 1) are given by the dashed curves. In the case of
CdSe crystallites (Fig. 7), the theoretical predictions by Wang
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FIGURE 7. Exciton energy in CdSe crystallites as a function of
their size. ((J) Experimental data [40]. (e) pseudopotential calcu-
lations [40]. Curves correspond to the predictions of the model de-
scribed here [28] for different ratios m, /mn; (see text). (Replotted
from Ref. 28).

| PbS

\ Vo = 1.3 eV |

Band Gap (eV)

0 25 50 5
Cluster radius (A)

FIGURE 8. Band gap (exciton energy) for a PbS cluster as a func-
tion of its size. Uppermost curve: empirical EMA calculation from
Ref. 29. (O) Experimental data [41]. (e) Cluster tight binding cal-
culations [41]. ( - - - ) Hyperbolic band calculation [41]. ( — )
Results of the work described here [28]. (Replotted from Ref. 28).

and Zunger [40] (solid circles) are done through a plane-
wave semiempirical pseudopotential method (SEPM) with
non-local potentials and spin-coupling and assuming a size-
dependent dielectric constant in the Coulomb interaction en-
ergy. In this figure, while keeping a reasonable trend with
experiment, our predictions for different values for m,/m;
show a sensitivity to differences in the interior and exterior
exciton reduced effective mass induced by compositional dif-
ferences with the host material. Finally, for PbS crystallites
(Fig. 8) an empirical EMA calculation (uppermost curve), a
cluster tight-binding calculation (solid circles) and a hyper-
bolic band calculation (dashed line) by Wang and Herron [29]
and Wang et al. [41] are shown. The solid curve represents
the results obtained with the model presented here.
Interestingly enough from the above mentioned figures,
the qualitative and quantitative agreement observed with ex-

periment as well as with other, more sophisticated theoreti-
cal treatments, is very rewarding. In spite of the simplicity
of the model, the general features of quantum-size effects on
excitonic behavior are conserved. Again, no adjustable pa-
rameters have been used, only for the experimental band-gap
width whis is used as a baseline to compare experiment with
theory. This exploratory model allows to advance estimates
for the onset of vanishing excitonic states for a given crystal-
lite size and composition. Furthermore, it is possible to esti-
mate the effect of different host materials—where the crys-
tallites are embedded—on the exciton behavior. Indeed, as
is the case with any exploratory model, one must be aware
of its limitations. Aspects such as a size-dependent dielectric
function, charge polarization at the crystallite surface, non-
parabolicity of the energy band, etc. were not taken into ac-
count here. However, the general agreement observed for the
gross behavior of the excitonic ground state energy as a func-
tion crystallite size seems far from being fortuitous.

4. Properties of dense molecular hydrogen

As a third example of the use of exploratory models in the
analysis of problems in condensed-matter physics, let us
briefly discuss the case of matter under high pressures. In
particular, we shall be concerned with the case of molecular
hydrogen, whose properties at high pressures are still subject
of intense study and controversy [43].

Studying the properties of the simplest neutral molecule
(H>) under high pressures may serve as a starting point to
understand the corresponding behavior of more complicated
molecules. Several theoretical and experimental groups have
devoted important efforts to the study of pressure-induced
phase transitions in solid and liquid hydrogen [44-50]. A
complete phase-diagram for hydrogen is still under construc-
tion [51]. Still some controversy on the onset of metallization
to require of an intermediate atomic state or directly taking
place from the molecular state, is going on [44-46, 52, 53].
Hence, in spite of being the simplest molecular system, un-
derstanding solid/liquid H» under high pressures has become
a challenging issue in condensed matter physics. Of course,
a detailed analysis of this many-body problem requires of so-
phisticated treatments, such as quantum Monte Carlo meth-
ods [1], Ab initio molecular dynamics [2] and density func-
tional theory [54, 55], to mention a few. However, still in
this case, some simplifying assumptions may lead to tractable
models with predicting capability. In the following we shall
illustrate the use of a molecular confinement model [56] to
investigate pressure effects on the ground-state energy, polar-
izability and vibrational properties of the hydrogen molecule.

4.1. The molecular confinement model

Consider a condensed medium (e.g. a dense liquid) where
the intermolecular distances are small enough so that the sur-
rounding molecules create a potential barrier for the electrons
associated to a particular molecule embedded in the medium.
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Thus an exploratory model for this system may consist in
viewing a constituent molecule of the medium as a caged-in
system within a given boundary with finite potential barrier
height. The volume of the confining box is then associated
to the density of the medium whose changes are in turn re-
lated to pressure. The height of the potential barrier defines
the confining capacity of the medium and corresponds phys-
icaly to the mean field where a particular molecule is embed-
ded.

Just as in the case of excitonic behavior in quantum dots
discussed in the previous section, here we have another inter-
esting use of the concept of confined quantum systems. The
reader is kindly addressed to an excellent review paper on
this type of models by Jaskolski [57]. We note at this stage
that the case of the hydrogen molecule confined within pen-
etrable boundaries had not been treated before even using an
exploratory model until recently [56]. In the foregoing a brief
description of the model is given. In contrast with the pre-
vious sections, here we shall present some new results not
published before.

Using the FSGO scheme—as described in Sect. 2—the
H., molecule in its ground state is a two-electron system rep-
resented by a single Gaussian orbital centered at the origin
[R; = 0inEq. (5)]. Now, consider the molecule confined by
a penetrable spherical cage of radius R, and potential barrier
height 1 at the boundary as depicted in Fig. 9 and assume
the confining potential has the form:

0 (r < R)

14
V, (r> R¢). (9

V)=

Inclusion of the function V() in the molecular Hamilto-

nian demands different expressions for the interior and exte-

rior representation of a localized orbital so that the boundary

matching conditions are satisfied. Hence the following repre-
sentations for the interior and exterior FSGO are proposed:

(I’,(r) - -\rF([,fn.-'J B e—bﬂf)1 (]. S R() (ISJ)

&, = Nge 9", (v >-He) (15b)

where a, b and ¢ are orbital parameters to be determined after
minimization of the total energy functional given by Eq. (8).
The normalization factors and orbital parameters are related
through the boundary and normalization conditions as:

NY = ,"V':[f’(s'_“)“:"T - f‘-.‘('q_b}ﬂf], (16a)

a

[1 g e(afb)h"f]' (lﬁh)

g =
Note that the one-clectron integrals (j|k) and the two-electron
Coulomb and exchange terms (k!|pq) in Eq. (6) must be eval-
uated taking into account the domain of integration for the in-
terior and exterior wavefunctions. Here the one-electron op-
erator [Eq. (7¢)] becomes
i R -1 _|p—R =
oo Loo, [~lr-Ral™ ~|r-Rsp]

: r
2 Vo

(r<R.)

(r>Hs) | (17)

a)

b)

1
|
1
I
I
1
[
I

v(r)

M

FIGURE 9. (a) H> molecule enclosed within a padded spherical box
of radius R.. The clectron and nuclear positions are referenced to
the center of the sphere. (h) Schematic representation of the confin-
ing potential barrier of height Vo.

where r and (R 4, R ) are the position vectors of an electron
and a nucleus relative to the origin, respectively and V'(r) is
eiven by Eq. (14).

In our case, since we only require of one orbital for each
domain [Ecs. (15a) and (15b)], the total energy functional
(W) may be easily evaluated analytically as a function of the
orbital parameters (a, b, g), confining radius (1.), nuclear po-
sition (RR,,) and barrier height (Vp) [56]. The optimal values
of thé molecular parameters and the corresponding energy
are found through a minimization procedure. Hence, given a
certain barrier height, varying the confinement radius makes
the energy values to change as well as the orbital radius and
nuclear positions. In this sense, the calculation treats self-
consistently both, electronic structure and molecular confor-
mation as a function of confinement radius and barrier height.

4.2. Calculation of some molecular properties of dense
molecular hydrogen

Considering molecular hydrogen in its liquid phase and tak-
ing the effective molecular volume as that of the confin-
ing sphere (Vy, = 4w R2/3), the cold pressure (T" = OK)
may be evaluated through changes in the total ground-state
clectronic energy as a function of confinement volume, i.e.
P = —9W/aV,, which in turn may be directly related to the
density of the medium. Hence, some properties of molecular
hydrogen as a function of pressure (density) and confining
capacity of the medium (barrier height) may be surveyed.
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TABLE V. Pressure dependence of the total energy, internuclear
distance and average polarizability for the hydrogen molecule en-
closed within an impenetrable spherical box obtained in this work.
Values in parenthesis correspond to accurate calculations by Le Sar
and Herschbach [58] for quasi-spherical boxes.

2R. Density Pressure Total Energy Internuclear Polarizability

(ao) (mol/em®) (GPa)  (hartrees) distance (a,) (ad)

300 0793 3700 0.7253 0.745 0:257
(3500)  (0.6474) (0.686) (0.197)

40 0333 690 —0.3331 0.944 0.695
(770)  (—0.4749) (0.893) (0.509)

5100 071 170 —-0.7117 1.112 1.408
(180)  (—0.8800) (1.068) (0.994)

6.0 0.099 48 —0.8613 1.248 2.328
(55)  (—1.0441) (1.208) (1.606)

7.0 0.062 14 —-0.9216 1.348 3.288
(17 (=1.1136) (1.301) (2.230)

8.0 0.042 39 —0.9448 1.414 4.083
(5.9) (—1.1440) (1.355) (2.769)

co  0.036  0.0001 —0.9559(4) 1.474 4924
(—1.1716) (1.403) (4.196)

Le Sar and Herschbach (LH) [58] studied the proper-
ties of the hydrogen molecule enclosed within impenetrable
(Vo = oo) prolate spheroidal boxes using a variational cal-
culation with a five-term James-Coolidge wavefunction [59].
Interestingly, these authors found that the symmetry of the
confining boxes for which the total energy is a minimum is
practically spherical. Table V shows a comparison between
the accurate calculations by LH and ours for total energy
(W), internuclear distance (D, = 2R,,) and average polariz-
ability («) as a function of pressure for this case. The values
from LH are given within parenthesis. The average polariz-
abilities have been calculated using the method prescribed by
LH, i.e. [58]:

((YH G 2(“_)
RS e ———
3
where the parallel and perpendicular components are
g1ven as:

(18)

2

Q|| =gy = 8[<32) + (z122)]7,

@) = Qzp = ayy = 8[{x%) + (m173))%. (19b)

(19a)

In our case, a single spherical gaussian makes the anisotropic
terms (2;22) = (x122) = 0 and a = ay = 8[(z%)]*. The
integrations implied by this expression are easily calculated
taking into account the interior and exterior wavefunctions
using Eqgs. (15) and (16). Of course, quadrupole moments
cannot be calculated with our approximate treatment.
Inspection of Table V indicates that our energy values are
typically above by about 20% from those by LH, as expected

from the observations by Frost on the FSGO method (see
Sect. 2). Whereas the internuclear distances and pressure val-
ues keep an overall fair agreement. Our calculated average
polarizability as a function of box size shows a better agree-
ment with those of LH for smaller box sizes. For intermediate
values of R, the difference observed with the corresponding
LH values is due to the abscence of the anisotropic terms
({(z122) and (xy22)) in our calculation. LH also calculated
the location of potential minima for each box size and vibra-
tional properties for the ground-state molecule after fitting
the corresponding potential curves (V') around the minimum
(r¢) using the Dunham expansion [58]:

V(g;) = A()’Lz(l + Az + A'ZIZ) (19)

with z = (r — r¢)/re. The Dunham parameters (Ag, Ay, A2)
are then used to calculate the rotational constant (B.), vi-
brational frequency (w,. ), anharmonicity constant (w.x.) and
Raman frequency (wg = we — 2w,.z,) with the following
definitions [60. G1]:

h ;
B, = ———— =119. = =i
72D 19.539672D; *(cm™ 1), (21a)
We = ﬁ._l(-—l,‘lnB,Jm)l/z
= (44¢B.)"/*(468.481)(cm™), (21b)
h2 5
Ealle = S5 45A7 — Asl,
welte = S D (he) | oA — S04
= 4.998081965[45A47 — 3645]D7*(em™"),  (2l¢)

where D, is the internuclear distance in atomic units, u the
reduced mass, h is Plancks constant (h = h/27) and ¢ the
speed of light in vacuum. Ay is given in hartrees and A, and
A are dimensionless.

Table VI displays the box-size dependence of B, w.,
WeTe, and wg as compared to those from LH (values within
parenthesis) in the case of infinite barrier height. For com-
pleteness, the values for the Dunham parameters obtained
here and the corresponding quantities from LH (parenthesis)
are also presented. Except for the anharmonicity terms, a fair
overall qualitative and quantitative agreement is observed for
the rest of the quantities. Inspection of the Dunham param-
eters in Table VI shows larger differences between our A,
values and those from LH. Since A, may be associated to de-
viations from a parabolic shape of the potential curve in the
fitting region, the differences in the anharmonicity terms re-
flect this fact. Our potential energy curves are softer than the
more accurate ones obtained by LH.

In spite of the simplicity of our exploratory model, the re-
sults analyzed so far are encouraging to assess reliable quali-
tative and quantitative information on the trend of the molec-
ular properties of the system as a function of pressure (den-
sity). Of course, in the case of infinite barrier height, we have
only compared the results of this model with a more sophisti-
cated calculation to gain some confidence on its capabilities.
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TABLE V1. Rotational constant (B, ),vibrational frequency (w. ), anharmonicity constant (were) and Raman frequency (wr) obtained in this
work for the hydrogen molecule enclosed within impenctrable spherical boxes of different sizes. The associated Dunham parameters (Ao,

Ay, As) are also included for completeness. Values in parenthesis
for quasi-spherical boxes.

are corresponding accurate calculations by Le Sar and Herschbach [58]

2R, Ao A As B. We WeTe Wr
(o) (hartrees (cm™h) (cm™h) (cm™1) (em™Y)
3 1.54212 —1.02548 0.95805 215.38 17076 113 16845
(1.7635) (—0.7953) (0.3456) (253.71) (19819) (169) (19481)
4 1.13881 —1.08069 1.03473 134.14 11581 86 11410
(1.1594) (—0.8080) (0.3290) (148.07) (12276) (108) (12060)
5 0.89647 —1.13707 1.13267 96.67 8723 70 8582
(0.9333) (—0.9178) (0.3213) (104.68) (9261) (115) (9031)
6 0.73685 —1.19326 122791 76.87 7052 64 6925
(0.6221) (—1.1345) (0.6429) (81.80) (6684) (118) (6448)
i 0.62691 —1.24919 1.31654 65.78 6017 63 5892
(0.5066) (—1.2152) (0.6888) (70.59) (5602) (122) (5358)
8 0.55099 —1.30662 1.42408 59.78 5378 64 5250
(0.4431) (—1.3759) (0.9032) (65.05) (5030) (142) (4746)
foo) 0.45809 —1.46408 1.90964 55 4703 64 4577
(0.3661) (—1.1653) (1.7154) (60.64) (4415) (138) (4139)

TABLE VII. Properties of the hydrogen molecule confined within penetrable spherical boxes of different sizes and for selected barrier heights.

V=0
2R Pressure Total Energy Internuclear Polarizability B. We WeZe WR
(a0) (Gpa) (hartrees) distance (a.) (ad) (em™h) (ecm™h) (cm™1) (cm™Y)
3.0 193 —0.6458 1.095 1.505 99.67 8725 98 8528
4.0 136 —0.8617 1.251 2.551 76.42 6964 73 6818
5.0 27 —0.9309 1.368 3.644 63.94 5847 62 5723
6.0 5 —0.9509 1.438 4454 57.83 5162 60 5042
7.0 0.6 —0.9552 1.466 4.825 55.59 4828 72 4684
8.0 0.05 —0.9559 1.474 4913 55.09 4727 85 4558
V=0.25
2.0 6537 0.2250 0.874 0.607 156.61 12444 165 12114
3.0 873 —0.5745 1.046 1.248 109.25 9542 97 9348
4.0 168 —0.8311 1.204 2.193 82.44 7555 72 7411
5.0 36 —0.9193 1.331 3273 67.46 6261 58 6145
6.0 7 —0.9476 1.418 4218 59.47 5410 52 5305
7.0 1 —0.9546 1.460 4744 56.07 4923 60 4803
8.0 04 —0.9558 1.472 4.899 5517 4747 79 4589
v=1.0

2.0 8328 0.6047 0.785 0.398 194.16 15207 158 14981
3.0 1149 —0.4240 0.962 0.898 129.10 11176 97 10982
4.0 234 —0.7682 1.128 1.687 94.01 8644 69 8506
5.0 55 —0.8949 1.270 2.713 74.17 7003 53 6898
6.0 13 —0.9398 1.379 3.766 62.87 5885 44 5798
7.0 2 —0.9530 1.445 4.548 57.25 5148 42 5065
8.0 0.2 —0.9556 1.469 4.859 55.38 4802 64 4673

Taking different barrier heights for the confining potential
(V4). the molecular properties discussed before may be sur-
veyed within the exploratory model presented here. Table VII
displays predicted values for pressure, total energy, inter-

nuclear distance, polarizability and vibrational constants for
Vo = 0,0.25 and 1 a.u. Note that as the barrier height is re-
duced, the variation of all properties is less pronounced as the
box radius is decreased. Figure 10 shows the predicted behav-
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FIGURE 10. Total ground state energy of Hz as a function of con-
finement radius for two extreme values of the confining potential.
(4) “accurate” calculation [58] for V5 = 0. Results of the work
described here [56]: (— ) (Vo = o0), (- - - ) (Vo = 0). (Replotted
from Ref. 56).

jor of the total energy as a function of the confining radius
for the two extreme barrier heights: V5 = oo (continuous
curve) and Vy = 0 (chain curve). Also shown in this figure
are the results by LH (solid diamonds) for the hard-wall case.
From this figure we observe that for the lowest barrier height
(1, = 0), the model predicts the appearance of a threshold
hox radius (R, ~ 1.025 a,) below which no bound state for
H, is available. This radius would correspond to a pressure of
about 5200 GPa (see below), although this assertion is only
speculative since it is quite possible that the system transits to
aionized and a further atomic state through previous excited-
state channels.

An interesting feature of the exploratory model discussed
here is its ability to render relevant physical information
as the confining volume changes. In Fig. 11 the predicted
pressure-density curves for molecular hydrogen confined
within hard-walls (V, = oc) (chain curve) and “transparent”
walls (Vy = 0) (continuous curve) are shown. Full triangles
correspond to the results from LH for their hard-wall model.
The dashed curve represents the equation of state (EOS) for
fluid molecular hydrogen (0 K) developed by Kerley [62].
Also shown are experimentally derived EOS by Evans and
Silvera [50] (crosses) and by Hemley et al. [48] (open dia-
monds) for static compression of solid molecular hydrogen.
Recent experimental shock-compression measurements of
liquid molecular hydrogen by Nellis et al. [47] (open circles),
Weir et al. [52] (solid diamond) and Holmes et al. [53] (open
triangles) are included in Fig. 11 for comparison. Also, the
corresponding theoretical predictions by Lenosky er al. [2]
using a quantum monte carlo approach are included in this
figure. As the reader must be aware, a much more realistic de-
scription of the EOS is obtained when a padded-wall model
is used as compared to the hard-wall model. It is important
to stress here that, since the confinement model discussed

200 T
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FIGURE 1 1. Pressure-density curves for Ha for two extreme values
of the confining potential. (A) results from Ref. 58 for Vo = oco.
Results of the work described here [56]: (- - - - - ) (Vo = 00), (—)
(Vo = 0). (- - -) OK isotherm for fluid Hz [62]. (X) experimental
EOS for solid Hy at 80 K [50]. (¢) temperature-reduced experi-
mental EOS for solid Hz [48]. Shock-compression experiments on
fluid Ha: (O) [47], (&) [53]. (&) [52]. () quantum monte carlo
calculation for shock-compressed fluid Hz [2].

here considers only changes in the electronic energy, strictly
speaking, our pressure-density relation can only be compared
to the 7' = 0 K isotherm. Quite surprisingly, an almost com-
plete agreement is observed with the shock-compresion ex-
periments and quantum monte carlo studies, although some
scepticism should be kept in addressing conclusions in this
case since thermal pressure effects are not considered in this
model.

5. Concluding remarks

The use of exploratory models to analyze some complicated
problems may be a valuable means to gain insight on the
properties of the system under study. In this work we have de-
scribed three different problems where a simplified treatment
has rendered important physical information. Of course, us-
ing exploratory models one could expect only a gross descrip-
tion of the quantitative and qualitative features of the system,
as well as the role of associated relevant parameters. How-
ever, this information may be useful to set up a more detailed
calculation.

A slightly more detailed discussion was devoted to the
treatment of the properties of molecular hydrogen under high
pressure, since new results are presented for this case. In
this connection, the molecule-in-a box model with penetrable
walls seems promising for the study of atomic and molecular
systems under high pressures. A more formal, detailed cal-
culation for this case demands by far a considerably larger
effort and still is not available. This, together with the exci-
ton confinement problem treated in Sect. 3, points to a useful
characteristic of models based on quantum confinement.

Rev. Mex, Fis. 46 (3) (2000) 207-219



ON THE USE OF EXPLORATORY MODELS TO SURVEY COMPLICATED PROBLEMS: FROM ATOMIC COLLISIONS TO . ..

. D.M. Ceperley and B. Adler, Science 231 (1986) 555; D.M.

Ceperley and B. Adler, Phys. Rev. B 36 (1987) 2092 and refer-
ences therein.

T.J. Lenosky, J.D. Kress, L.A. Collins, and I. Kwon, Phys. Rev,
B 55 (1997) 11907.

3. S.A. Cruz, Radiar. Eff. 88 (1986) 159.

o

6.
. D.I. Thwaites, Nucl. Instrum. Methods Phys. Res. B 12 (1985)

8.

10.

11,

13.

14.

16.

17.
18.

19:

H.A. Bethe, Ann. Phys. 5 (1930) 325; H.A. Bethe and
R. Jackiw, Intermediate Quantum Mechanics, Third Edition,
(Addison-Wesley, Massachusetts, 1997) Chap. 17.

. H. Paul and M.I. Berger, in Atomic and Molecular Data for Ra-

diotherapy and Radiation Research (International Atomic En-
ergy Agency, IAEA-TECDOC-799, Vienna, 1995).

D.I. Thwaites, Radiat. Res. 95 (1983) 495,

84: 27 (1987) 293; 69 (1992) 46.

P. Bauer, W. Rassler, and P. Mertens, Nucl. Instrum. Methods
Phys. Res. B 69 (1992) 46.

. P Bauer et al., Nucl. Instrum. Methods Phys. Res. B 136/138

(1998) 103.
R. Kreutz, W. Neuwirth, and W. Pietsch, Phys. Rev. A 22 (1980)
2598 and 2606.

LF. Ziegler and J.M. Manoyan, Nucl. Instrum. Methods Phys.
Res. B 35 (1988) 215.

- LR. Sabin and J. Oddershede, Nucl. Instrum. Methods Phys.

Res. B 27 (1987) 280.

J. Oddershede and J.R. Sabin, Nucl. Instrum. Methods Phys.
Res. B 42 (1989) 7.

S.A. Cruz and J. Soullard, Nucl. Instrum. Methods Phys. Res. B
61 (1991) 433; 71 (1992) 387.

. 1. Soullard, S.A. Crugz, and R. Cabrera-Trujillo, Nucl. Instrum.

Methods Phys. Res. B 80/81 (1993) 20.

S.A. Cruz, . Soullard, and R. Cabrera-Trujillo, Nucl. Instrum.
Methods Phys. Res. B 83 (1993) 5.

D.N. Bernardo, Phys. Rev. A 39 (1989) 5532,

A.C. Diz, Y. Ohrn and J.R. Sabin, Nucl. Instrum. Methods Phys.
Res. B 96 (1995) 633.

O.B. Firsov, Zh. Eksp. Teor. Fiz. 36 (1959) 1517: Sov. Phys.-
JETP 9 (1959) 1076.

. 8.A. Cruz et al., Phys. Rev. A 27 (1983) 2403.
- ). Lindhard, K. Dan. Vidensk. Selsk. Mat. -Fys. Medd. 28 (1954)

No. 8.

2. J. Lindhard and M. Scharff, Phys. Rev. 124 (1961) 128.
. D.K. Brice and S.A. Cruz, Radiat. Eff. Lett. 43 (1979) 143,
- A.A. Frost, Theor. Chim. Acta 18 (1970) 156 and references

therein.

- R.Mc Weeny, Coulsons Valence, Third Edition, (Oxford Uni-

versity Press, 1979) Chap. 13.

. E. Clementi and C. Roetti, Ar. Data Nucl. Data Tables 14

(1974) 177.
S.Y. Chu and A.A. Frost, J. Chem. Phys. 54 (1971) 764.

J.L. Marin, R. Riera, and S.A. Cruz, /. Phys.: Condens. Matter
10 (1998) 1349,

Y. Wang and N. Herron, J. Phys. Chem. 95 (1991) and refer-
ences therein.

. Y. Wang and N. Herron, Phys. Rev. B 42 (1990) 7253.

3L

32.
33.
34.

35.

36.

37.

38.

39.

40.
41.

42

43.
44,

G1.

62.

219

G.T. Einevoll, Phys. Rev. B 45 (1992) 3410 and references
therein.

Y. Kayanuma and H. Momiji, Phys. Rev. B 41 (1990) 10261.
Y. Kayanuma and K. Kuroda, Appl. Phys. A 53 (1991) 475.

P.E. Lippens and M. Lanoo, Phys. Rev. B 41 (1990) 6079; 39
(1989) 10935,

S.K. Nair, S. Sinha, and K.C. Rustagi, Phys. Rev. B 35 (1987)
4098.

L.E. Brus, J. Chem. Phys. 79 (1983) 5566.
H.M. Schmidt and H. Weller, Chem. Phys. Lett. 129 (1986) 615.

L.L. Marin and S.A. Cruz, [ Phys. B: At. Mol. Opt. Phys. 24
(1991) 2899.

J.L. Marin and S.A.Cruz. J. Phys. B: At. Mol. Opt. Phys. 25
(1992) 4365.

W.L. Wang and A. Zunger, Phys. Rev. B 53 (1996) 9579.

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, J. Chem. Phys.
87 (1987) 7315.

A.l. Ekimov, ALL. Efros, and A.A. Onuschehenko, Solid State
Conmmun. 56 (1985) 921.

H.K. Mao and R.J. Hemley, Rev. Mod. Phys. 66 (1994) 671.

E. Kaxiras. J. Broughton, and R.J. Hemley, Phys. Rev. Lett. 67
(1991) 1138.

. W.R. Magro, D.M. Ceperley, C. Pierlconi, and B. Bernu, Phys.

Rev Len. 76 (1996) 1240.

. M. Ross, Phys. Rev. B 54 (1996) 9589,
. W.J. Nellis, S.T. Weir, and A.C. Mitchell, Phys. Rev. B 59

(1999) 3434.

. RJ.Hemley et al., Phys. Rev. B 42 (1990) 6458.

. P.Loubeyre et al., Nature (London) 383 (1996) 702.

. W.J. Evans and 1. Silvera, Phys. Rev. B 57 (1998) 14105.

. W.B. Holzapfel. Rep. Prog. Phys. 59 (1996) 29.

- S.T. Weir, A.C. Mitchell, and W.J. Nellis, Phys. Rev. Lett. 76

(1996) 1860.

. N.C. Holmes, M. Ross, and W.J. Nellis, Phys. Rev. B 52 (1995)

15835.

. S. Chakravarty. J.H. Rose, D. Wood. and N.W. Ashcroft, Phys.

Rev. B 24 (1981) 1624.

. N.W. Asheroft, Phys. Rev. B 41 (1990) 10963.

S.A.Cruz.J. Soullard, and E.G. Gamaly, Phys. Rev. A 60 (1999)
2207.

- W. Jaskolski, Physics Reports 271 (1996) 1.
- R.Le Sarand D.R. Herschbach. J. Phys. Chem. 85 (1981) 2798:

87 (1983) 520.
H.M. James and AS. Coolidge, J. Chem. Phys. 1 (1933) 825.

- G. Herzberg, Molecular Spectra and Molecular Structure:

Spectra of Diatomic Molecules, second edition, (Krieger Pub-
lishing Co., New York, 1989).

C.H. Townes and A.L. Schawlow, Microwave Spectroscopy,
(Mc Graw-Hill, New York, 1955).

G.L Kerley, in Molecular-Based Study of Fluids, edited by J.M.
Haile and G.A. Mansoori, (American Chemical Society, Wash-
ington, D.C., 1983) p. 107.

Rev. Mex. Fis. 46 (3) (2000) 207-219



