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Making use of a metric conformal to the space metric, corresponding to the optical length, the Fermat principle is derived from the eikonal
equation. Other characteristics of the propagation of light are also expressed in terms of this metric.
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Empleando una métrica conforme a la métrica del espacio, correspondiente al camino Gptico, se deduce el principio de Fermat a partir de la
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Descriptores: Optica geométrica; ecuacién iconal; geometria Riemanniana

PACS: 42.15.-i; 02.40.Ky

1. Introduction

In the short wavelength limit, the propagation of light can be
associated with certain curves (the light rays), which give the
direction of energy flow and, in this approximation, several
aspects of the behavior of light are describable in geometrical
terms (see, e.g., Refs. 1 and 2). The light rays in an isotropic
medium. characterized by a refractive index n, can be found
making use of the Fermat principle, according to which the

optical length
B
[ nds
JA

of an actual ray between any two points A and B is stationary
as compared with the optical length of arbitrary neighboring
curves joining A and B [1.2]. This means that the light rays
are geodesics of the metric nds* (see also Ref. 1 and the ref-
erences cited therein) and suggests that, for some purposes,
the metric n%ds? may be more convenient than the space met-
ric ds?.

In this paper we make use of some results of differential
geometry in the study of geometrical optics, deriving Fer-
mat’s principle from the eikonal equation and considering the
effect of the curvature of the metric n®ds? on the propaga-
tion of light. The approach followed here allows us to ob-
{ain in a simple way the Fermat principle starting from the
Maxwell equations. In Sect. 2 we summarize the derivation of
the eikonal equation starting from Maxwell’s equations, fol-
lowing Ref. 1. In Sect. 3 we review the relationship between
geodesics and the eikonal equation for a constant refractive
index. In Sect. 4 we derive Fermat’s principle starting from
the eikonal equation, proving that the light rays are geodesics
of the metric n2ds?. We also consider the effect of the curva-
ture of this metric on the spreading of a pencil of light rays.

The standard tensor formalism is employed in Sects. 3 and 4
(see, e.g., Refs. 3—5).

2. The eikonal equation

The source-free Maxwell equations in an isotropic medium
admit time-harmonic solutions of the form

E(r,t) = e(r)FikoS(r)ﬂ‘uL‘
Hii )= 1](!‘)("'}"05(1')—5.»‘(‘ 1)

where ko = w/c, e(r) and h(r) are (possibly complex) vec-
tor fields and S(r) is a real-valued function. Indeed, substi-
tuting Egs. (1) into the Maxwell equations, with D = cE
and B = £ H, it follows that

gradS xh+4+ce= LL curlh,
‘0

i1
e-gradS = == div (ce),

0 €

grad S x e — ph = * curle,
i)

i1
h-gradS = L2 div (e h). (2)
0 M

Therefore, when Ao = 27 /kg is very small (as compared
with ¢ /|grad | and y¢/|grad ), Egs. (2) reduce to

gradS x h+ce =0,
e-gradS =0,
grad S x e — th =0,
h-gradS =0, 3)
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which imply that
(grad §)? = n?, 4)

wheren = \/gjiis the refractive index. Equation (4) is known
as the eikonal equation.

According to Egs. (3), the time average of the Poynting
vector, which is tangent to the light rays, is normal to the
wavefronts S = const. By computing curl curle, making
use of Egs. (2) and (4), neglecting the higher-order terms in
Ao, one obtains '

1 ’
(grad S - grad) e = =[grad S - grad Inu — V*S]e

~ 2
— (e -grad Inn)grad S, (5)

which gives the variation of e along the light rays. The com-
ponent of the left-hand side of Eq. (5) in the direction of
grad S coincides with the corresponding component of the
right-hand side by virtue of the eikonal equation (4). On
the other hand, the component of Eq. (5) perpendicular to
grad S can be obtained by taking the cross product of each
side of this equation with grad S twice; then, making use of
Egs. (3)—(5), one finds that

e [(grad S - grad) grad S — ngradn] = 0.

Similarly, making use of Egs. (2) to compute curl curl h, it
follows that

| P

(grad S - grad)h = ~[grad S - grad Ine — V2S]h

D

§

— (h-grad Inn)grad S. (6)

Hence, (grad S - grad) grad S — ngradn is orthogonal to
h and, from Eq. (4), one finds that it is also orthogonal to
grad S, therefore

(grad S - grad) grad S = n gradn. (7)

This equation gives the changes of direction of the light rays
and is equivalent to Snell’s law.

From Eqs. (3), (5) and (6) it follows that the directional
derivatives along the light rays of the unit vectors that de-
termine the direction of the electric and magnetic fields,
e =e/Ve-e*and b= h/vh - h*, respectively, where the
* denotes complex conjugation, are given by

(grad S - grad) e = —(e - grad Inn) grad S,
(grad S - grad) h=—(h-grad Inn) grad S. (8)

It will be shown in Sect. 4 that Egs. (7)—(8) mean that the
direction of each of the three mutually orthogonal vectors,
grad S, e and h does not change along a light ray if one
makes use of the metric nds?.

3. Geodesics

In this section we shall consider the relationship between an
equation that can be regarded as the eikonal equation for a
medium of constant refractive index and the geodesics of an
arbitrary (Riemannian) space. The results of this section are
actually more general than what we will require in the next
section and they establish several connections between differ-
ential geometry, classical mechanics and geometrical optics.
Throughout this section we shall assume that the space
has an arbitrary dimension N and that its metric, ds® =
gi;drtdz’, may not be flat. Lower case Latin indices
i,j,k,... run from | to N and there is summation over re-
peated indices. The basic result is contained in the following
proposition, which is due to Gauss [6].
Proposition 1. 1f S is a function such that

(grad §)* = const, 9)

then the field lines of grad S are geodesics [¢f. Eq. (4)]. (In
other words, the orthogonal trajectories to the surfaces S =
const. are geodesics.)

Proof. Equation (9), written in terms of an arbitrary coordi-
nate system, 1s

;05 95

g = const, (10)

where the matrix (g*) is the inverse of (g;;). Letting

ds
from Eq. (10) we have
g pip;j = const. (12)

and taking the partial derivative of this relation with respect
to x* it follows that

dg¥ o dp

: RS I 1P Ol <

Bk Pibi + 297 pi dak 0. (13)
by virtue of the symmetry of g™ . Equation (11) also implies
that dp; /Oa* = Opy. /07, therefore, from Eq. (13) we obtain

. Opr 1 dg"

3 ST == AR v

9 Pigei = T3 gk PiPi- (14)
Now, let 27 = () be parametric equations of the “field

lines” (integral curves) of grad S, i.e.,

dxt o as 15
= 3
ax 7 L
which, owing to Eq. (11), amounts to
ax i dxi
N = 9P or Pi = 9ij 3 (16)
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Hence, from Eqgs. (16), using the chain rule and Eq. (14) we
find that

d?at i ooq d o ;
o7 = 0P = gEle ) gy
_ dg¥ ).da:k i Op; da*
= Piay T gy
OJU d’l 81 I\.m
= Gur P g 97 5k 0"
dgd  dx* 1 ;. 09"
= ok Pi g T 593 9z PkPm- (17)

The partial derivatives of the components of g/ can
be expressed in terms of the Christoffel symbols according
to [3-5]

dg'l -
()7 i _F:“kgmj = anh.j"” (]8)

Then, from Egs. (16)—(18) one obtains

2 o4 -k
do p (19)
dX? I dX dA ‘

which are the equations for the geodesics of the metric ds® =
gijdatda’ ie., the solution of Eq. (19) passing through two
given points A and B makes the length [ f ds an extremum,
or, at least, gives it a stationary value [3-5].

Remark I.Since any electrostatic field in Euclidean space can
be expressed as E = —grad ¢, Proposition 1 implies that if
the magnitude of E is constant, then its field lines are straight
lines. Similarly, if the magnitude of the velocity of an irrota-
tional flow is constant, the flow lines are straight lines.
Remark 2. The converse of Proposition 1 is also true; all the
geodesics of a given metric (flat or curved) are locally deter-
mined by a complete solution of Eq. (10) (see the examples
below).

Remark 3. Equation (10) can be regarded as the Hamilton-
Jacobi equation for the characteristic function, corresponding
to the Hamiltonian H = p?/2 of a free particle in a configu-
ration space with metric ds* = gijdz'dz? . The orbits of the
particle in configuration space are geodesics.

Remark 4. The field lines of an arbitrary electrostatic field,
E. are geodesics of the metric E?g;;dx'dx/. Indeed, from
the equation E? = ¢ (d¢/0x")(0p/dx7), it follows that

g Oy 0(,0

E’ dxt Ol '

which is of the form (10) with ¢* replaced by g/ /E%. (Note,
however, that not every geodesic of the metric E2g;;dx'da’
is a field line.) An analogous result holds for irrotational
flows.

Remark 5. From Egs. (12) and (16) it follows that
i (da? /d\)(dx? [dN) = const., which means that the pa-
rameter A defined by Egs. (16) is a constant multiple of the
arc length.

Remark 6. Using Egs. (16) one finds that Eq. (14) amounts to

dpy 1994

B T2 oaR P
This last equation together with the first equation (16) are the
Hamilton equations for the Hamiltonian H = 1,J”p,p_,, with
A in place of the time (cf. Remark 3).

As pointed out above (Remark 2), a complete solution of
Eq. (10) gives locally all the geodesics of the metric g;;. In-
deed, if S(a*, a,) is a solution of Eq. (10) depending on N —
1 PAramBerSidy ooy R =] (0= Line 2 pdVI8 =500 3 N =
1), such that the rank of the matrix (9°5/0a,0z") is equal
to N — 1, then taking the partial derivative of Eq. (10) with
respect to ay,, it follows that

e
PLAR] A

(20)

Ot Oz day,
and making use of Eq. (15) we obtain
dx? 9 ds
T?_(W) =0, D
which means that
dpe
=0 22
X 0, (22)
where
as
3% = —, 23
| et (23)

i.e., the functions 3% defined by Eq. (23) are constant along
the geodesics which are the orthogonal trajectories to the sur-
faces S = const. The condition that the rank of the ma-
trix (0%5/da,0a') be equal to N — 1 guarantees that, lo-
cally, for each set of values of the constants ay, ... ,ay_1,
AL, ..., BN=! the N — 1 equations (23) determine a curve.
(Note that this procedure is analogous to that followed in
classical mechanics to solve the equations of motion making
use of the Hamilton-Jacobi equation [6,7].)

A very simple, but illustrative, example is given by find-
ing a complete solution of Eq. (10) in the three-dimensional
Euclidean space, using cartesian coordinates, where g;; =
d;j. Choosing the constant on the right-hand side of Eq. (10)
equal to 1, a complete solution of

as\*> [as\® [os\’
—_— - e =31 24
(O.r) N (Dy) i (0:) e

can be obtained by separation of variables. Substituting S =
f(x) + g(y) + h(z) into Eq. (24) one finds that § = oz +
ayy++/1 — af — a3 z, where oy and a» are separation con-
stants. Then, according to Eq. (23) the constants 3! and 3
are given by

fl r)S > Y|
=—=0- 3,
day 1—of —aj
5 1S Vo
= . = 7#4”‘—:. (25)

davy ¥ v 1 —u'ffn‘g
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The intersection of the two planes given by Egs. (25) is a
straight line and any straight line can be represented in the
form (25). In the present case, the surfaces S = const. are
planes.

4. The optical metric

The eikonal equation (4) written in terms of an arbitrary sys-
tem of coordinates is

;08 as " 26)
01 e
where, now, 7, j, ... run from | to 3. Equation (26) is equiv-
alent to
38 as
q'7 057— = 1. (27)
dxt Oz
where we have introduced
i _ 97
V= 28
o n? @2
The inverse of the matrix (§%7), given by
i = gu, (29)
corresponds to the metric
Gij de'de? = rlzgij(i;rid:nj, (30)

which will be called the optical metric. Owing to the factor
n® in Eq. (30), the “distance” between two points defined by
the optical metric, along some curve joining these two points,
is not the actual length of the curve but its optical length,
which amounts to the vacuum velocity of light multiplied by
the time needed for light to travel from one point to the other
along the curve.

223

4.1. Derivation of the Fermat principle from the eikonal
equation

According to Proposition 1, from Eq. (27) it follows that the
orthogonal trajectories to the geometrical wavefronts S =
const. (the light rays) are geodesics with respect to the optical
metric (30), i.e., a light ray connecting two points A, B cor-
responds to a trajectory joining A and B such that its optical
length has a stationary value, which demonstrates Fermat’s
principle. (Note that, since the space metric and the optical
metric differ by a factor, the light rays are orthogonal to the
wavefronts according to either metric.)

Thus, the light rays satisfy the geodesics equations for the
optical metric [cf. Eq. (19)]

Bzt .. dod dz*

S e SRR
== I, 0,

1
EdX d) (31)

where \ is the optical length (see Remark 5) and the I
are the Christoffel symbols corresponding to the optical met-
ric, i.e.,

T T:.k = ‘_‘(]“n 6.}73!’» + Og-m‘j _ agjk
1 2 Oxd Az Axm
L dlnn dlnn molnn

w0 G — g™ g (2)
where the F};‘_ are the Christoffel symbols corresponding to
the original metric g;;.

The first equation (8), written in terms of components, is

0S lnnN ::.88
ik o i sy
dad Gl e = =k ( axk ) g oz’

(33)

where V. denotes the covatiant derivative compatible with
the metric g;; [3-5] (V6! = 9é'/da* +sz(,1) hence, mak-
ing use of Eqs. (32) and (3), one can express Eq. (33) in terms
of the covariant derivative compatible with the metric g;;, de-
noted by VA

)8 a5 =1 i m
()T r)'f* VI\( = a?qﬂ‘ [v’\‘et + (Fmi\: o Fnl.i\) ]
e (Olun ; 0S " E( i 6,;Dluﬂ L Olnn FomnY ..
Dt g dxd DY K Qam mogak gmg" gz ) ¢

as J.,‘011171 as
é'
011 dak

as _ ., ét
()f JV,\( ):U.

This means that, using the optical metric, é'/n is covariantly
constant along the light rays (i.e., according to the geome-
try defined by the optical metric, é'/n does not change along
each light ray) and, in an entirely similar manner, from the
second equation (8), it follows that f;‘/n is also covariantly

thus

(34)

0Inn
]
T oY Tarr

o — s M(Jluu

axi T gk O

constant along the light rays (¢f Ref. | and the references
cited therein).

Similarly, writing Eq. (7) in the form

oy a8 O
2w 17 _ ij

( r"q Vi (_r; 8.7-") =ng ozi’

making use of Egs. (32) and (26), one finds that
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% o, (¢ 25) - 25

dx? ox’ dxl
_ 3?1 +£ ;idlnn
=19 50i 579 o 9
(')S Jkalnn(l-rc')S
Bscﬂg azk ¥ Bz’
which amounts to
88 .- 9% 88
il L) S - =
5279 v*(nz axr) 0.
or, equivalently, owing to Eq. (28),
08 = . 05
Batalb ! 2y | gi" — 3
a7 vk (9 axr) 0 (3%)

this means that the (contravariant) vector §"3S/dx" (the
gradient of S with respect to the optical metric), which is
tangent to the light rays, is also covariantly constant along
the light rays. Taking into account the fact that dz'/d)\ =
§70S/027 [cf Eq. (15)], one concludes that Eq. (35) is
equivalent to Eq. (31).

It may be noticed that the magnitude of the three mutu-
ally orthogonal vectors é*/n, h/n and §78S/dx?, which
are covariantly constant along the light rays, with respect
to the optical metric is equal to 1. Indeed, from Egs. (29)
and (27) we have, gi;(é (@ /n)(@/n) = gye'd = 1,
il (hi/m)(hi/n) = gi;hihi = 1, and §;;(§'"0S/0zx")

(570S/02™) = g™ (0S/027)(8S/9z™) = 1.

Denoting by v? the components of the tangent vector to
the light rays, v* = dx'/dA (which as pointed out above, is a
unit vector with respect to the optical metric), Eqs. (7), (31)
or (35) can be written as

v* Vo' = 0. (36)
Remark 7. Applying Egs. (16) and (20) to the optical metric
and recalling that, in this case, dA = cdt, one finds that the
light rays are given by Hamilton’s equations with the Hamil-
tonian H = (¢/2)3"pip; = (¢/2n*)g" pip;, which, apart
from an additive constant, is the Hamiltonian given in Ref. 8
(see also Ref. 9).

4.2. Curvature

Even if the metric g;; is flat (usually the metric of the three-
dimensional Euclidean space), the optical metric may have a
nonvanishing curvature. In Riemannian geometry, the curva-
ture is measured by the curvature tensor [3-5]

o, ory,

Rl = £+ T, I - T 37
Jki OL ot + L ( )

m
m.!ij
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7 i 05
ik ir
g [\7:; (9 0;‘1:") (

2 as
I"l s 1 ) mr
mk mk)g o’
L 08 88 ., 8mln . 88 as .. a8 .. dlnn
f__ ,l ju e T __gJT "__(]IS
drr OLJ axk © dxr O oz™" Oz

and by substituting Eq. (32) into Eq. (37) one finds that the
curvature of the optical metric is given by

R'jjy =R+ 6{ViVilnn - 6,V,V,Inn
+ _r,'"”‘(_c,rj-;,:VmV; Iniv— 5N Vi I )
+(V;Inn) (8, Vi Inn — 6]V, Inn)
45"V ) n)(9;ViInn — g;xV,Inn)

+ {5}(]);; — 6,‘;.‘9‘.,-, )™ P (Vi Inn)(VyInn), (38)

where R’ ik 18 the curvature tensor of the original metric g;;
and V. denotes the covariant derivative compatible with g, ;.
(Note that V. Inn is just d Inn/dz*, but V. V; Inn involves
the Christoffel symbols, V;,V,;Inn = 9%Ilnn/dz*dr! —
I7o0mn/dz™.)

Among other things, the curvature determines the be-
havior of bundles of geodesics in the following way. Let
' = 2'(\, s) be a family of geodesics parametrized by s,
i.e., for a fixed value of 5, 2* = 2" (), s) satisfies the geodesic
equations (19), and let

dr?

= 5

be a connecting vector between neighboring geodesics and
v* = dat /O be a tangent vector to the geodesics, then

(39)

0” r'):t:j o o€ Pt &%zt
’l = _— = = e —
Arl O\ Oxd AN ONIs  OsdA
_ov _aov _ o
Os s dxi — ° Jxd’
which, owing to the symmetry I}, = '}, is equivalent to
V€ = 6V, (40)

therefore, making use of Eqgs. (40) and (36) and the identity
V,(.VJ,‘ vt — V,,-kan’ = Rif;,-_f'lﬁj [3-5] one obtains

vE Vi (v1V;€') = v* Vi(EV;07)
= (v*VRE)V 0" + €0V V0t
= (V0! )V 0t + 805V V0
+ EvH(ViVj — V; Vi)'
= (" Vi)V 0' + £V, (v* Vo)
— E(V;05) Vo' + Ev* R0t

pejuloRed, (a1)
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which is known as the equation of geodesic deviation and
gives the relative acceleration of neighboring geodesics.

Since the light rays are geodesics of the optical metric,
from Eq. (41) we obtain

vk@k(vj@jfi) = Rt e, (42)

which governs the deviation of the light rays measured ac-
cording to the optical metric; however, in most cases, it may
be more relevant to know the deviation determined by the
background metric (usually the Euclidean metric). As shown
in the following example, a bundle of light rays may be
spreading according to the optical metric, but the distance
between the rays may be constant according to the Euclidean
metric.

We shall consider the case where n = 1/z in the half-
space = > 0 and g;; corresponds to the metric of the three-
dimensional Euclidean space in cartesian coordinates (hence,
gi; = 0i;). The light rays can be found by obtaining a com-
plete solution of

as\? [as\® [os\® 1
(a) *(a—y) *(a) @

Looking for a separable solution of Eq. (43) of the form
S = f(x) + g(y) + h(=), one finds that

S=aor+ay+ /

where «v; and o, are separation constants. Then

zdz

V1—(af +a3):2

B=z-m

and

therefore
1
2 2%
a7 + a3

az(x — B') = a1 (y — 37),

(=B +(y-F)P+22=

which means that each ray is a semi-circle whose plane is per-
pendicular to the xy plane and with center on the xy plane.
Furthermore, the optical length along each of these rays does
not depend on the radius of the semi-circle. Indeed, making
use of the parametrization x — 3' = a;(af + a3)~!siné,
Y= = az(ai+a3) 'sing, z = (a? +a2)~1/2 cosb, one
finds that [ nds = [ secfdf. Hence, if two light rays are par-
allel to each other at some point, they remain parallel to each

other and the Euclidean distance between them is constant,
while, according to the optical metric, the distance between
these rays grows exponentially as they approach the zy plane.
The curvature of the optical metric is different from zero; in
fact, from Eq. (38) one finds that R*;i; = — (0191 — 0;djk),
where §;; = 4;;/z7 (in cartesian coordinates). (The simplic-
ity of the expression for the curvature of tensor Rijk; means
that g;; is the metric of a space of constant curvature —1,
called the three-dimensional hyperbolic space.)

Thus, by contrast with the claim made in Ref. 10, the
existence of a nonvanishing curvature for the optical metric
does not imply focusing or defocusing of the light rays.

Another example is provided by the function n = a/r?,
where a is a constant and 7 is the distance to the origin in
the three-dimensional Euclidean space. From Eq. (38) it fol-
lows that the scalar curvature R is equal to zero. On the other
hand, the light rays in this case are circles passing through
the origin, excluding the origin itself; therefore, any pencil
of light rays originally parallel, converges as it approaches to
the origin.

Remark 8. Given a complete solution of the eikonal equation,
S(x,a,), and two arbitrary points A, B, with coordinates
(2'y) and (x%), respectively, then

V(g 2Yy) = Sz, a0) — Sy, aa) (44)
is the characteristic function of the medium [1,2], provided
that the constants «, are chosen in such a way that the
ray determined by S(a*, ;) joins A and B. Geometrically,
V(. xy) corresponds to the optical length (i.e., the dis-
tance measured by the optical metric) of the ray passing
through 4 and B.

5. Conclusions

As we have shown, in the geometrical optics approximation,
some aspects of the propagation of light can be conveniently
expressed making use of the optical metric and the language
of differential geometry. This approach enables us to derive
some properties of an optical system from general results of
differential geometry, which are also applicable in classical
mechanics (not to mention general relativity and some theo-
ries of unification). For instance, each Killing vector (which
generates isometries), or Killing tensor, of the optical metric
gives rise to a constant of the motion, which is useful to find
the light rays.
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