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Wannier exciton bound states for electron and hole spatially separated in adjacent
2D quantum layers
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We analyze the lowest bound states of a Wannier-Mott exciton in which the electron is constrained to move freely in a 2D quantum layer
(2DL) and the hole moves in another parallel 2DL. We assume that in the confinement direction z both electron and hole are in their respective
ground state of a harmonic potential which yields a general multipolar expansion of the electron-hole Coulomb potential in terms of Legendre
polynomials. The resulting Schrodinger equation can be solved by perturbing 2D exciton states for which both electron and hole are in the
same 2DL.
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Se estudia el estado base y los primeros estados excitados de un excitén de Wannier-Mott. para el cual el electron estd restringido a moverse
libremente en una capa cudntica bidimensional (2DL) y el hueco en otra 2DL paralela. Se supone que en la direccion de confinamiento z
tanto el electrén como el hueco estdn en el estado base correspondiente a un potencial arménico, con el cual permite realizar un desarrollo
multipolar de la interaccién coulombiana electrén-hueco en términos de polinomios de Legendre. La ecuacién de Schrodinger resultante se
resuelve usando teoria de perturbaciones para los estados exciténicos bidimensionales correspondientes al problema en el cual el electrén y
el hueco estdn en la misma 2DL.

Descriptores: Capas cudnticas; heteroestructuras semiconductoras; exciton de Wannier-Mott

PACS: 71.35.-y; 73:61.-r

1. Introduction electron lied. On the other hand, calculations of the ground-
state exciton wavefunctions in layered structures are desired
in model calculations of excitons at interfaces, such as that of
Kachintev and Ulloa [3], where they investigated the collec-

tive modes of diluted 2D exciton gas.

Studies of excitons in confined systems are interesting due
to the possibility of growing high-quality nanostructures
with prescribed configurations. Within the spirit of studying
Wannier-Mott excitons in systems that exhibit spatial sepa-
ration between electron and hole, we investigate from a the-
oretical point of view a Wannier-Mott exciton in which the
electron is confined within a bidimensional layer (2DL) and
the hole is confined in another parallel 2DL. The purpose of
this paper is to investigate the lowest bound states of this
system. Analogous systems were theoretically investigated
using variational approaches to calculate groundstate prop-

2. Complete multipolar expansion of the inter-
layer electron-hole potential

The Hamiltonian in cylindrical coordinates is

H=H 4 Hy+ Vi, (1)

erties [1, 2]. Here we take into account the effects of finite
widths of the layers in contrast to Lozovick and Nishanov’s
model [1], which assumed particles confined in 2DLs with
vanishing widths. Bastard er al. [2] performed a variational
calculation of the exciton binding energy of a type II semi-
conductor heterostructure consisting of a hole in InAs well
confined between two semi-infinite GaSb layers where the

where H,, (withw = 1,2 = ¢, 1) are defined as

By =Toart Ty + T Vilz,). 2)

being T,; (with ¢ = p,. ¢, z,) the kinetic and Vi(z,) the
transverse confinement potential of each carrier. The electric
interaction potential is

e2/e

Vine(F1 — ™) = —

(3)

VPE+ pF = 2p1p2 cos(0) — 63) + (21 — 22)°
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where ¢ is the appropriate dielectric screening of the semi-
conductor media.

Let us assume that the transverse dimensions of both
2DLs are small enough so that their associated groundstate
energies are the only relevant levels for the energy range we
consider. The wave function is variable separable, thus it can
be written as

P = ’d'? (zl)ﬂjg(:'l)p(qﬁ(‘ma Pem)¢(¢)E(P)~ (4)

where p, ¢ and pem, ¢em are the usual relative and center of
mass cylindrical coordinates

P= \/Pf + p} — 2p1p2 cos(¢r — ¢a),
sin ¢y — sin ¢ )

COS (p) — COS o

¢ = arctan (

and

. Vmyip? + mapd + 2mymapy pa cos(¢y — d2)
Pem = my + ma )

my sin ¢y + 1y sin @2 )
My Cos ¢y + ma cosdy/’

Qem = arctan (

with m,, being the corresponding effective mass), ¥{(z1),
¥8(22), F(pem, @em) and ®(¢) are functions such that

[Tz + Vo (2)9) = Epothy,

(the index 0 denotes the groundstate),

1 d a 1 & ) (hk)?
R cm + U 5 F= '
(P(‘m apcmp aﬂfm Pem a‘ﬁfr‘m 2p
and
d? :
— 3 =23,
dep?

being k the radial exciton wavevector, and ! the quantum
angular number. Also g = myma/(my + ma2) is the re-
duced mass and =(p) is the wave function part associated
with the relative radial coordinate. We calculate the bracket
(WS FR|H|YYI FRE(p)) to yield

pdp P

where the effective potential Vg for the 2D-dimensional
problem is defined as .

1d d 2 — oD —
("—P@ = Vefr) E(p) = E*PE(p), (5

eekil= [ da [ dz [0 (1) Yo (@) Viae (71 — 72), (6)

and

(hk)?

—— 7
i (7

where 7, are 3D vector, £ is the eigenenergy of the whole

system and M = my + m. is the total mass.

) & IR t E
E*V =& —-Ejy - Ey

We proceed to perform a multipolar expansion of Vg re-
stricting our model to harmonic potentials in the z-dependent
transverse confinement; V,(z,) = k,z2 /2. This choice has
the following advantages: it could physically represent either
soft or hard possible confinements, and as it will be shown,
all the moments of the harmonic oscillator calculated in the
groundstate can be expressed in terms of the powers of its
standard deviation. However, our treatment is valid for any
transverse confinement potential whose moment integrals are
well defined and known, and for any pair of particles p; and
p2 (in this work we will apply it to the exciton problem, so p;
and p, will represent the electron and the hole). It is useful to
write the groundstate joint density probability of the bidimen-
sional harmonic oscillator |¢o(1, 2)|? in terms of the standard
deviations ., = {((z")?)y (subindex O indicates ground-
state), which are of the order of magnitude of the widths of
the 2DL and are inversely proportional to the fourth power of
the harmonic potential stiffness of the £,,:

22 2

=] _(zg-d)

e . " e (#z21)° ¢ .(2:2)
ho(1,2)1 = [wa (DI ve(2)]? = (8
[¥0(1,2)]" = Yo (1)["[¢0(2)| =~ (8)

Here d is the distance between the two particles. Let us re-
call that the groundstate energy of a harmonic oscillator for a
particle of mass m is given by

E=2 9
~ 2mo?’ ©)

It is well known that | (2)|? tends to the Dirac’s d func-
tion as ., — 0. Then we can approximate the electro-
static potential as a Taylor expansion around the maximum
of [tp(1,2)|> with respect to its two transverse variables to

yield

1j=0
8i+‘7 2 21-1/2
X (')“i d [[)- + (:1 - :2)-] |:l:0..‘:2=d1 (IO)
2102,

where (0.1, 0.2) are the moments of the joint density prob-
ability of the groundstate given by

I(azl,ozg):/ [d:ldz*g [a(1,2)228 (z2 — d). (11)

—00 =00

The calculation of I(o.1,0-2) is straightforward, and it
allows us to rewrite the multiple partial derivative involved in
Eq. (10) in terms of orthogonal polynomials as follows

ai+j

az;(]zi [p.2 + (21 - 3'_’)2]_1/2 |31:0.32:d=

(=1)7 (i + 7)'Piyj{d/ /0 + d#)

[p? + d2](1+i+i)/2 ’

(12)
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where we have used the generating function [4] of the Legen-
dre polynomials P, (n = 0,1,...) and we set n =i + j. By
substituting Eq. (12) into Eq. (10) and expressing I(051,022)
in terms of the gamma function I, we arrive to the following
general expression for Veg (p):

4142 i Cn(azlsgz‘l)PZﬂ(d/ V P2 SE (F)
€

(’)2 s d2)(2rz+1)/2

Verr(p) = y (13}

n=0

where we have introduced the abbreviation Cy, (21, 032) de-
fined as

n

1 (2n)!
Chnl0:1,0:2) = ;Zﬂ m

j=
® F(n -7+ %)P(j + %)(0:1)271—3j(0:2)2j- (14)

Notice that expansion (13) is valid for any values of the
length parameters d and any o’s. However, when d = 0 and
all the o’s are nonvanishing, this expansion is just valid for
= > max{o.;,0:2}, so that our procedure cannot describe
the eigenfunctions in the special case when d = 0.

Since we are interested in solving the exciton problem,
we set from now on ¢qyq2 = —e? where e is the electron
charge. Whenever that d > max{c.1,0.2} we get to lowest
ordersino.; and o

2

10} +0,

4 (p? + d)? (24* - p?)

Verr(p) = —

e‘_’.
|1+
f\/p2+([3[

2 2 \2 1

§(Jz.1+o‘z2>) P4 a ! (15)

1 rar ‘\/rra

The sign of the second term inside the square bracket has
the same sign as 2d° — p?. For small p this term is positive
and contributes to increase the strength of the “zero-width”
Coulomb potential 2/ (e+/p® + d?). Physically this can be
explained in terms of the charge density that occurs when
o grows as follows. For fixed separation of the electron and
hole charge distributions (constant d), the negative change in
energy caused by the charge density approaching each other
dominates the positive change produced by the denslty spread
to the outer side of the layers Conversely, 2d> — p?* is neg-
ative for large p and the o terms contribute to decrease the
zero-width Coulomb potential because these terms represents
the electrostatic interaction of two charge distributions when
one of them is located almost on top of the other. Therefore
small growth of & implies slightly larger interaction distance
between charge distributions.

3. Numerical results and discussion

By employing the eigenenergies and eigenfunctions of the
2D exciton when both electron and hole lie in the same 2DL
(d = 0) [5], we can calculate the groundstate of our system
by solving Eq. (5) by common time-independent perturbation

theory. The perturbed exciton states will tend to the unper-
turbed states in the limits vanishing thicknesses (o, — 0)
and a single 2DL (d — 0). The unperturbed eigenenergies
and eigenfunctions satisfy the same equation as (5) but with
a screened two-particle Coulomb potential instead of Veg (p).
The equation for the unperturbed states is

19 8 18 P ) ©)
(papﬂap failpi @) =

p? 9¢*  p?
and the corresponding bound states eigenenergies and eigen-
functions are [5],

EC) 19 p,4), (16)

EPL, = — |E® _ with n=0,1,..., (17)
— l | (n,+ %)2

fnUJ)(P ¢) = 55,03 (p) exp(ile)

AMMWWP—MM(

n+|” exp(zi¢), (18)

where V,(p) = —e?/(ep) is the Coulomb interaction for a
single 2DL, E3P = —e?/( ‘Jeam) is the 3D exciton ground-
state binding energy, P = h’e/(e*u) is the 3D exciton
Bohr radius, 1 = mlm:/(ml + my) is the reduc;ed mass,
o = iy L2 = Do (-1 o)
are the associate Laguerre polynommls [6] and A, is a nor-
malization constant. Notice that Eo.'zD = 4E2P. Obviously,
the eigenenergies of the continuum 2D exciton states take
non-negative values.

Therefore, to solve Eq. (5) perturbatively, we make use of
Egs. (5), (17) and (18) where the perturbing operator term is
V,(p) = Verr(p) = Vo(p). In order to explore the effects of our
multipolar expansion of the Coulomb interaction potential,
we proceed to present calculations for InAs layers, where for
simplicity we have used the InAs 3D exciton bulk values [7],
namely, e = 14.55, my = 0.026 m., mz = 0.025 m, for the
electron and light hole (m. is the electron mass), respectively,
yielding for the 3D exciton the values E3P = 0.819 meV and
3P = 604 A. For 0, = 0.2 = o we plot in Fig. 1 exciton
groundslate energies in terms of the 2D exciton groundstate
Ef, op and in Fig. 2 the corresponding p-dependent density
probdblllty As shown in Fig. 1, the exciton binding energy
increases as the separation between layers also increases, as
compared with the 2D exciton, as expected. On the other
hand, the change in the binding energy decreases as o in-
creases for all values of d. Figure 2 shows how the height
of the normalized wavefunction gets monotonically lowered
as a function of d due to a weaker interlayer Coulomb inter-
action for larger d. We also found that for fixed values of d
the wavefunction does not change much when o varies. For
these parameters, we found that the perturbative first-order
contribution is much larger than the remaining contributions,
and that the contribution of the last term of the square bracket
of (15) (proportional to o%,) to both groundstate energy and
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FIGURE |. Exciton groundstate energies F, for InAs layers when

ay = o = o as function of d for various va]ues of a/a". The

range of all curves start at d = o. We use E( 2D = = 4E3P =
—3.276 meV as reference and normalization constant in our plots.
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FIGURE 2. Normalized groundstate radial probability density
P (p) = p|Z0.0(p)|® of the exciton wavefunctions for InAs lay-

ers for various values of d and o = 0.01a2". Integration over p
yields 1/27 since integration over ¢ is not included.

wavefunction is negligible, as compared with those of the
other terms of Eq. (15). First excited states were calculated
by making use of first-order degenerate perturbation theory
since 2D unpel turbed excited states are degenerated. For in-
stance ” and f(o) exhibit three- and five-fold degener-
acy, respectively. The p-dependence of the unperturbed +/
states is the qame and since V), depends only on p, lhen

< F |V, | f,, ), > is diagonal in both the n = 1 and n =
smtu basis and perturbation removes degeneracy partmlly,
Eio#E\1=E, _1and E3p ?5 E’l =FEy_ # Eap =
Es,_» where E,; = (£.°) | Vj | fn /). Figures 3 and 4 show
that excited-state energies are, unlike groundstate energy, al-
most independent of & that is, these states could be calculated
by approximating Eq. (15) by Vig(p) = —e*/e\/p? + d2.
This is more evident for [ # 0 states and in Fig. 4 the | = +1
and [ = +2 curves are practically indistinguishable.

Since we assumed that in the confinement direction z
both electron and hole are in their respective groundstate, let
us discuss two physical consequences of considering confine-
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FIGURE 3. Same as Fig. 1 but for excited states and with a differ-
ent scale in the ordinate axis. Exciton energies E ; withl = 0, £1
are labeled analogously to 2D exciton since former energies were
obtained from the 2D system by first-order degenerate perturbation
theory.
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FIGURE 4. Same as Fig. 3, but with E; ; withl =0, 1, £2.

ment excited states (E, with s # 0). In the first place, it
is well known that in highly confined electronic systems (as
in our case), energy separation between adjacent levels of
the exciton is much smaller than the corresponding energy
scparalion due to transverse confinement. For instance, for
m = 0.025 m, and ¢ = 100 A Eq. (9) yields a ground-
state energy E!, = 15.24 meV and a separation between this
state and the first excited state of SE,’,O. Therefore, if elec-
tron or hole (or both) were in any excited state of the har-
monic confinement, the total energy of the system Eq. (9)
would increase in a much larger scale than the scale of the
excitonic energies. Secondly, in regards to the continuum ex-
citon states, it was shown in Rel. 8 that high-energy bound
states (corresponding to large values of the principal quan-
tum number ) have a spectrum of negative values of the ex-
citonic energy E which approaches zero as n increases. This
result was obtained assuming that in the confinement direc-
tion both clectron and hole are in their respective ground-

Rev. Mex. Fis. 46 (3) (2000) 253-257



WANNIER EXCITON BOUND STATES FOR ELECTRON AND HOLE SPATIALLY SEPARATED IN ADJACENT 2D QUANTUM LAYERS 257

state. That is, there is a discrete (although infinite) energy
spectrum for £ < 0 and a continuum spectrum for £ > 0
when s = 0 in both Ef, and Ej,. Thus, a confinement ex-
cited state corresponds to an unbound state of the system
immersed in a continuum spectrum, in other words, it cor-
responds to a resonant scattering state of the electron and the
hole -not an exciton anymore. In Ref. 8, the WKB approxima-
tion (or Bohr-Sommerfeld quantization of the action integral)
was employed to calculate approximately the eigenenergies
and eigenfunctions of the bound states of the exciton. This
approximation provides convenient analytical expressions as
well as an overall picture of the exciton spectra, but it appro-
priately describes only high-energy states.

In summary, we developed an exact multipolar expansion
of the interlayer electron-hole potential for arbitrary values
of layer widths o, and a2 [Eq. (13)]. Our results go beyond
Lozovick and Nishanov’s calculations [1] which are varia-

tional with 0.; = 0.5 = 0. As an application of this expan-
sion we chose to perturbatively calculate the lowest states of
a system consisting of two adjacent 2DLs for a set of feasi-
ble parameters. From our results it can be noticed that finite
width effects can not been neglected . This works on the the-
ory of the lowest states of our system and presents a general
analytical multipolar expansion of the interlayer potential.
We hope that our efforts can stimulate further experimental
and theoretical work on the study of heterostructure systems
that exhibit spatial separation between the electron and the
hole.
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