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A new, many-particle approach to the interaction between electrons and polar optical phonons in semiconductor nanostructures, in which
the statistical average over phonon states is exactly performed, is presented. The interaction is then reduced to an effective retarded electron-
electron one. As an application, the polaron free energy is calculated from the first-order correction to the thermodynamical potential within
the framework of a dispersive electroelastic continuum model for the long-wavelength polar optical oscillations in a GaAs/AlAs double
heterostructure.
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Se presenta un nuevo formalismo para el estudio de la interaccién entre los electrones y los fonones épticos polares en heteroestructuras
semiconductoras, en el cual se realiza de forma exacta la promediacién sobre los estados del subsistema fonénico, de modo que la interaccion
electron-fonon se reduce a una interaccién retardada efectiva entre los electrones. Como aplicacién del formalismo se calcula la energia
libre del polarén en una heteroestructura doble del tipo GaAs/AlAs a partir de la correccién perturbativa de primer orden al potencial

termodindmico en el marco de un modelo electroeldstico continuo para las oscilaciones dpticas polares de longitud de onda larga.

Descriptores: Energia libre polarénica; heteroestructuras semiconductoras

PACS: 71.38; 73.40

1. Introduction

The polar optical phonons in semiconductor layered struc-
tures have become a subject of much theoretical investi-
gation and several phenomenological models for the long-
wavelength polar optical oscillations in those systems have
been put forward for heterostructures of different types of ge-
ometries. Within this framework, electron-phonon interaction
Hamiltonians can be derived under general conditions [1-9].

The problem of averaging over phonon variables was pre-
sented for the first time by Feynman [10], who applied his
variational path-integral method to study the polaron in bulk
systems, and performed an exact reduction of the electron-
phonon interaction to a retarded interaction between elec-
trons. Posteriorly, different versions of that method were sys-
tematically used to calculate the polaron properties in the
bulk case [11,12].

An alternative procedure for the elimination of the
phonon variables in the polaron problem—which is mathe-
matically rigorous and is based on second quantization—was
proposed by Bogolubov and Bogolubov [13]. In the present
work, Bogolubov's method is extended to deal with the
many-electron system interacting with polar optical phonons
in semiconductor planar layered heterostructures, such as su-
perlattices, multiple quantum wells, single and double het-
crostructures, etc. The consideration of planar interfaces is
due mostly to simplicity. It will result obvious that our ap-
proach is valid for any type of structure, independently of its
geomelry, so that one could account for systems like quan-

tum wires, quantum dots, etc. The differences will come from
the specific form of the electronic states and the interaction
Hamiltonian for each particular situation.

The evaluation of the polaron free energy is one of the
direct results of the path-integral formalism in bulk systems
(see, for instance, Refs. 12, 14 and 15). However, this quan-
tity does not seem to have been so far widely calculated
in low-dimensional heterostructures due to the explicit dif-
ficulties for the application of a Feynman-like procedure in
systems bearing interfaces. An alternative way is the use of
the perturbative method coming from a Green's function ap-
proach to the thermodynamical potential. In the case of semi-
conducting materials like the III-V and II-VI compounds,
the magnitude of the electron-phonon coupling constants are
small enough to allow for a perturbative treatment usually
restricted -at most- to the second order corrections. There-
fore, such a calculation process can be carried out as well in
the case of semiconducting heterostructures made from those
materials.

Here, we are going to use the many-particle Green's
function-based formalism resulting from the extension of the
Bogolubov‘s method to evaluate the polaron free energy as
a function of the temperature in the case of a GaAs/AlAs
quantum well. The paper is organized as follows. In Sec. 2
we start describing the Hamiltonian of the electron-phonon
system and then discuss the reduction of the statistical oper-
ator after the averaging over phonon variables. Section 3 is
devoted to the study of the one-electron Green’s function and
the subsequent derivation of the thermodynamical potential.
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In Sec. 4, the approach is applied to the evaluation of the po-
laron free energy in the mentioned system, according to the
so-called dispersive electroelastic continuum model (DECM)
for the polar optical phonons [16]. Section 5 contains the con-
clusions of the work.

2. Reduced statistical operator of the electronic
subsystem

The Hamiltonian for the electron-phonon system in the het-
erostructure is

H = ge+g;)h+ﬁ97ph- (nH

H, is the Hamiltonian of the non-interacting electronic sub-
system which consists of the electrons in a given energy
band. The one-electron states are described within the enve-
lope function approximation and obey certain effective mass
differential equation. In a planar layered heterostructure, the
appropriate quantum numbers which describe these states are
the in-plane wavevector k = (k, ky) and ¢, a quantum num-
ber associated to the motion of the electron along the growth
direction (assumed to be “z”). If we introduce ay¢ and ﬁ.L(:
the annihilation operator and the creation operator, of an elec-
tron in the state |k, (), respectively, the Hamiltonian H. is
written as

Hp_ = ZER,CELLC&M. (2)
k,¢

The Hamiltonian I-:{],h corresponds to the non-interacting
phonon subsystem. Regardless the particular long-
wavelength model to be considered for the study of the
polar oscillations, the dispersion relations can be desig-
nated, in general, by ws(q), where the in-plane wavevector
q = (gz,qy) and the index “s” particularizes the specific

mode. The form of this Hamiltonian is

I-:r])h = z TWs(Q)BLqus- (3)
q,s

Now, bqs and I)Iu are the annihilation operator of a phonon
in the state |q, s) and the creation operator of a phonon in the
state |q, s), respectively.

The electron-phonon interaction Hamiltonian in the com-
plete second-quantized form can be written in a general form

|

J0

as

Hefph = (rq.s‘j csf((k~ q)&L qy'l&k(bqs
+a,6
k (¢ as

+C;st'c“"Q)f‘ulﬂq,cfﬁkcggs}' (4)

The factor Cy, is similar to that of the usual bulk Frohlich
Hamiltonian and

Phc(k,q) = (k +q,(|Pqs(2) |k, ), (5)
Qi c(k,q) = (k — q,('|85,(2) |k, O)- (6)

The modulation function ®q.(z) contains the effect of the
presence of the interfaces along the z-direction upon the os-
cillations. It is, precisely, the element of distinction between
this class of Hamiltonians and the bulk one, and also between
themselves.

The statistical operator @ and the statistical sum = of the
electron-phonon system, in thermal equilibrium, are given by

1L ah
= —e PH, (7

2 = Tre~RH, (8)

where 3 = (kpT)~! and Tr means the trace. Using the
interaction representation and the imaginary time chronolog-
ical ordering of the operators [17, 18], we may write

6]

- 1l _siiaf -
W = e AHAHM T oxp {
i B

dr He_ph(r)} G\

Let us define now the reduced statistical operator p of
the electron subsystem trough p = Tr(pp)w. Here, Tr(pn)
means the trace over a complete set of states of the phonon
subsystem. In order to evaluate this trace, we first define the
operators

Bao(r) = Cas > Pic(k, Q) q o (Dikalr), (10)
k,a,c

Das(7) = Coy D Qic(k, )il _g o (T)ika(r), (11

k,a,ov

and apply the Strukov-Fedyanin identity [19]

. -3 " . R N 3 R R
Texp {‘ / dr [qu(r)bqs(r) + Dqs(T)bLS(T)] } = exp {— [ (lTDqs(r)cr'”‘(Q)TbLs}
Jo

B % " -3 T1 o= =
X exp {——/ d'qus(T)e_‘r’“”(q”bqs} exp {/ dm [ rh'ngs('r])Dqs(m)e““"(q)(“T"} . (12)
0 0 Jo
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The phonon operators in (12) are in the Schrodinger picture, i.e., they do not depend on time. Hence, the T-operator in /5 will

only order the electron operators in B, and Dgs. It follows,

qs

where,

. 1 g5 T %% 8
p=ze BH. HTH([,h)exp {*ﬂhws(q)bf}sbqs - Dbt Bbqs +/ dﬁ/ dry Bgs(71) D s(12)e™ (q””'”]}, (13)

; B . . B
B 2[0 d7 Bqs(7) exp|[—hws(q)7], and D :/ dT Dys (7) explhws (q)7]. (14)
J 0

The trace over phonon states in (13) gives

o4 s - 1 DB
s t f —
Tn(p;,)exp{ Bhws(q)bgsbas — Dby, — Bbqs} = T o phenia@ &P |i(ww’(q, —3 (15)
and the expression for p becomes
,6 —e {3(!‘17}}‘.)1:‘6{)1 (-[6)
(2 being the thermodynamical potential of the electron subsystem:
1 P
=2 nT [e—ﬁ”TcV] . (17)
The operator V' is given by [20]
Pi= / dmy [ A3 ST ST N1 PT(n = m)al, g (M)akie (M)a, g ¢ (T2 (T2). (18)
0 am ki k2 (1.¢2 ¢} ,Ch
I'(71 — 72) generically designates a function which depends on the quantum numbers k;, ka2, (i, Ci, (2, C;, o
” B(r — 12) Bl =1} | (el
1% s T 7_'3) = PLHI (kle)Qzégz(k'la Q) |:1 _ e—Bhw.(q) i e Bhw.(q) — ] € B B
4 0(n — 1) (2 — 1) hiw.(q)(m1—72)
+ P, (k2, )Q¢: ¢, (ki q) [eﬁﬁwdq) — + T o | © . (19)

Expressions (16)—(19) resume the reduction of the electron-phonon system to an electronic one. In this system any pair
of electrons interact through a retarded potential given by V. The statistical average of any operator is evaluated by using the
reduced statistical operator 5 and every elementary act of interaction may be represented by a term of the form

2 _ X
|Casl*T(m =~ 72)at) o o

Al the time 7, an electron with quantum numbers ko, ¢» an-
nihilates and another electron with wavevector ks — ¢ and
quantum number L.l (not necessarily equals to (2) is created.
The transferred momentum hq and energy propagate with the
field until instant 7; when they are absorbed by another clec-
tron. The second scattering process involves the annihilation
of an electron in the state |k; +q, C; ). This electron-electron
interaction through the crystal lattice is also applied to the
electron self-interaction, i.e.; the excitation created at 7 (ex-
pressed in terms of phonon emission and absorption) propa-
gates in the lattice and acts upon the same electron at time 7.

At this point, it should be remarked that the reduction
of the electron-phonon interaction to an effective electron-
electron one, obtained along the lines of the procedure above
developed is an exact result. No approximation has been per-

formed when summing over phonon variables with the use
of identity (12), except for the general assumption that the
electron-phonon interaction Hamiltonian is Frohlich-like.

3. The one-electron Green’s function and the
thermodynamical potential

The one-particle Green'’s function in the interaction represen-
tation is given by [17, 18]

(T{anc(r)ak (0)e })o

bhia (20)
(T{eV}o

Gk, () =~—

Here, the average is performed with the use of the statistical
operator of the non-interacting electron subsystem. Wick’s

Rev. Mex. Fis. 46 (3) (2000) 258-264



A MANY-PARTICLE APPROACH TO THE ELECTRON-PHONON INTERACTION IN SEMICONDUCTOR NANOSTRUCTURES 261

theorem can be applied and, as usual, the contribution of dis-
connected terms cancels with the denominator, resulting in

S L

n=0

Gk, G7 $T)s (21

where

1 [ n 2 7 co
G (K, G 7) = —— (T{ac(Nag V" HE™. (22)

Now, following the standard procedure of Ref. 17, if

Ll = — s In Tre~?H- (23)
%)

is the thermodynamical potential corresponding to the non-

interacting electron subsystem, the correction AQY = Q — 1,

associated to the electron-phonon interaction will be given by

AQ = -% {(Tf eVyeon — 1} . (24)
In all Frohlich-like problems, the expansion of ¢¥ can be
viewed as a series in the electron-phonon coupling constant
«, in such a way that the n-th order term in the expansion for
the Green’s function is proportional to the n-th power of a.

This feature allows us to write
G(k,(7)

do
/ Z{G“”(k T 1}‘

thus expressing through the one-electron Green's function
the correction to the electronic thermodynamical potential
due to the interaction with the phonons. From (25) it can be
derived the usual series of “*bubble” diagrams corresponding
to this quantity [17, 18].

(25)

4. Polaron free energy in a GaAs/AlAs double
heterostructure

In this section, the many-body approach developed in Secs. 2
and 3 will be applied to the calculation of the polaron energy
in a GaAs/AlAs double heterostructure (DHS) for both zero
and finite temperature. This is going to be done within the
framework of the DECM for the long-wavelength polar opti-
cal phonons [14]. The GaAs-like phonon modes are neither
purely confined slab modes nor interface modes. There is a
mixed character and certain modes are rather more interface-
like than the others. Furthermore, we only can say that the
modes may be predominantly “longitudinal” (quasi-L) in
some cases or predominantly “transversal” (quasi-T) in oth-
ers because the polarization also exhibits a mixed charac-
ter. The corresponding electron-phonon interaction Hamilto-
nian is

H"‘—I’l' = Z Z Cqmpg;lc(kwq)

k.(',(q.,m

b (ﬂ;‘ﬁLq“:,ﬁkchqm =}= a]t_q‘g-'ak(:i’:[!m) , (26)

where m = 1,2,.. ., labels the set of discrete optical phonon
modes which appear due to the presence of the interfaces and
{’, ¢ label the different electronic states in the well. The fac-
tor Cg,, is given by,

2 } 1/2

— w2
i 7,0

4rhe? (w2,

(27)
Escwm(q)Sd

('qm =

Here, S is the transverse area, d is the well width, and ¢,
wyre and w, , are, respectively, the high frequency dielectric
constant, the frequency of the tranversal optical phonons and
the frequency of the longitudinal optical phonons in the bulk
GaAs. w,,(q) are the characteristic dispersion relations of the
different oscillation modes [16, 21].

On the other hand,

[)Ht (k q) — (k + q‘

' fam(2) ]k, ). (28)

fgm—the electrostatic potential—is a real function which de-
pends only on |q|. If the quantum well is chosen to be sym-
metric with respect to z = 0, the function fq., will repre-
sent either odd potential states or even potential states for the
phonons [21].

The conduction band electronic states in the GaAs /AlAs
DHS are calculated using a finite barrier quantum-well
model, explicitly considering the difference between the ef-
fective masses in both materials (see Ref. 22, for instance).
The barrier height is taken to be V5 = 915 meV. Addition-
ally, it will be also assumed that the electron is in the I" band
even when it is really the X the lowest conduction band.
This is done mostly for two reasons. The first one is that we
are interested in the dynamics around k=0 in the well be-
cause the interaction with mechanically confined GaAs-like
phonon modes should participate more strongly in the renor-
malization effect of the bottom of the conduction band in this
material. The use of the barrier height corresponding to the
X point in AlAs (567 meV) would not actually represent
that situation. The second reason is of much more practical
character: to avoid the extra complication coming from the
consideration of an indirect gap, and it has been taken into
account in previous works as well [23].

In a finite barrier model quantum well, to sum over all
intermediate states is a less practicable process. However, If
we are interested, for instance, in polaron corrections to the
first subband (¢ = 1) energy, taking only the very first terms
in the summation is enough for the numerical evaluation and,
in most cases, keeping only the contribution from the first ex-
cited level (¢ = 2) will do. This second contribution is higher
for wider quantum wells where first and second subbands are
closer and the combined thermal and optical-phonon ener-
gies result to be hw,,(q) + kgT > €3 — £1, thus giving the
possibility of a more intense intersubband scattering process.
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The evaluation of (28) leads to the following function for the square matrix elements:

. 2KK 2 (25sin?2 2
{(1)——‘,,;(61)(_ — : > ) { ol ’:COSA[ il (1 _(Og—")smh

K+ 2KKp + KC0S 2K + Ky sin 2k 4k? — k3 k2 4p2_ g3
;. ¢ |2 sin .‘2:-» £cos 2k 1 cos?k 172
_YL g |sKSMIR SN —(E+2xy) COST K
i [4 Ty 51§+(4H2+£2+£) smluﬁ] + 2Che th-‘r{}
m 2KKy 2nmy,
1) = (o) ( ) i
K+ 2KKp + K cOS 2K + Ky sin 2K 1+ 2nny — 1 cos 21 — py, sin 21

. sin(k +n—kr)  sin(k —n+ky) sin(k+n+kr) sin(k—n—kp)
k+n—kg k—n+kp K410+ kp k—1n-—kp

B 2 sin(k + 1) sin(n — k) ]
SL{ (1+¢%) [62 Frtm? @ (-np

.5 k+n cos(k+1n) 11—k cos(n— k) SINNCOSK i
T e : _ : . guet B b e (et 29
( ) [ £ &+(st+n)? § &+ (n-x)? Tkt @2

In the former expressions, the quantities ¢ = qd/2,
o= o/ (mrd?/2h%)eq, Ky = 1.’(771*(]2/2?1)( —&1),

Sy = Esink, + k. cosky;

y = y/(m*d?/2h%)eq, and 1y = \/(111.3(17.?/2& (Vo —€2) i

have been introduced; £, (g2) being the energy of the first Cy = cosk, sinh § + ?L sin k. cosh§;

(second) level in the quantum well, m* the conduction band

L . . - P < ) k _

cllu.twﬁ: mass of the QaAs, and my, the ' point ?onflucllon Sy = sink, cosh £ — ~% cos k. sinh . (30)

band effective mass of the AlAs. The quantity k, is given by £
d — w2 (g) Finally, A,, is certain g-dependent normalization constant for

ky = B T & the even potential oscillation modes, and B, is the corre-

- Bz sponding nomalization constant in the case of the oscillation

modes with odd electrostatic potential [16, 21].
Starting from the Eq. (25), with the use of (27), and tak-
CL = Ecosk,, — kysinky; ing the one-electron limit, it is possible to write for the first-
order polaron free energy correction in the DHS, the follow-
] ing expression:

with 4, = 3.2 x 10° cm/s, and

m

dahw o R e~ Be o (q) ** .
(1) _ LO z o110\ —Anz ’R%z 2(1—%).
= d Zj e—tei/hwro Z / /0 dwe” =" Dy (x)e” ’ ! (3D

)
m I=12" o

where t = hw, /3 is a dimensionless temperature-dependent

variable and wyn = W (Q)/wio- An = (& ~ €1)/hwio,

and B = (h/2m*w.)'/? is the bulk polaron radius. The

summation over index j comes from the quasi-2D expression

for the exponential ¢?#. Again, it is restricted to go over the

discrete energy levels of the well. The function D, () is— /' (ot
0

. ilp= £ erfi (azx),
according to (19)— 2a

The integration over the variable @ can be performed and ex-
pressed through the error function integral

cWam® e~ Wmaql

D) = + . (32) , y
am e¥amt — 1 1 — e~Wam! ' thus allowing to write
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exp [_((1232 + Ay — u-?qm)]
qu.t

EXP(Lqu. ) —1

2 =
s |:erﬁ (q R +A“_ Waym \/‘) ‘f“elfl( gy —-aki] All \/‘)]

2avTthwo /
F(t) = -2
( ) d ZJ eltsj/ﬁw[,o ;IZI
2qR
exp [—(¢*R* + An + wgm)] [mh (
T exp(—wqnt)
100
80O
60
b
40
20
0/
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FIGURE 1. Relative polaron free energy as a function of the GaAs
quantum well width (in nanometers). Curves, in decreasing order,
correspond respectively to 613 K, 420 K, 300 K, and 0 K.

In the calculations, the values w.o, = 291.9 cm™!;
wro = 273.8 cm™!; ¢ = 13.18; €5 = 10.89: m* =
0.0665 mg, and o = 0.068 were taken for GaAs. For the well
barrier effective mass we used m*(AlAs)= 0.15 mg, mg be-
ing the bare electron mass.

In Fig. | the relative polaron free-energy F'r is shown as

a function of the quantum well width d for different values of

the tempcrature F'r is defined as the ratio F(1) (¢ )/F(l)( 1

where F‘D (t), the polaron free-energy in first order for bulk
GaAs is given by:

h f# T
Fgll))“) _ aliwrg \/-/ \/Tk—)t (34)
where
e’ e T
)= —+ —-— 35
Dia) 6’—1—%1*(!"" 93]

In the limit 7" = 0 K (t = o0), equation (35) gives precisely
the bulk polaron binding energy value —afiw, , [18].

The three upper curves in the figure correspond, from top
lo bottom, to the Debye temperature of the GaAs (T,, =
G13 K), the LO-phonon temperature of the material (7, ph =
hwio/kg = 420 K), and to T = 300 K, rLSpeLllvely. Be-
sides the room temperature value, the other two were cho-
sen because they constitute significative temperatures for the
material. For the sake of comparison, a lowest curve, corre-
sponding to the 7" = 0 K polaron relative binding energy has

2qR

2qR

PR + Ay + wym \;) _ orfi (MA{)} } (33)

)qR

been included. This curve is obtained from the expression re-
sulting when taking the limit t — oo of Eq. (32), which pre-
cisely coincides with the Rayleigh-Schrodinger-perturbation-
theory equation presented in Ref, 22.

As expected, the polaron free energy raises with increas-
ing quantum well width. The rate of increment varies for
different temperatures indicating that the way by which the
GaAs-like phonon modes contribute depends on the temper-
ature as well. Nevertheless, it can be observed a tendency
to change the monotony, which reverses towards a limiting
bulk-value for d sufficiently large. This decreasing behav-
ior is stronger at high temperatures—as it is shown in the
curve corresponding to T'p—, while is much more subtle for
T = 0 K. The range of well width values selected repre-
sents the region of greater interest for the effect here studied.
Furthermore, there exists another reason -this time of prac-
tical character: for higher values of d, the number of eigen-
modes associated to the characterictics equations increases
very rapidly, and the calculation process becomes really te-
dious [16, 21, 22].

Relative polaron free energy is not reported for d below
2 nm for in that region a macroscopic continuum model for
the GaAs long-wavelength oscillations would certainly not
work well, and its validity is doubtful. When d — 0, only the
bulk AlAs is present. However, in this study we have not con-
sidered so far the contribution to the electron-phonon interac-
tion coming from the electric potential of the barrier modes.
If taken into account, it will significatively change (by in-
creasing) the polaronic correction for the smallest values of
d; but in the case of well width around 10 nm and beyond the
main contribution should come from GaAs-like polar optical
modes.

5. Conclusions

We have presented a new formalism for a many-body treat-
ment of the electron-phonon interaction in semiconductor
layered heterostructures. The simplest application of this for-
malism is the study of the polaron properties. We chose, as
a particular case, a model derived in Refs. 16 and 21 for the
polar optical oscillations in a GaAs/AlAs DHS. The results
obtained within this model indicate that the effect of the mod-
ification of the phonon spectrum due to the existence of inter-
faces is relevant only for layer thickness not too larger than
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100 angstroms. Significant differences with the 3D values are
obtained for a GaAs-layer width of a few tens of angstroms.
For wide enough wells, the use of the bulk Frohlich Hamilto-
nian would provide good results.

In our opinion, the advantage of the reduction of the
electron-phonon interaction to an effective electron-electron
one could be of interest when studying the many-electron
system in heterostructures—including both the Coulomb in-
teraction and that with the phonons—, as well as for the
study of another properties like the electronic mobility, by
using the Kubo formula [18]. As it was already mentioned in
Sec. 1, the formalism can be adapted in straightforward man-

ner to deal with the electron-phonon interaction in other pla-
nar heterostructures as well as in quasi-one- and quasi-cero-
dimensional semiconducting systems provided the interac-
tion Hamiltonian can be written—in the a and f}operators—
in a form isomorphic with Eq. (4); i.e. a Frohlich-like Hamil-
tonian.

On the other hand, the very structure of the identity ex-
pressed through Eq. (12) could allow for a similar summation
procedure in another kinds of interaction; e.g. the phonon-
magnon problem, provided a finite temperature perturbative
Green'’s function formalism could be applied to.
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