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We examine, from a geometrical point of view, the dynamics of relativistic extended objects joined at some interface. Using simple variational
techniques, we obtain the equations of motion for these objects, together with a set of dynamical boundary conditions, that express the

feedback of the motion of the interface on the joining membranes. These conditions reduce, in a particular limit, to a relativistic dynamical
generalization of Neumann'’s triangle. For simplicily, we restrict our attention to Dirac-Nambu-Goto extended objects.
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Consideramos, desde un punto de vista geométrico, la dindmica de objetos extendidos relativistas juntos en una interfase. Usando técnicas
variacionales sencillas, obtenemos las ecuaciones de movimiento para estos objetos y también un conjunto de condiciones de frontera
dindmicas que expresan el efecto del movimiento de la interfase sobre las membranas que se unen. Estas condiciones se reducen, en un
limite particular, a una generalizacion relativista del tridngulo de Neumann. Por sencillez, consideramos solamente objetos extendidos de

Dirac-Nambu-Goto.

Descriptores: Ohjetos extendidos relativistas: membranas; métodos variacionales

PACS: 98.80.Cq; 13.70.+k; 98.80.Hw

1. Introduction

In a phenomenological description, to lowest order, a rela-
tivistic extended object is described by an action functional
proportional to the area of its worldsheet, m. This functional
is known as the Dirac-Nambu-Goto [DNG] action. The dy-
namics of DNG extended objects has been studied exten-
sively [1-3].

In a recent publication , we have developed a geometrical
framework for the description of the dynamics of extended
objects with loaded edges [4]. Our analysis is based on the
key observation that the worldsheet of each edge can be con-
sidered as a hypersurface in the worldsheet of the parent ex-
tended object, which coincides with its timelike boundary [5].
The dynamics of the system is determined by a set of equa-
tions of motion for the parent extended object, the same one
would obtain by neglecting the boundary, and a set of equa-
tions of motion for the edges. The description is completed by
a set of boundary conditions, expressed as constraints on the
geometry of the parent worldsheet at the edges that contain
the needed information about the dynamical feedback that the
edges have on the parent object spanning them.

In this paper, we extend such geometrical framework to
a system composed of an arbitrary number of DNG extended
objects joined at some interface, which we treat as a shared
edge (this general type of system was envisaged by Carter

in Ref. 6). The interface is considered as some extended ob-
ject itself, with a dynamics of its own, embedded as a hy-
persurface in the higher dimensional extended objects, and
it coincides with a component of the timelike boundary of
such objects. For a defect of co-dimension one, when D = 2,
this could represent several strings meeting at a point or at
a point mass. When D > 2, the interface might be the
physical interface along which two membranes touch such
as a phase boundary. The former case has been studied in
the context of the stringy description of hadrons, e.g., where
the hadron is modeled as three open strings whose edges are
quarks, and that meet at some point, in the so-called Y-model
for hadrons [7,3]. The dynamics of systems where topolog-
ical defects of different dimensionality are joined together is
also relevant in the cosmological context [1]. An appropriate
sequence of phase transitions can produce hybrid topologi-
cal defects, such as domain walls bounded by a string, or
a network of Zy-strings with monopoles vertices where the
strings join. These hybrid topological defects have proper-
ties radically different from simple non-composite topologi-
cal defects.

We use simple variational techniques to derive the equa-
tions of motion for this system. We find that the bulk equa-
tions of motion of the joining extended objects are not af-
fected by the presence of the interface, i.e. they are extremal.
At the interface, we obtain a set of coupled equations which
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express the coupling of the interface to the joining objects. In
the limit of a vanishing tension for the interface, these equa-
tions reduce to a relativistic generalization of the well-known
Neumann triangle, which features, for example, in the clus-
tering of soap bubbles [9, 10].

2. Interface geometry

Consider A, (D — 1)-dimensional, relativistic extended ob-
jects decribed by (D — 1)-dimensional spacelike surfaces,
which meet along some interface. (The case of many inter-
faces follows naturally, but implies an additional notational
burden.) Their trajectories in spacetime, or worldsheets, are
oriented timelike surface 1) (Z =1, - - , N, of dimension
D, embedded in a fixed N-dimensional background space-
time {M, g, }.

The worldsheet 11,y can be represented in parametric
form by the embedding =* = X(“I) (§fr)), where z* are lo-
cal coordinates on M, A\(I) embedding functions, and {7,
are local coordinates on mgy. (g, v,--- = 0,1,--- N — 1,
and a.b.--- = 0,1,--+ , D — 1. For the labels Z, 7, - - - the
summation convention is suspended.) The interface where
the A\ sheets meet, int, can be represented by the embedding
as a hypersurface into the 7'M sheet, as &y = X?I)(?LA)a
where u* are local coordinates on nt, and \{z, embed-
ding functions. (4, B,... =0,1,---,D — 2.). The embed-
dings of the worldsheets agree on the interface. An alternative
way to describe the interface is via its direct embedding in
Rp’lCC[imC through map composition, x# = x{z,(u*), where
X(1) = (0X {7 /9&(r))X(1)-

For lhc. sakt, of simplicity, we consider the case of A" ex-
tended objects described by a DNG action, joined at a sin-
ele interface, an extended object of one lower dimension, de-
scribed by a DNG action as well. The generalization to ar-
hitrary phenomenological actions can nonetheless be carried
through along the lines illustrated in this paper, but it is con-
siderably more involved. The DNG action depends only on
the intrinsic geometry of the worldsheet. The intrinsic metric
on each m, is defined by

Yab(z) = "::(ﬂf'z(z)fl,(w = g(eu(l’)a eb(z))a (

where we introduce, on each sheet, the D tangent vectors,
Ca(z)=(02(,, /D€L, )3, Note that we can dcﬁnc the i*" unit

space-like normal to the worldsheet mz), 7 I) (i, 7. =
l,---,N — D), with, up to a local O(N — D) rotation,

9(€a(z) n{;)) = 0, and normalized with 9(“;1)*” ) = R

(We use a signature for the space-time metric w1th only onc
minus sign). The spacetime vectors {n(I S Bl } form a basis
for spacetime adapted to 1 (5. We will make use of this basis
below. The intrinsic geometry of the interface is the same, in-
dependently of which sheet metric induces it, and thus it will
be independent of the label, so that the intrinsic metric on int
is given by

lian = 7(1)(‘?:!(1)1%(:))9 )

where we have introduced the D — 1 tangent vectors to int,
€a = (Ox*/Ou™)d,. Also in this case, the unit normal
vector to int in mz), 1(;), is defined, up to a sign, with
Y(z)(€ays M(z)) = 0, and normalized with 7y (N(2) s (z)) =
1. The surface vectors {€,z,.7(r) } form a basis adapted to
the interface.

3. Action and first variation

The total action we consider is
S = S0 + Sint, (3)

where we separate the “bulk’ and interface parts,

So[X(2), X{n)] Z.“ x)/ A&/, @
fﬂ.(I]
Sml’[ (z)> Xz ] = —Mint dP~Yu/=h. (5)
Jint
Here v(;) denotes the determinant of the intrinsic metric on

the I”‘ shcet (1), and h the determinant of the metric induced
on the interface, (2). We allow for different tensions for the
7 extended object, which we denote with (7). and ptins is
the interface tension.

In order to derive the equations of motion for this sys-
tem, we proceed in a standard way, and we consider first an
arbitrary infinitesimal displacement of each sheet [11],

X! \“ axt

(x) (z)" (6)

These displacements are independent, but subject to the
condition of agreeing on the interface. Moreover, the dis-
placements are assumed to vanish on two spacelike hyper-
surfaces on each sheet, that play the role of initial and final
configurations. We decompose the 7" displacement with re-
spect to the spacetime basis, {e, (1), n;(7)}, adapted to that
sheet:

aXE, = B e

) = Bpe )+ ‘I){I)n (z)" (7)

where the components ®* and ® transform, respectively, as
a vector and as a multiplet of N'— D scalars on m ). This in-
finitesimal displacement induces the variation of the intrinsic
metric on each sheet according to

2K Lot (1}(1)1(1 +Vn(1 (I'h (z) +Vb

A\(Ill}ub(l an)? (8)

where V() is the covariant derivative on m ., compatible
with v,u(r). We denote with K,y the extrinsic curvature
of 1y along the 7" unit normal,

K2y = —9(n{zy: Dany€uzy)s (9)

and Dy (‘::(I)DH is the spacetime gradient along the

langential vectors.

Rev. Mex. Fis. 46 (3) (2000) 281-284



INTERFACES OF RELATIVISTIC MEMBRANES AND NEUMANN'S TRIANGLE 283

Let us consider first the variation of the bulk part of the
action, Sp. We find,

dx S0 = — Zn”‘(l’}/ de(I) V4 _'V(I)I\'(iz)(pi(l)
(z)

m()
—Zu(z)[ dD_lu\/—hna(I)@“(I). (10)
(I} int

We have used the fact that, on each sheet, the intrinsic met-
ric varies according to (8), we have defined the trace of the
ith extrinsic curvature with K, 1) K ap(z) and we
have used Stoke’s theorem to obt’un a surface term. Recall
that 17,(z) is the inward normal to int into the 7 sheet. In
this derivation, we have tacitly assumed that int is the only
boundary for the A/ sheets. If there are additional boundaries,
the surface term will be augmented by the appropriate contri-
butions.

Since the displacements agree at the interface, without
loss of generality, at int, we can express the Z*" displace-
ment with respect to a single one, say the one corresponding
to the sheet 7. Thus, at the interface, we have that

By = B 7)9(ni), €(n) + ‘I’(q g(es(s) €(p)- (1)

Moreover, the part of the displacement tangential to m( g,
®f';,, evaluated at int, can be decomposed in a part tangen-
tial to the interface, and a part perpendicular to it,

(®( ()1 A

Note that the part tangential to the interface carries no label.
Inserting in the surface term in (10), one finds that the part
tangential to the interface does not contribute, and we obtain
the interface contribution from the bulk action,

dxSolint = ZH /lD “luv/=h

X [(I).;.;;)f](“i(;r):U(I))+({I)?J)”h(;f)).(f(”(g_)v”(I)} s 13)

87,y = e, +

where we have defined the push-forward, -r;(“r =iel r;(ﬂ

Let us turn now to the variation of the imertace action,
Sint, under the displacements of the interface itself. Since
at the interface all of the displacements must agree, we can
choose to elect the displacement of the sheet m 7, as we
did above, as the independent one. As a preliminary step,
consider the variation of the interface intrinsic metric under
(5.1:2’\”, aiven by [4]

dxhiys = [Zhﬂb 7)®i(7) + Va(s) o)

+\7b(_7)q)a(.‘f)] 5?1(3)6?3(J)‘ (14)

Therefore, one finds,

Ix Sint = —flint / delu\/“h.’Hf_i,;)
Jint

X I:I;:;b(ﬂ')(p’(:’) =+ Vau)t’ﬁb(g} 4 (15)

where we have defined the projector from sheet 7 onto the
interface, H(Y) = h*"e} Now, using the decompo-
sition (12), we have that

.-\(T) U(’H

HE)\ Vai) () = Da®* + k(o) (B o)), (16)
where D, denotes the covariant derivative on the interface,
compatible with h,,, and we have defined the mean ex-
trinsic curvature of the interface as embedded in m ) with
kizy = Van) - Inserting now in (15), since the total di-
vergence D, ®* does not contribute if we assume that int is

a smooth boundary, we get,
()-X Sznf = —Hint / dD_I “'\/—;7;
Jant

[H(r) r:!n(:r)(pi(.‘fl+":(J)vﬂ(3)¢?1)]‘ a7

4. Equations of motion

Setting the independent parts of the displacements equal to
zero we find the following equations of motion. Each !
sheet is extremal,

s (18)

The bulk equations of motion are not affected directly in their
form by the presence of an interface. The interface contribu-
tions give

qsab -1
Hint H(r‘;)h;{,{‘ﬂlinr B Z J“('I).’J'(”i(_])
(1)

Pintk(g) + Zl'(u!.l(flu)"Y(I)Hmz =0. (20)
(1)

M) ine =0, (19)

This set of coupled equations express the interchange of mo-
mentum between the bulk degrees of freedom and the inter-
face degrees of freedom.

In the degenerate case of a single sheet, (19) and (20) re-
duce to the boundary conditions H“"I +» = 0, and to the
edge equations of motion p;, k = —p, respectively, pre-
viously derived in [4]. When we have more than one sheet,
however, the distinction between interface equations of mo-
tion and the boundary conditions on the conjoining sheets
dissolves.

When we have only two joining sheets, and if we assume
i1y = p(2y = e, (20) takes the form

fintkay + p[1 4+ g(nay,n2))] =0,
tintkzy + 11+ g(nay,n2))] =0,

from which it follows that the mean extrinsic curvature of the
interface as embedded in one parent sheet or in the other must
be equal:

b= k) = k. @n
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When we have three joining sheets, with equal tension,
from (20) one obtains in the same way that the angles
9017y, 1z)) can be expressed algebraically with respect to
k1), B2y, ks)- For more than three joining sheets, there are
not enough equations to eliminate the dynamical angles be-
tween the sheets in favour of the interface geometric scalars.

We can also express (19) and (20) in an alternative way,
by defining the spacetime vector field along the interface:

I":Z Hi)T(1) = f":'nf['t"{;;]'f??‘.,)‘f‘ %?ﬁjl\ri(t(,j}ﬂi(;?)]‘ (22)
(1)

Then (19) and (20) can be cast in the form

9(et;), V) =0 g(ng,, V) =0, (23)

NI

or, alternatively, with,
V =0 (24)

Note that we have gone from N — D + 1 equations to N
equations. The extra D — 1 equations vanish identically and
correspond to reparameterizations of the interface.

Although the tensions are dimensionful quantities, we
can envisage approximations in which one dominates. If the
interface tension can be ignored, the vanishing of V' reduces
to

(25)

Z () = 0,
(7)

which can be interpreted as the conservation of momentum
at the interface.

In particular, it A" = 2, we require () = fi2) and
1)(1) = —1j(2y—no discontinuity is possible, unless we let the
interface turn null. If, however, A" = 3, we have

ISR IS == [1(3)1](2) + }L(g)?](;;) — [ (26)

Thus, the three normals lie in a two dimensional plane. If,
in addition, the tensions coincide, the angle between nor-
mals is 120°. This is, in a relativistic context, the analogue
of the Neumann triangle which features in the solution of the
Platcau problem [9. 10]. In general, at a minimizing junction,
the normals to the A sheets always lie in a A" — 1- plane,
dividing it into V' — 1 equal regions regardless of the global
details of the problem. Recall that the celebrated problem of
minimizing the tree length connecting four points involves
identical vertices regardless of the positions of the points.
Note, in addition, that the angle is completely independent
of the background geometry.

In general, when the line tension is not zero, these angles
will be dynamical variables themselves. In particular, they
will not be conserved by the evolution.

The other limit of interest is when the bulk tensions may
be neglected. In this case, one recovers the extremal dynam-
ics of the interface. The easiest way to see this is to appeal to
the direct embedding of inif in spacetime.

5. Discussion

In this paper we have analyzed, using a geometrical approach,
the issue of the appropriate equations of motion for a sys-
tem of relativistic objects joined at some interface. We have
restricted our attention to the case of simple DNG objects.
However the basic variational techniques we have employed
generalize to higher order, curvature dependent, extended ob-
jects, with the complication of more involved variational for-
mulas. Work on this is in progress.
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