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We propose and approximately solve the problem of an existing Cooper pair system under the presence of an external periodic potential.
Expressions for the energy gap and the critical superconducting temperature for a superconductor under these conditions are calculated, both
quantities being affected by the external potential, although their ratio remains unchanged.
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Se propone y resuelve aproximadamente el problema de los pares de Cooper ante la presencia de un potencial periddico externo. Se obtienen
expresiones explicitas para la energia de ligadura del par de Cooper, asi como de la brecha y la temperatura critica superconductora bajo
las condiciones propuestas. Se encuentra que los pardmetros mencionados se ven afectados por la presencia del potencial externo, pero el
cociente entre la brecha superconductora y la temperatura critica permanece inalterado.

Descriptores: Modelo BCS; brecha superconductora; acoplamiento débil
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1. Introduction

The central ingredient in the Bardeen, Cooper and Schri-
effer (BCS) theory of superconductivity is the existence of
so-called Cooper pairs [1]. Specifically, the ground state
(1I'=0 K) of an electron gas becomes unstable under an attrac-
tive interaction between electron pairs. Since the Coulomb
interaction between electrons is always repulsive, another
mechanism is needed in order to have a net effective attrac-
tive interaction. In the traditional BCS theory, this attractive
interaction between electrons is an electron-phonon coupling.
In effect, then, the pair of electrons are attracted to each other
via a lattice deformation. This attraction must overwhelm the
Coulomb repulsion so that Cooper pairs might be formed.

The idea followed here is not to find the mechanism by
which electrons bind into pairs, but rather to consider intro-
ducing a periodic external potential which affects the existing
clectron pair.

A periodic external potential can arise as follows. A su-
perconducting thin film deposited on a ionic substrate where
a square lattice of alternating positive and negative ions will
produce an external periodic potential affecting the vicinity
of the superconductor interface. This potential will penetrate
into the superconductor by just a few layers, but we may ide-
alize the problem by assuming an infinite superconducting
system in a periodic external potential.

Another approach is to consider superlattices of super-
conducting and normal metals in alternating layers. If the
thickness of the normal metal is small enough compared to
that of the superconductor layer, we can consider the whole
system as the superconductor embedded into a quasi-one-
dimensional periodic potential, such as has been treated by
other authors [2].

Finally, one interesting system which has a superlattice-
like structure is the superconducting ceramic YBa;CuzO7_ .
In this case, Cu-O planes are sandwiched between Ba-O and

Y planes staked along the ¢ direction of the unit cell [3]. To
date, it is generally thought that the superconducting proper-
ties of this material are dominated by the Cu-O planes [3, 4].
We propose that our model may be an idealized approach to
this system, in which the superconductivity lies in the Cu-O
planes separated by non-superconducting Ba-O and Y layers.
Here the periodic potential is provided by the atoms form-
ing the non-superconducting spacers, but together forming
the whole system.

In successive sections we adopt the BCS problem of su-
perconductivity in the traditional approach, namely by as-
suming a constant attractive potential between pairs of elec-
trons in reciprocal space, but also adding an external potential
to the pairs.

2. The binding energy of the Cooper pair

A simple way of modelling the periodic external potential
V7(r) acting on the Cooper pair is by writing, for an electron
atr,

V(r) = Acos(G - 1),

where G is the wavevector representing the spatial periodic-
ity of the potential. If ry and r, are the positions of the two
electrons in the pair, the potential energy of the pair is then

Vext = Acos(G 1)) + Acos(G - 1)
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[f we now consider states with center-of -gravity of the
pair at rest [5], the quantity (r; +r2)/2 is constant and the po-
tential depends solely on the relative coordinates of the pair.
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Consequently, we take the following idealized potential en-
ergy of the pair due to the external periodic potential

Vit = — Vi cos(G - 1), (1)

where we redefined the amplitude V; of the interaction as a
positive parameter, the new wavevector G has taken the place
of G/2,andr =1 — 12 is the relative position of the elec-
trons in the pair. From Eq. (1) the interaction between elec-
trons of the pair will be attractive or repulsive depending on
their relative positions.

The usual procedure to solve the Schrodinger-like equa-
tion in momentum space associated with the Cooper pair can
be followed. In reciprocal space [6] one has for the binding
energy eigenvalue £/

h2 k2
R k) + S g0 Viae = (B +2Ep)g(k), )
kl

m

where Ep is the Fermi energy associated with the back-
ground electrons, and g(k) is the probability amplitude for
finding one electron in state k and the other in state —k,
while Vi is the interaction matrix element between these
electrons. As usual in the BCS theory, g(k) is zero out of the
interval in energy from Ep to Ep + hwp, where hwp, is the
Debye energy. Specifically,

|

Inserting Eq. (4) into Eq. (2) and arranging terms one gets

1 . ;
Viw = 73 /V(r)e‘l{k‘k I dr, 3)

where V/(r) is the total interaction between electrons in the
pair and L? is the system volume. Rewriting Eq. (1) in com-
plex form, it is not difficult to show that Eq. (3) becomes

v oM
Viad = =V = ﬁ[d(k’ —k+G)+6k —k-G)], @
for
hik?
B € —— % .85 + hwp,
and

Vi = 0 otherwise.

Here, — V5 is the usual BCS model attractive interaction
which produces pairing of the electrons. The second term in
Eq. (4) arises from the external potential Eq. (1). In Eq. (4) we
assume that the external potential is nonzero only in energy
states within the Debye energy fw,, above the Fermi energy
Ef, since we consider only on an existing pair already bound
by the intrinsic constant attractive pair potential term —Vp.

The problem is now to solve Eq. (2) given the interac-
tion model Eq. (4). To solve this problem exactly is a difficult
task, but use an approximate procedure in order to obtain an
explicit form for the pair binding energy under the periodic
external potential added.

Vo ; g(K') + 5% gg(k‘)[é(k’ _k+G)+6(K -k-G)] = (1 B m) g(k). (5)
Replacing sums over k' by integrals in the form [7]
L~ %’: - (23{)3 [dk'.
and noting that
oo [y = ®

is a constant, we can then write:

Note from Eq. (8) that if the external potential ampli-
tude V, is zero, one recovers the expression for the familiar
Cooper pair binding energy equation.

CL® vy (2m)72 [g(K)[o(K' —k + G) + (k' — k — G)] dk’
2¢(k)— E—-2Ep 2 2 (k) — E - 2EF
where (k) = 1%k? /2m. Evaluating the integral in Eq. (7) and using Eq. (6), we finally obtain
o Ol K’ W (o G) + 9K +G)] 40 i
= np ] 2e(k)-E-2Er  2(27)°. 2%(k') — E - 2Er
Ee?n of the right side, namely,
13
CL ©)

To solve Eq. (8), we need to know an expression for
g(k), as a first approximation suppose the amplitude V; small
enough such that from Eq. (7) g(k) can be taken as the first

gll) = oy —E — 2B
Using this to evaluate g(k' — G) and g(k' + G) which are
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then inserted into Eq. (8) leads to the self-consistent equation:

L, / dk
— (2m)? | 2e(k) — E —2Ep

L-‘?'ngl / 1
T 3@ns | |2e(k—G) —E —2Er
il
ekt =B 25,,] %e(k) — E — 2E

. (10)
F

In principle, Eq. (10) might be solved for the binding pair
energy E, given specific values of Vp, V}, Er, and G. How-
ever, we make further simplifications in order to seek an ex-
plicit solution for E. The following supposition might be an
approximation to a superlattice (see introduction) where the
vector G is perpendicular to the layers and the movement of
the electrons is mainly confined to run parallel to the super-
conducting layers. As a first approximation to this situation
we can suppose that vectors k and G are mutually perpen-
dicular. |

The explicit formof e(k — G) and e(k + G) are
c(kq:G)“h—z(k:FG)z:ﬁ (k* 2k - G+ G?)
B " 2m 2m '

and assuming for simplicity that k-G = 0, we then have that

22
hG' an

ek-G)=ck+G)=¢e(k) +

To further simplify solving Eq. (10) one can integrate
over energy ¢ instead of over wavevector k by introducing
the density of electronic states N (£) for one spin in the form

(2r)?

="

N (5) de, (12)
noting that since Er < ¢ < Ep + lwp, N(g) can be taken
as a constant equal to N(Er) provided that N () does not
vary appreciably within this small interval of energy because

hwy, < Ep. Using Eq. (11), Eq. (10) reduces to

Ep+hwp de Vo VlN(Eﬁ) Er+hwp de
1= VoN(Er) [ ; ; . s (13)
o 26 - FE-2Efr (27"} E (2¢ — F — 2Ep) (25 —FE-2Epr+h G“/ﬂ?-)
which can integrated exactly. After some algebra, one obtains l
(E _ 2?3@1))”“ ( P thz/m )“ : - E=-2hwpe” XA (16)
/ =e?,
E E — 2hw, — h*G? /m

where A = Vo N (EFp) is the BCS superconducting coupling
constant and ev is defined as

Vi m
(27)3 K2G2”

Note that o contains essential information about the ex-
ternal potential such as the amplitude V; and the spatial peri-
odicity .

To make even further simplifications in Eq. (14), let us
estimate the order of magnitude of the quantity h*G?/m.
Since ¢ ~ 2m/d, where d represents the spatial period-
icity of the external potential, taking d ~(1-10) A gives
G ~ 2r(1-107") A~1, and finally AG2/m ~(300-3) eV.
On the other hand, in elemental superconductors fiw,, ~ (6-
36) x 107* eV [8]. Thus, in Eq. (14) the second factor
of the left hand side can be approximated by unity since
hﬁG’E, m = 2hw;,. Hence the binding energy of the pair be-
comes

«x

Il

(15)

2hwp
e 1 — e2/A1+a)’

this reduces to the familiar solutions when Vi = 0, which im-
plies av = 0. In the limit of weak coupling, interaction, taken
as when Vo N (Ep)(1 4+ o) < 1, this finally leads to:

From Eq. (16) the energy E being negative corresponds
to a bound state and is similar to that of the familiar Cooper
pair problem save for the additional factor (1 + «) multiply-
ing the coupling constant Vo N (Er). We have then arrived at
the following important result: the binding energy of the pair
of Cooper electrons is increased or decreased according to
whether V] is positive or negative respectively, by the pres-
ence of an periodic external potential.

3. The energy gap and the critical supercon-
ducting transition temperature

Two important parameters that characterize the BCS super-
conducting state are the energy gap A (which is related to
the energy necessary to break the Cooper pair) and the crit-
ical temperature T, below which the normal state becomes
superconducting.

To determine the energy gap at T = 0 K, we start from
the self-consistent gap equation [9] given by:

1 Ay
Ay = 3 _E?'L'kk’a
7

where Vige is given by Eq. (4) and By = \/AZ, + &2, with
£k = (k') — Ep. Converting Eq. (17) to integral form gives,

a7
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Vo A oo

Ak = 5507 | o)

4(2m)3

[A(k ~gy  Afks

Ek-G) T Ek+G)|’ (%)

where the integral on the right hand side of Eq. (18) is independent of the wave vector and thus a constant, say Ay, given by

W AOY s
A() = 2(2’11’)3 [ ——E(k") dk'. (19)
Substituting A (k) from Eq. (18) into Eq. (19) leads to
W dk' Wi Ak - G) Ak’ + G) ;
Bo = 38 {A‘] / B T aen? / [E(k‘)E(k’ —G) T EEX + G)] ‘ } (20

Assuming as a first approximation that the energy gap is independent of the wave vector and given by Ag, Eq. (20) becomes

, 7 { dx’ Vi

“20e2n?) ] EK)

1 1 i
12y ] [E(k')E(k' —G) T E®)EXK + G)] K } G0

As before, assuming G perpendicular to wave vector k', and integrating over energy £ instead of over wavevectors, this

reduces to:

| _ YoN(Er)

To further simplify evaluation of Eq. (22) suppose that
h*G? /2m > Ag or &, which is reasonable since Ay is of the
order of a few meV [10] and £ varies by at most fiw,. Under
these conditions Eq. (22) simplifies to

VoN(EF) hern d¢
1l — (14« ———
2 )-—-ﬁwp \/Aé+£‘3
e
= VoN(Er)(1 + a)sinh™’ ( ’z") . (23)
0

where a is again given by Eq. (15). In the weak coupling limit
Eq. (23) finally leads to

Ag = ‘.ZTM,—,E*VWE—INW- (24)

On the other hand, to find a expression for T¢., we need
the temperature-dependent self consistent gap equation [11]
given by

1 Ay BEx
Bk =3 Z}(;E_kkak' tanh( 7 ), (25)

where 3 = 1/kpT, kg the Boltzmann constant, and T the
absolute temperature. Starting from Eq. (25) and using the
same procedures as those to find A, it is not difficult to find
an expression for T as a solution of A(T¢) = 0, which is

KT.. = 1.13hwpe” ToNERTFD (26)

Note that Egs. (24) and (26) are similar to the familiar
BCS expressions save for the coupling constant A becoming
Vo N(Ep)(1 + a). Here we see that both the energy gap at

d# . N
2 JALre 20

f de } (22)
VAL E\/AZ + (€ + h*G?/2m)?

T = 0 K (Ag) and the critical temperature T are affected by
the presence of the periodic external potential through the pa-
rameter . However, although both Ag and T are modified
by the external potential, their ratio is unchanged, at least in
the limit of weak coupling.

4. Discussion

The usual intuitive picture of the formation of the Cooper pair
is that one electron, travelling trough the background of posi-
tive ions, pulls positive ions of the lattice forming momentar-
ily an excess of positive charge in some spatial region of the
lattice. This excess of positive charge, due to the deformation
of the lattice, is seen by the second electron which is attracted
to that region. The whole event is that the two electrons are
attracted together via the deformation of the lattice.

The picture for our model may be viewed as follows.
Imagine that the external periodic potential produces in the
lattice fringes of attractive and repulsive regions for the elec-
trons, modulated by the wavevector of the external poten-
tial. In some event, an attractive fringe may spatially coin-
cide with the deformation of the lattice produced by the first
electron, reinforcing in this way the attractive action for the
second electron. In this case, the magnitude of the binding
energy of the Cooper pair will increase (see last paragraph of
Sect. 2). The opposite situation is expected when the accu-
mulation of positive ions produced by the first electron lies in
a repulsive fringe of the external potential.
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Obviously, this picture is a very crude view of a more
complicated phenomena, in which some kind of coupling be-
tween the periodicity of the external potential and some char-
acteristic length (related to a spatial extent of the Cooper pair)
could exist.

5. Conclusion
We have studied the problem of the binding energy of a

Cooper pair in the presence of a periodic external potential.
We also studied the effect of the periodic external potential

on the zero temperature energy gap and the critical tempera-
ture of the system within the standard BCS formalism. As-
sumptions were made to analytically solve the resulting self-
consistent equations. Both parameters, energy gap at T' = 0K
and T, are modified by the presence of the periodic external
potential, but their ratio remains unchanged.
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