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Wigner distribution function of spherical metal clusters

A. Rigo, M. Casas, E. Garcias, and L1. Serra
Departament de Fisica, Universitat de les Illes Balears
E-07071 Palma de Mallorca, Spain

Recibido el 31 de enero de 2000; aceptado el 15 de marzo de 2000

We analyze the Wigner distribution function of spherical alkali-metal clusters in the framework of the Density. Functional Theory formalism
using the jellium and the pseudopotential-jellium models. Nonlocal effects of the interaction between the ionic cores and thc_ set of valen.ce
electrons are discussed in comparison with the jellium prediction. We show that simple models like the Slater approach with surface dif-
fuseness give the main features and reproduce the first moments of the Wigner distribution function and can also be used to analyze large

clusters.

Keywords: Wigner distribution function; atomic clusters

La funcién de distribucién de Wigner de los agregados esféricos de metales alcalinos ha sido analizada en el esquema de la teoria del
funcional de la densidad usando los modelos de jellium y de pseudopotencial-jellium. Los efectos no locales de la interaccion entre los
iones y el conjunto de los electrones de valencia se discuten comparando las predicciones del pseudopotencial con las del jellium. Se pone
de manifiesto que un modelo simple como la aproximacién de Slater con difusividad en la superficie da las caracteristicas principales y
reproduce los primeros momentos de la funcién de distribucién de Wigner y puede también ser (til para el andlisis de agregados de gran
tamano.

Descriptores: Funcién de distribucién de Wigner; agregados atémicos

PACS: 71.24.+q; 61.46.4w; 36.40.-c

1. Introduction

In the past years the study of the structure of the alkali-metal
clusters within the Density Functional Theory (DFT) has pro-
vided a reasonable description of some experimental prop-
erties for medium clusters [1,2]. The simplest DFT model
based on the quantized motion of the valence electrons in an
uniform ionic background, namely the jellium model (JM),
provides an appropriate first description for the ground-state
and excitation properties of some alkali-metal clusters. Nev-
ertheless, in such a scenario the plasmon resonance energy
has a blue shift with respect to the experimental values, espe-
cially for lithium clusters [3, 4].

Recently, more elaborated models that account for the
ionic core structure have been applied. Reference is to be
made, for instance, to the pseudopotential-jellium model
(PPIM) that includes the ionic structure using the electron-
ion interaction of Bachelet, Hamann, and Schliiter [5]. This
model improves the theoretical predictions for polarizabili-
ties as compared to the experimental results, in particular for
lithium clusters [6].

Both in the jellium and in the pseudopotential-jellium
models, the diagonal part of the electronic one body density
matrix plays a central role, as is well known. Much less is
known concerning the non diagonal part, which is closely re-
lated to the electronic momentum distribution [7, 8] and to
the two body correlations. In addition, the one body density
matrix provides the starting point to obtain the Wigner dis-
tribution function, f(r, E) [9], which is the quantal gener-

alization of the classical phase-space distribution. Although
the Wigner distribution function may contain areas of neg-
ative “probabilities”, its moments are basic observables and
it could be the starting point for several approximations to
the many body problem [10], such as the time dependent
Thomas-Fermi approach for electron dynamics in metal clus-
ters [11]. The Wigner distribution function has recently de-
served great attention, both from the theoretical point of
view [12, 13] and from the experimental one [14-17]. In par-
ticular the Wigner distribution function corresponding to var-
ious states of a trapped ion has been experimentally deter-
mined by the NIST group [15]. More recently a method for
measuring the Wigner function for a vibrational state of a
trapped ion or for a molecular vibrational state has been pro-
posed [16, 17].

It appears then useful to complement the study of the
electronic one-body density matrix in r-space with that of its
Wigner distribution function, and to compare the DFT pre-
dictions with some simple models that can be applied to large
clusters.

Following these ideas, in this work we focus our attention
on the Wigner distribution function for metal clusters pre-
dicted by the jellium and the pseudopotential-jellium models.
The paper is organized as follows: In Sect. 2 we present the
Wigner transform obtained from DFT with the JM and the
PPIM. In Sect. 3 we compare the DFT results with the pre-
dictions of some simple models based on the Slater approach,
and in Sect. 4 we draw some conclusions.
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2. DFT results for the Wigner distribution
function

Using the Kohn-Sham formalism within the Local Den-
sity Approximation for the valence electrons, and the para-
metrization of Ref. 18 for the exchange-correlation term, we
have calculated the Wigner distribution function and its first
moments for spherical lithium clusters.

The interaction between the ionic background and the va-
lence electrons has been treated in the local approach with
the jellium model, and accounts for the nonlocal effects with
the pseudopotential-jellium model.

From the Kohn-Sham selfconsistent wave functions
12 (1) we construct the one body density matrix p(7, %) in
the jellium and in the pseudopotential-jellium models. For a
cluster with NV valence electrons

N
P, T2) = Z V5 (P )i (72) - ()
j=1

The Wigner distribution function is obtained from the one
body density [9]
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As is well known, f(7, k) is not directly accessible from
experiments but its weighted integrals in  and £ space,
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where p(7) is the diagonal density matrix, j(7) the current
density and 7(7) the kinetic energy density defined as

7(7) = |(V1 - Va2)p(Fi, 72) |7 =iy = (8)
and

M, = n(k), 9)

0
n.(f.?) being the momentum distribution.

When f(# k) is an even function of k, its odd mo-
ments vanish and f(7, E) is characterized only by the even
ones [19], and for a cluster with total spin zero the Wigner
distribution function can be determined using three indepen-
dent variables, r, k and @ (the angle between 7 and k). With

these premises, the Wigner distribution function has been ob-
tained by expanding the selfconsistent single particle wave
functions of JM and PPJM in an harmonic oscillator (HO)
basis. Using this expansion, f(7,k) can be computed using
the method of Ref. 20 for pure HO wave functions by means
of the Talmi transformation and the Brody-Moshinsky coef-
ficients. In figure 1 we show the contour plot of f(7, fc') (2)
obtained within the JM and PPIM for a Lig» cluster.

The behavior of the inner structure of f(F, E) as a func-
tion of 6 can be understood using the analytical expressions
for the Wigner distribution function of a harmonic oscillator
potential [20]. When the number of occupied single particle
levels of the cluster corresponds to that of a harmonic oscil-
lator with closed shells, f(r, E) does not depend on the an-
gle 6. This is the case for Liyg for which the JM and PPJIM
results show only a slight dependence of the Wigner distri-
bution function on #. In the case of Ligy the strong depen-
dence on @ arises from the behavior of the Wigner distribution
function corresponding to the open shell 1A. This behavior is
qualitatively the same for the JM, PPIM and HO models as
can be appreciated in Fig. 1.

Differences between PPIM and JM can be more clearly
seen by looking at the momentum distribution (see Fig. 2).
The first moment in k-space of f(7, k) shows that finite size
effects are more relevant in PPJM than in the JM, because
u(f‘) given by PPIM increases for small & values with re-
spect to the jellium prediction. This effect can be understood
from the behavior of the density in r-space, where the differ-
ence between the finite and the infinite systems is larger in the
PPJM than in the JM, due to the non local efects of the PPIM
that are included in the effective mass. A simple model for
bl l:), like the Slater approach [7], can explain the behavior
of the corresponding momentum distribution n(k).

3. Comparison with simple models

To have a better understanding of the main features of the
Wigner distribution function and its moments we have used
a simple model based on the Slater approach, which is exact
for a uniform system

for (7, k) = 26[kp () — K],

with kg (7) determined by the local value of the density
ke (F) = [3n%p(P)]'/3.

We assume that the diagonal electronic density matrix can
be approximated by a Fermi-like density

r = Ro .
n b

with By = s N'/3 and r, = 3.25 for lithium (Hartree atomic
units have been used throughout the text). The diffusivity pa-
rameter a is adjusted to reproduce the surface of the Kohn-
Sham diagonal density. As is well known [6] the surface dif-
fuseness in r-space is larger in the PPIM (a = 1.2) than in
the IM (a = 0.9).

(10)

(11)

p(r) = po [l + exp (

Rev. Mex. Fis. 46 (4) (2000) 333-336



WIGNER DISTRIBUTION FUNCTION OF SPHERICAL METAL CLUSTERS 335

PPIM HO

PR 1)
AW ) = LA BRI B LA = bW

FIGURE 1. Contour plot of f(F, E) for § = 0, w/4, and 7/2 of a Lig» cluster obtained from the selfconsistent Kohn-Sham approach using
JM and PPJM. For comparison the HO results are also shown. Hartree atomic units (a.u) are used.
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FIGURE 2. Momentum distribution for Ligs in a.u. The solid line
shows the Kohn-Sham result for the JM (upper panel) and PPIM
(lower panel). The dotted line corresponds to the DSL approach for
the Wigner distribution function.

The Slater approach (10) with a Fermi-like density lacks
of diffusivity in k-space for f(r, E) and gives a momentum
distribution that diverges at the origin and decreases sharply
to zero [7]. In order to obtain a better description of the
Wigner distribution function and its moments, as in Ref. 7 we
have incorporated a surface diffuseness to the Slater approach
(DSL) by convoluting (10) with a normalized gaussian

fDSL(f.E):/fSL(f,E'}g(m—r}"])dE'. (12)

where g(x) = exp(—z?/p?) /(732 u?).

We have used an r-dependence of the diffuseness param-
eter y, taking two values of the diffuseness constant, one in
the inner region (. = p; for r < Ry + §) and other in the
outerone (p = py forr > Ry +4), where § = 1.2 is the spill
out parameter [2]. We have obtained the two diffuseness con-
stants minimizing the differences between by a least-square
fit of the KS and DSL momentum distributions. Closed shell
Li clusters with 92 < N < 338 have been used for this task.
The parameter 41y is found to be well reproduced by the fol-
lowing expressions

1 =-153%x10"%ln N +0.155 (IM) (13)

= —107x10"%ln N +0.126 (PPIM); (14)
{12 is approximated by a constant obtained as the mean value
of the results corresponding to the cluster sizes being consid-
ered,

2 = 0.26 (JIM) (15)
12 = 0.22 (PPIM), (16)

the standard deviation being 0.02 in the first case and 0.01 in
the second one.

As shown in Fig. 3 the surface main features of the
Wigner distribution are rather well reproduced using the Dif-
fuse Slater approach (12). Reproducing the surface is enough
to provide a reasonable fit of the momentum distribution (see
Fig. 2) for both the jellium and the pseudopotential-jellium
models. In addition, the DSL approach is able to reproduce
the integral of M, 7 (7), that gives the kinetic

17
T_: 3 / M, j drF, (17)
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FIGURE 3. Contour plot of f(7, E) for a Ligz cluster using the
PPIM with # = 0, #/4, and /2. For comparison purposes, the
f-independent DSL approach, obtained with the PPIM fitted pa-
rameters, is also shown.

as it is shown in Table I where we have compared the kinetic
energy obtained with the JM and the PPIM to that of the cor-
responding DSL approach for several Li clusters. With the
aid of expressions (13) to (16), this model can be used to un-
derstand the surface main features of the Wigner distribution
function and to reproduce its first moments for large clusters.

4. Conclusions

Using the selfconsistent Kohn-Sham formalism with the jel-
lium and the pseudopotential-jellium models we have calcu-

TABLE I. Kinetic energy for several Li clusters obtained with the
Kohn-Sham approach using the JM and the PPJM. For comparison
the corresponding results of the DSL model are also shown.

N M DSL IM PPIM DSL PPIM

92 8.847 8.747 8.265 8.163
138 13.362 13.355 12.589 12.610
196 19.130 19.122 18.134 18.189
254 25.060 24.818 23.919 23.808
338 33.454 33.315 32.057 32.134

lated the Wigner distribution function for spherical lithium
clusters, and analyzed its first moments. In particular, the mo-
mentum distribution n(k) in PPIM is enhanced for small k
values with respect to JM. We have proposed a simple ap-
proximation, the Diffuse Slater model, which provides a rea-
sonable fit to the surface main features of the Wigner distribu-
tion function and reproduces with remarkable agreement its
first moments. It can be used for the extrapolation of cluster
properties to the large size limit, for which the construction
of the one-body distribution function f(7, k) in the full six-
dimensional space using the quantum-mechanical mean field
requires considerable technical efforts.
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