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The hole suhb.md structure, the band mixing effects and the symmetry properties oflhe slates in a 1100] GaAs quantum wcll are given Corthe
case of infinitc potential barriers. in the framework of the Kohn-Liittinger model using 'he FuI! Transfer Matrix lechnique. The calculations
dcmand nol loo much computational effort and are in good agrecment with experimental resu1ts. OUT labelling oC the states. pcrforrncd
nccording to the dominant contribution at kT = O, where the 5tates are pure light and heavy hole states. agrees with that presented by
Chang and Schulman at variance with that of other authors. The bnnd mixing away from the Brillouin Zone center leads to changes in the
contributions of the light and heavy hole components to each state.

K£'ywon1s: Hole slates; band mixing; di serete symrnetries

Para el caso de un pozo cuántico infinito [1001 de GaAs, se presentan la estructura de subbandas y los efectos de la mezcla de las handas en
las propiedades de simetría de los estados. en el marco del modelo Kohn-Lüttinger usando la técnica de la t\.1atrizde Transferencia Completa.
Los cálculos no exigen mucho esfuerzo de cómputo y están en buena concordancia con resultados experimentales. Nuestro etiquetado de los
estados. realizndo de acuerdo con la contribución dominante en kT = O. donde los estados de huecos pesados y ligeros son puros, coincide
con el propuesto por Chang y Schulman pero difiere del de otros autores. La mezcla de los estados lejos del centro de la zona de Brillouin
conduce a cambios en las contribuciones de las componentes de huecos pesados y ligeros a cada estado.

Descriptores: Estados de huecos; mezcla de las bandas; simetrías discretas

PAes: 73.20.Dx; 71.55.Eq

I. Inlroduction

Thc dispcrsion relation of the hole subbands in quasi-two di-
mensional (Q2D) helerostruelures made 01' I1I-Y and 11-YI
material s has received substantial aUention in the last len
years. Theorelieal ealeulalions show Ihe highesl hole hand
to have a low effective mass in both strained and unstraincd
systems [1] and, in addilion, show a h;ghly nonparaholie
suhhand dispersion near the Valence band maximum [1,2].
These effects have potentíal significant practical interest in
ncw devices. In recent years several theoretical calculations
were made in Q2D systems analyzing lhe hole suhhands he-
cause Ihe hand mixing between heavy and Iight hole hunds in
GaAs-AIGaAs syslems. Most of them use". p Hamillonians
in differenl sehemes [1-12].

The Kohn-Lüllinger (KL) model Hamillon;an ;s a prae-
tical one to study the hole subhands in these materials and it
is llexible in including external perturbations such as exter-
"al fields [7, 12J and strain [IJ. Thc main cffecl ofthis model
Hamiltonian for those material s is the mixing of light and
heavy hole hands away from the r point which suhstantially
affeels lhc oplieal properties [5J 01'systems made 01'sueh ma-
terials.

The hole suhhand slruelure in quantum wells (QW) has
becn previously studied with a Kohn-Liittingcr Hamilto.

nian [4, 7, 9, lO. 12).While these sludies have added suhstan-
tial contributions to Ihe elucidation of this problem. there
remain some aspects which do not appear to have received
sufficient attcntion and/or which hccause of thcir interest
deserve furthcr c1arification. These are essentially of three
Iypes_ namely: (1) The effeel 01'the diserele symmetries when
the inilially 4 x 4 Hamillon;a" is hloek-diagonalized hy ap-
propriate transfonnations and the consequences of this on
the wavcfunctions of the states of lhe subspaces of solu-
lions lhus ohtained. (2) The lahelling 01' lhe hole stales 01'
the QW. This would seem to require an explanation-not al-
ways elarilied-of lhe eriteria on whieh Ihe labelling is hased
for diffcrcnt values of the 20 in-plane wavevector and, in any
case, it should he consistent with the conclusions of the cal-
culations bascd on tight~hinding schemcs [5], which is not
always lhe case. (3) Yarious leehniques have been employed
for the numcrical calculations [4,7,9, ID, 12] which appear
to be useful and cfticicnt but their practical usefulncss for
other potcntial users would improvc if so me lechnical dClails
of instrumental significance for Ihcir implementation were
explaincd. Thc aim or this paper is lo addrcss such qucslions.

Por all lhcsc issues it suffices to study the case of a
quanlum well wilh infinile harriers (iQW). We shall sludy
a GaAs well grown in the [IOOJ direelion. slart from a
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symmetry considcr;:nions [171. lhe KL Hamillonian lo deal
wilh is

P+(J R-T' -S+-j;T' T

Ho= R--T'. P-(J -T S+-j;T'
-S' +-j;T -T' P-(J R+T' (1)

T' S'+-j;T JI' +T'. P+(J

Here and Lhroughout the paper k:r, I...y• k;: dcnote Bloch
wavevector componcnts ami 11, ;2. 1':l the Lültinger paralll-
clers. The variahles 1', Q, R. T. T' and S are given in Ap-
pendix A.

The usual case ¡j = O. whose validity was amply dis-
cussed in Ref. 4, is considered. A unitary Lransformation [4]
rcarranges lhe oruer of thc sta les and separates lhcm in two
hlocks according to Lheir Kramcr degeneracy. so Lhe Hamil-
tonian (1) is block-JiagonalizeJ iolO two 2 x 2 blocks. which
are laheled "up" (U) and "Io\\''' (L) in analogy wirh eleetron
spin.

4 x .1 Hamiltonian and cmploy a FuI! Transfcr Matrix (f<"TM)

reehnique [13-15], dilTerenr from Ihe usual Transfer Marrix
Illelhod \\'hieh involves only amplirudes [1G].

Thc rcmaining parts 01' Ihis papee are organizcd as 1'01-
lows: Sert. 2 prcscnts Ihe FTM in lhe case 01'a KL model
Hamiltonian fOf nal hand potential. in Scct. 3 a dcscription
01' (he milin discrctc symlllctrics uf lhe KL Hamiltonian is
gi\'cn togcthcr with thcir consequcnccs roe lhe states. Sec-
lion ..J givcs lile dispcrsion rclatian and lhe squarcd wave-
funclion uf lhe iQW in lhe axial approximation and Sect. 5
givcs (he 11111llcrical rcsulls togcther with its analysis. Finally
some conclusions are prcscnlcd in sccL. 6.

2, TM rnr f1at band KL model

The inlinilc-pOlential harrier case of a GaAs QW, grown in
rhe [IOOj-direelion, considered as Ihe z axis is analyzed. A
delailed analysis of Ihe form of Ihe KL Hamiltonian for dif-
ferent direclions in lhe struclure is given in [10]. In this paper
lhe assumptions, convcnlions and nolalion used hy Broido
am.l Sham 1-1] wcrc used. particularly the arder in the hasis
functions ror the K, • p Hamiltonian. Thcn taking inlo accounl

I

1

- u
il' = H

" O

whcrc lhe hlocks are givcn hy

It Ij¡/. . (2 )

HU = IAl";' + D,i.;;. + 1',(=) - E
Czy + tDLyk:

liL = IA'Ii; + .Dli..;. + F(=) - E
GXY + 1D .f"I..:;;

GXY - iD,,):, I
A'Ii; + DJ,; + lI(z) - E '

Gry - iD,,,", I
Al ";. + D,i.': + 11(:) - E .

(3)

(4)

(5 )

(7)

(9)

(10)(j2 = -1/1.

are

lJ4 = -I/:~.

For the Jetlnitions of (J 1. n.,!. 'JI. b,!. qT' q. t, ST!/' f r,,, O'T and
!;r sec Appendix A. Wilh Ihe aforemenlioncd valucs (10),
onc can find the solutions as

.( )-\ _ if{]:la2fJ~+blq;+"."~I' . 1 ') 3' (11)
'PUl Z -, Ule _(1 +'S )' J= ,-, ,~,

xy 1 xy(j)

as Ihe linearly independcnt solutions ror the na! band casc.
whcre Auj is lhe normalil.atiull cOllstanl. which can be writ-
tcn as

'use arc takcn in alomic uniLs with flo laken a~ Lhe Bohr's ra-
dius and Ry as Ihe Rydhcrg constant.

Now lhe dctcnninanl of (K) rcads (in atomic units)

1

, .,' 'S IIll(j:;'+'I:JJI +t. f.ry-l xyq _ =0
. . 2 2 e 1

'.fY + IS.fy(j (/2(h + lJlfJ + l..

which is a founh-onler polynomial equation, whosc solutions

I~:~~~I= e'" 1:::1.
From (3) ami (5)-(7), lhe algebraic systclll of equations ror
the llat hand potcnlial is:

IAIIi' + [3,>.' + r G,y - iDxy>' 11"11- O (8)
C:r.ll + iD;ry>" .42K2 + BI>..2 + f h2 - 1

wherc £- = \~J - E; \~J is a constant.
From lhe l.eros 01' the secular determinant 01' (8), olle can

oblain non Lrivial solutions. The fundamcntal magnitudes Lo

Since the secular delerminant 01' (5) is the same for bOlh U
and L Hamillonians, lhe cigenvalues are equal so, for the sake
01' illustralion, hcreaftcr the U case will be considered. In lhe
llat hand case the solution (6) can be wrilten as:

Due lo lranslalional symmelry in lhe (x,)/) plane of lhe sys,
rem, lhe solulions of (3) and (4) are wriuen in Ihe usual fmm

'" (•.) = f,i(k,x+k,y)," ,(z) = e'(k.,+k,y) 191'3(Z)I. (6)
rlt.l 't"1I, 92,.'(':::)

ami i.: = -i (£1/£1::). Expressions ror Al. A!. DI. Hz. C'.XlJ'

Dxy ami J.:''! are given in Appcndix A. Bere and hcnccforth.
hole encrgy is counted as positive. For the cigenvaluc prob-
Icm

Re •..Me .•. f'ú. 4(, (4) (2(XXI)337-347
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( 12)

To introduce the FTM ooe defines the two-componcnt su-
perveclor [13J

A () 1"''' (Z)i'!)u z = <P~I(Z) .

The I'TM MU (z¡, zo) can be detíned as the 2 x 2 superma"ix.
whieh "ansfers any solution 1>,,(z) from Zo lo z¡ [14J. ¡.e..

'~,,(zd = MU(zl,zo) .1>,,(zo)' (13)

I
To oblain MU(~l,~o), where 6 = z¡fao and ~o
lhe following expression can he applied [13]:

Where N(O is a malrix of Ihe linearly independen! solulions
of the syslel11 of cqualions. It can he casl as

hllciq1f. h12ciQ2( hnc1t/Jf. h14eiq.¡f.

N(O=
h21Ciq¡f. h22ciq2f. h23ciI/Jf. h24Ciq.¡(

( 15)íql hu eiq¡f. iqzhl2ciQ2f. iq3h13eiq3f. iq4h14Ciq.¡f.
íq¡ hZ1 eiqJf. iq2hz2ciq2f. iq3hz3CiQ3f. iq4h24Ciq.¡f.

By suhstilution of (15) in (14) and performing Ihe eorre-
sponding matrix opcrations, (he following structurc fUf the
FTM clcrncnts can be ohtainco

It is ncccssary. lhcn. to change the arder ofthe hasis func-
lion used fmm APB lo BS. The matrix lo do this operation is:

Mi~(~l,~oJ= ~T [e¡;)cos(j¡J +e~f)cos(qj)

+ el]l sil1(qi) + el;) Sil1(qj)], ( 16)
T=

-1
O
O
O

O O
O 1

O
O O

O
O
O

-i

(17)

where we used ti, = q'(~1 - ~o) ; i = 1,3. The malrix ele-
menls coeffieients for Mg (~¡,~o) are given in Appendix D.

3. Discrete syrnrnetry properties of the KL
Harniltonian

Whcll studying lhe KL Hamiltonian il is userul lo lakc ao.
vantagc al' lhe discretc syrnmctries it has. As poinlcd out in
Ref. 7. lhe twu basic discrcte syrnmetry properties are the
limc reversal invariance (TR) and the inversion of coordinate
z (lC) wilhoUI changing the valuc of lhe in-plane wavcvector.

The hasis set used in ReL 7 was different from Ihe one
lIsed here. The TR operalor on Ihe hasis of ReL 7 is given by
K,\I'IJ = ~yf.:o. where

Hcre Ihe APB subscript corrcsponds to operators givcn in the
hasis of Rcf. 7. whilc the suhscripl BS will corrcspond lo our
hasis, which we recall is lhat of Ref. 4. Here and hcnceforth
ar, ay and a: are the Pauli matrices and i(Q . V indicates
lhe complex conjugale-not lhe Hermitian conjugate 0'- any
opcrator V.

whieh leads lo Ihe following fOfln for Ihe TR operator:

( 18)

lisin,g (18) on Ihe KL Hamiilonian we have KBSHoKB~ =
HoKo. Ilere ami heneefOrlh O is Ihe 2 x 2 null matrix.

Consider now the unitary lransformation U (4] that
hlock-diagonalizes Ihe KL Hamillonian (1), i.e., which al-
lows lo analyze Ihe syslem of equalions as lwo differenl
but spalially equivalenl sUO-syslcms with smaller matrices.
The opcrator Kns conmutes with U and separates the slales
"Kramer +" (U Hamiilonian) and "Kramer -" (L Hamiilo-
nian) to time reversal (it is not dimeult lOshow lhal the trans-
formalion U is related lo lhe TR operalion). Then the KL
Hamiltonian (1) is invarian! under TR and evcry sub-spacc of
it has a dcfjnilc value of Kramer degellcracy.

Thc initially 4 x 4 KL Hamiltonian is also invariant un-
der IC operalion [71. which corresponds lo a ehange of sign
orthe z coordinate only wilhout changing the value ofthe in-
plane wavevector. This opera!ion corrcsponds to inverting al!
coordinates and pcrt"orming a rotalion through 1r in lhe (x. y)
plane. Pcrforming lhe operation of changing the K' P basis to
ours. the opcrator for IC givcn in Rcf. 7. takes lhe following

Rev. Mex. Pis. 46 (4) (2000) 337-347
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- Fur p = -1 it is

- For p = +1 it is

(24)

At "T = O, on the other hand, both Hamiltonians U
amI L are diagonal anu thus invariant under the IC opera.
tion. The matrix (J z performs the IC operation and ¡eads to
the following symmetry propeny of the sub-space wavevec-
tor (JzlJ!u,d-z) = ]J\Vu.¡,(z). This shows that the two com.
ponents 01' the wavc-vcctor in each sub-space have opposite
parities. This analysis supports the results given in Ref. 12
and in this papero whcre the square of the wavefunctions de-
picted in their figures and in ours later. are not symmetric
with respect to the well center at any "'T ::¡:.. O, hut are sym-
metrical at "'T = O.

Then, for the hole suhhands given for one suh-space of
the KL Hamillonian. Ihe r point is a particular one where the
states dccouple in the casc 01'no externa! field or strain. given
independent series 01' stales for heavy and Iight holes with
parity deftned. When moving away from Ihe Brillouin lone
centcr, Ihe rnixing 01"thc banus Icads to a lack 01'IC symme-
try 01' the states 01' the components 2 x 2 sub.spaces, cven
though the whole 4 x <:1 statc rcmains symmetric.

Relations (23) allo\V one to lind the symmetry transfor-
mal ion of the envelopc functions and the TM. It can easily be
dedeeed that the TM fellils the cquality

(19)_ 1-1,
Gas = O

1

-IjII(Z)I-\-'I'I(-Z)1
-'I',(z) - 'I',(-z) .

I
'I'I(Z)I_I-'I'I(-Z)I
'I',(z) - '1'1 (-z) .

Considering the transformation U that block-diago-
nalizcs the Hamiltonian, it can he shown that

cxprcssion:

where 1, is Ihe 2 X 2 identity matrix. From (19) it can he
read!ly seco that aBS is un¡{aey and its application rcads:
¿r.sHo(-z)¿r.s = iro(z). This operation produces in the
wavefunction lhe following result: ¿r.s '1'( -z) = p'l'(z) with
JI = :!:l. denoting the parity. It is worth noticing that the par-
¡líes af the componcnts of the supervector are opposite. i.e ..

whcrc fas is a un¡taey opcralor. Equalion (20) can be cas1 as

Due lo the faet (hal the opcrations úus and U do 001 com.
mUle, it is nol possible lo keep the syrnrnctry uodeT le in the
2 x 2 suh-spaees U ami L away from the r point, although
the whole 4 x 4 Hamiltunian keeps always the le symme-
try. Once the hlock-diagonalization is performed, the opera-
lor ¡,os changes 10

where

Let es now study the states of the iQW with lhe KL Hamilto-
nian given fOl"one ol' the 2 x 2 subspaces, say U [or instance.
To ohtain the trascendental equation for the dispersion rela-
tion of the iQW lhe following boundary conditions must be
satistled:

4. Dispersion rclation and local spectral
strength for the iQ\V

(22)

(21 )-ax\O '_ -, - I OUOasU = rus = -ax

Relations (23) show explieitly thal the suh-spaees U and L
are oot ¡ovarian! undee le [oc a non.zero value al' "'T'

which after sorne algehra can he cast as

M'3(Lw, O)M" (L"" O) - Af,;,(L"" O)M14 (L"" O) = O, (26)

(25)

Using (25) with TM, the secular determinant for lhe states
can he wrilten as(23)

- U - LH (z) = axH (-z)axo

ifL(z) = axifu(-z)ax'

which givcs the following relations:

(27)

Expressions for 0'1 and 0'2 are given in Appendix B.

Some algehra shows (27) lOhe identieal to that derived in
ReL 3 for the r poinl.

Turning now lo the imporlant case kT = O, Ihis limil must
he taken in (27). To do so, (lne considers Ihat t(qTI qz) is an
cven function ol' liT ami hence the function v qTt(qr, qz) has

Rel'. Mex. ¡:':.•, .t6 (4) (2(XX)) 337-347
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Ihe lower values of Ihe quanlum index n, whieh are usua\ly
the ones thal manee fm 1110st physical properties.

To sludy Ihe mixing of holes the square modulus of the
wavefunction was evaluatcd byusing the FfM representation
of the slate. This gives

lO he odd. Then at qT = O we have Po = consl [18], which
\cads lo

Considering a parabolic approximation lo the dispersion law
for the heavy and light holes bands in this Iimit, the energy
can be casi as

- 2
[lIH = bl - 2"(2) q3'
- 2
[L11 = bl + 2"(2) ql'

(29)

pU(£,qT'O = [M~D(C~O)<I>'(~o)]t

x [M~D(~'~O)<I>'(~o)]. (32)

We eonsidered boundary eonditions (25) in (32). Tben, lhe
mixed terms vanish and an expression wilh explicit heavy-
hole and Iighl-hole contributions is derived:

From (29) and (28), 'DI} 'Du + pU= 1111 LU (33)

(30)

al qr = O.
One has lo cnsure that (27) is nol a trivial idcntity in this

I¡mil. One has

Also the square modulus of the wavefunction of L states was
evalualed. Taking advantage of lhe symmetries described
aboye, we obtain lhe relation

which leads lo thc uncouplcd series of levcls

sin2 ij = 0,

lim (1 - cos2 q) ::= O; lim (sin2 (7) :::;:0,
qr-+O qr-+O

5. Numerical results

To delermine the dispcrsion rclation of the hole statcs in the
iQW lhe Eq. (27) musl be numerieaJly evalualed. As usual
this is wriltcn as

Z(ql, '13) = sin ql sin q3 - f (ql, '1j, ql, q3) , (35)

where f (,[¡"j,,(j¡,q3) is lhe righl-band side of Eq. (27).
Functiol1 Z(q}, fJ3) is gcncrally a strong nonlinear, two-
dimensional and complcx-valued functíon whose zeras we
are lookíng foro

Melhods for rool finding are formaJly divided inlo zero-
searching tcchniqucs and minimum-scarching techniques. In
lhe first C<llegorythe most common method is the Newton-
Raphson (NR) [23].

Taking inlo aceounllhe complex characterof (35) one ean
separate its real and imaginary parts and explicitly writc lhe
corresponding non linear system of equations ¡nvolved. There
are no good universal lllcthods for solving systems of two
or more non linear equalions, due 10 the faet that both Z}? and
Z<:l are 1\\10 arhitrary unrelaled funclions. They have lera eon-
lour lines lhat divide lhe plane (q¡, q3) inlo regions. In Fig. l
a typical situation is skclched.

Although the NR provides a very efficient convergence
process provided one has an educated ¡nitial guess and well
bchaved functions in the system uf equations, this is nOl our
case hecause even lhough lhe educated initial guess can be
oblained from lhe series (31) for the iQW al the r poinl, lhe
funclions 01' lhe syslem (35) are nol weJl behaved. Then lhe
NR badly fails lo converge. So, il is neeessary lo resor! to
minimum searching techniques. The procedure is (o 5tart with
(he initial guess at (h = O. mentioned befare to define a box
in which lhe zero is localeo. Al a new value of qT the solution
just ohlailleo for lhe previous one is uscd as the new guess to
find the new hox. This procedure is eaJled "foJlow the OOx".

(3 l )

=0;

'" 2,97,

which eliminate this possibility.
Also, by using condition (30) and also ii = 1f1l, il is easy

10 sce thal

which exeludes lhe possibility of lurning (30) inlo a lrivial
idcntity.

Using (27) in the resulting exprcssion in this Iimit we 00-
(¿¡in

a whieh unambiguously lahel the hole subbands as heavy
(Iargcr effectivc mass) and Iight (smallcr mass) al the CCOlee
(JI'the Brillouin zonc.

As in the case of finile barricrs lhe secular cqualion can
he casI in a fonn similar to (26) (sce Ref. 13), Ihe similar indi-
vidual series for heavy and lighl hole states ean be oblained.

On letting "'T grow frum lhe ¡nitial zeru value we identify
unambiguously Ihe HH and LH bands. The inlinile harrier
simplificalion allow us lO follow up this issue analylically but
any lowering of lhe harriers 10 reallife values cannot in prac-
lice alter lhe relalive ordcring oflhe energy levels, al least fur

Rel'. Mex. Ff •. 46 (4) (2()()() 337-347
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\,~C ~, ---J/, ,, ,, ,
~ ~ZI-O, ,

c;D'2,"0 i\
, D,.. \

I ,

" _----T,
I ,..--

, --
FIGURE 1. Schematic representation of the zcro~contour bound-
aries of functions ZR and ZQ. Salid curves refer lo ZR(qt,Q3).
dashcd curves to Z,:! (q¡, 1/3), which the real and imaginary parts of
fUtlClion Z given by (27). Each contour ¡¡oc divides (ql, q3) plane
into posilivc and ncgativc rcgions. The desired solutions (global
minima) are the interscctions of these unrelatcd zcro curves. The
circlcs correspond 10 glohal minima. the fillcd rcctangles corre.
spond lo local minima •.lOd Ihe non-filled anes refer to isolated mio-
ima.

Thcrc are points uf accidental degeneracy in (he disper-
sioll relarion whcrc the assignation becomcs ambiguous. To
ovcrcomc this difficulty a changc in the procedurc must be ef-
feeleo. Insleao 01' Ihe proeeoure "foIlow Ihe box", a mapping
01' aIl ex!Tema 01' Ihe syslem 01' equations musl be useo [19].
These extrema inelude maxima, global minima, local and iso-
laIcO minima (See Fig. I for every kind 01' eX!Tema).To de-
tcrmine the accuraey of the detennination of sueh extrema
the function ZMO[) is cvaluatcd [23], whid\ is the modulus of
funelion (35).

The desired solutions are the global minima, hecause the
local and isolated minima are the wing bands l20] which are
a consequence of the incomplete basis representing the t;. . p
functions useo.

For aelual solulions Ihe aeeuraey oblaineo, delermineo by
Ihe valuc of Z"wo was within 10-14_10-16 and for isolated
minima it was within 10-4_10-6• This differcncc allows one
to properly determine the actual solutions.

For the determinalion of the dispersion rclation Ihe zero
01'encrgy was takcn at the top of the bulk valence band of
GaAs and the values for (he Lüttinger paramcters were taken
from [4]. In the computalion there were several points for
which the accuracy achievcd for actual solutions decreases
with respcct to the interval mentioned above for determined
ranges of values 01' qT, although higher than the accuracy
for local and isolatcd minirna. This is presumahly due to a
stronger interaction hclween Iight and hcavy hole bands in
this rangc.

As will he seen in all dispersion figures, our dispersion
curves are always higher in energy than those oh(ained for
lhe fQW 01' lhe same wiOlh, as expeeled, bUI Ihe same over-
all look is always ohlained. The figures show several stan-

dard features such as nonparaholicily, the anisotropy in Ihe
in-pltme dispersion and Ihe saddle point behavior 01'suhhands
HH2 anO HH3 al r poinl12, 3J.

In sorne numerical studies of essentially lhe same syslem
as sludieo here 17,9, 12J. a oifferenl ordering 01' Ihe slales ap-
pears lo be oblaineo, wilh HH2 anO LH 1 inlerehangeo wilh
respect to Ihe present results. We nOle, however. that the la-
heJling proposed for the differenl states is in these cao;;esas-
signed without any explanatory critcrion to the numerical rc-
sults ohtained in the calculation, while in the tighl binding
ca1cuiation 01'[1, 6] the LH or HH assignments are explained
ano interpreted-albeit in a different scheme from ours-and
the ordering thus obtained is identical to Ihat of the results
obtained here.

Anolhcr general result can he seen from our figures. For
all weIl widlhs Ihe banos 01' slales LH I and HH3 appear lo
cross each other. This "crossing" is obtaincd hy analyzing
Ihe full extrema piclure and this resuh, although expresscd in
Ref. 6 explicilly, is not relleetcd in Ihe curves of their Fig. 1,
in which they obtained an anlicrossing point. OUT calcula-
tion. based on the study of the square mouulus 01'the wave-
function allow LIS to determine whether a crossing or anti-
crossing oecurs. On general grounds it can be statcd thal the
point must be of anticrossing since for the point group of the
KL Hamillonian (D",,). al '11' = O eorresponos Ihe group
C2v, whose double group has only Ihe irrcducible reprcsen-
lation L.~which havc stales 01' Ihe same syrnmetry, so thcy
must anlicross.

Nolicing that for the iQ\V 01' 120 A in the rangc U <
"T < 0.0178 Á-¡ Ihe funelion Z(q¡.Q3) is slrielly real. Ihe
NR tcchnique can he used in Ihis rangc. This validates the
stratcgy "follow Ihe hox" uscd hccause a complete agrecrnent
was achievcd by hoth tcchniques for that case.

In Figs. 4-6 Ihe components 01' the square modulus 01'
Ihe wavcfunction of different states arc depicted for 110ththe
U and L subspaces. They show Ihe le symmetry 01'the states
whelher eorresponding lo Ihe r poinl (Fig. 4) anO Ihe absenee
01' il al any olher poinl (Figs. 5 anO 6), and also Ihe eomple-
mcntary shifting for states 01'the U and L states.

In Fig. 2a lhe IIrSI")ur hole subbaoos for a GaAs iQW 01'
50 Á are prescnted along the (10) in-plome direction. Our la-
helling derived unambiguously from series (31) is coincidenl
wilh lha! proposeo in [l. G I amI differs from lhal reporteo by
others aulhors in [7,9,121 wllo interchange the labels of Ihe
slales HH2 and LH 1. Subbanos LH I and HH3 "anli-eross"
each othcr al the point "r = 0,055841 A -l. It also dcpiclS
Ihe hole valenee bano slrnelure reporteO in [12J for a fQW
case and the ovcrall picturc ror both is the same. lt is impor.
lanl lo stress Ihallhe legend wilh Ihe labelling oflhe subbands
oí" the fQW for hoth graphics. follows OUT criterion for the
sake of a proper comparison ofthe suhhands in both. their and
OUT calculations. Figure 2h shows thc six first hole suhhands
for a GaAs iQ\V 01' 78 Á along (10) in-plaoe direelion. The
LHI-HH3 "anti-crossing" oecurs at KT = 0,035761Á-l.
These rcsulls were compared with those obtained in 17] and
the agreernent was good for the corresponding statcs. It is im-
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FIGURE 3. Dispcrsion of the Iwo lowcst valcnce subbands in a
GaAs iQW of 54 A. Thc full Jincs show the present calculatcd
dispersion. Opcn cireles and rhombus show Ihe dispcrsion valucs
corrcsponding 10 a hol-elcclron .lcccptor luminescence expcrimcnt
for a GaAs-AIQ.2sGao.iSAs QW givcn in Ref. 21.

range lhe slales. So lhe iQW approaeh is expeeled lo be sig-
nificantly easier to deal with.

Thc LH I-HH3 anti-crossing appears in our calculations
like a 7.ero-gap degeneracy and in Ref. 6 it appcars wilh a
minigap. Leavin,g asioe questions of numerical feasibility of
Ihe compuling methods useo lo overcome that dift1culty, we
think that Ihis is due to limitations of our rnodel in which, 00
lhe lirst hand. lhe " . p hasis is nol complete (trunealed) ond.
in Ihe olher. some lineor k lerms in Ihe Homiltonian (1) are
negleeted [4J.

In Fig. 3 lhe first two suhho",ls for a 54 A QW are shown
logelher wilh Ihe experimenlol results of hole dispersion
hanos in a fQW determincd hy hOI electron acceptor lurni-
nescense [21]. Even though our model does not takc account
directly of the spin split band and lhe infinite barrier approxi-
mation has been made, a reasonahle serni-quanlitativc agrec-
mcnt is ohlained-note thut the energy differences are of a few
milliclcclTon v01ls.

Figure 4 show the cornponents of the squarc rnodulus of
lhe wavefunelion of Ihe slales in suhspaees U and L fm the
4 lower hole states at Ihe r poinl in an iQW of 50 A. The
curves laheled 1(3) are lhe HH eomponents of lhe U(L) suh-
spoee and curves 2(4) Ihe LH componenls. Also curves of
Ihe U(L) subspaces are depicled in solid(doshed) line. As can
he scen, lhe curves of hoth suhspaccs coincide and have le
symlllclry.

Figure 5 shows the components ni' the squarc modulus of
Ihe wavefunetion of Ihe U(L) suhspaee of the 4 lower hole
slales al "r = 0.01 A -1 Curves loheled I (olso wilh dashed
line) and 3 (olso solid line) are the HH componenls of the U
and L subspaces respeelively. The same oeeurs for curves 2
(also dashed line) and 4 (also solid line) for Ihe LH eompo-
ncnts. Thcy show lack of syrnmetry and the complementary
shifling, allhough Ihe shifl fonn one curve lO Ihe othcr is not
too big due lo lhe facI that /\'T is ncar the r point.
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porionllo nole lhol the HH4 subhond slonds helow LH2 in our
rcsult and does not appear in thcirs. That rcsult also agrccs
wilh thal ohlained hy Chang ond Sehulman along Ihe 1 100]
dircction and derives frorn cxpress ion (31). Fur hoth graphics
(a) and (h) sorne eomments musl be done; The r poinl is a
singul", one heeouse hOlh heavy ond light holes are degen-
erale and sorne forrnalisrn Iike that of the r"TM fails down.
Using the iQW ca"ie at this point Dne is allowed lo oblaio
independenl series (31) for HH ond LH stmes, whieh unam-
higuously define Ihe sequence of Ihern allhough with a certain
ovcrestimalion of their values. Is this fact, which rnakes rel-
evant the use of this rnode!' Beside that, Ihe tlniteness of the
holc-harricr potential is not a strong enough condition lo rcar-

FJ<;URE 2. a) Dispcrsion of the f¡rsl four valencc subbands in a
GaA~ iQW of 50 A ¡¡long [he (10) in-planc dircction. Full I¡nes
corrcsJXmdlo our rcsults, dashed ¡¡nescorrcspond lO curves for dif.
(erenl valucs of the magnetic ficld. These resuhs were taken from
Rcf. 12; b) Dispcrsion relation of the first six subbands in a GaAs
iQWof i8 Á. Fulllines refer lo OUT rcsulls, different symbols were
uscd for (he results given in Ref. 7 for a fQW.
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FIGURE 4. Components of the square modulus ofthe wavefunction ofthe hole slatcs 11111,(IU2. LlII and 11113al (he r point in a 50 A QW.
Curves 1(3) are contributions of HH components for both U and L sub-spaces and curves 2(4) are {he LH contributions .
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FIGURE 5. Components of the square modulus of {he wavcfunction of the same states as Fig. 4 al ""T = 0.01 A -l. Curves laheled 1(3) are
(he HH conlributions of the up (Iow) sub-spacc and curves 2(4) are {he same for the LH contrihutions.

Figure 6 shows lhe cOlllponents nI" the squarc J110dulus
of the wavefonetion of the LH 1 and IIH3 states at two dif-
rerent points 01' lhe Brillouin Zonc, one just before anJ the
other just afler the poinl 01' accidental degencracy depicted in
Fig. 2a, to sec whclher this poinl is a crossing or anticrossing
poin!. Figures 6a and 6h at the point "T = 0,05440 A -1 and
Pig. 6(' and úd the sall1c slates al the point ""y = O.OG Á -l.
Thc LH I state musl have one conlrihulion with one ¡ero and
lhe oLher without any ami, as can he secn, the dominanl onc
is thal with alero which must be idenlified with HH. This hc-
haviour occurs for both points in the Brillouin Zanco On lhe
olhcr hand. the HH3 state musl have a contrihulion with lwa
leros and Lhe (llher wilh une. The HU contri huI ion is dom-
inant in bolh ky points. For the point after lhe degeneracy
lhe energy which secms 10 he the HH3 suhhand has its con-
trihulions as cxpected for the LH 1 suhhand and the contrary
happens to the energy that seems to he LH 1. This SllpportS
the slalemcnt Ihat this accidental degeneracy point is an anti-

crossing with zera gap, in corresponden ce w¡lh the general
argulllents given ahove. We canjecture thal the zero value for
lhe gap is due to the incompletencss oí"the K. • P hasis consid-
credo

6. Cnnciusions

Thc dispersion relation for lile iQW of GaAs has heen calcu-
lated ror lile KL model Hamiltonian using lhe TM melhod,
\vith good agreernent comparing our results with Ihose ob-
tained hy other methods of ealclllation. An inlerehange in the
l<lhclling of the slalcs was fOllnlI in scveral authors wilh rc-
speet 01' [he lahelling whieh suggests series (31), whieh in
turn agrees w¡th lhat given in Ref. 6.

The diserete symmetries of the KL Hamiltonian for a
symlllclric Q\V in lhe basis mosl commonly used wefe dc-
scrihed. This hasis allows for a rcduction in the number of
cquations to deal with (one ofthe suh-spaees U and L). The
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Appendix A: Parameters of the KL Hamiltoni"
ans

01' Education and Culture. This work has heen supponed par-
lially by Ihe UAM-A, D.F., and CONACyT of Méxieo under
projeel No. 29026-E.

laek Oflhe symmelry under IC fm Ihe slates ofthe suh-spaees
al "-T = O was shown both analytically and nurncrically, by
cvaluating lhe squarc of lhe wavefunction of those states. al-
Ihough Ihe whole 4 x 4 slale keeps Ihis symmetry. With lhis
cvaluation lhe confirmation of an anti-crossing of lhe acci-
denlal degeneraey poinl of HH3 and LH l suhbands is borne
out. in agreemenl with [6] and general syrnrnctry argumcnts.
Ncvcrthcless, al /\'T = O lhe absencc of coupling of lhe hands
leads lo salisfying IC symmelry al eaeh sub-space, Physieally
speaking, the r poinl is singular for this Hamiltonian sincc al
lhis point the hands are dccoupled and lhe states have dcflnitc
parity as "isolated syslems'. in this point. Once one movcs
away from lhis point. the coupling belween hands is eon-
nceted, lhe system is no longer isolalcd and then does not
keep Ihe parily defined in eaeh 2 x 2 subspaee.

The slralegy "follow Ihe box" fm Ihe numerieal evalua-
lion of a dispersion relation slrongly non linear and eomplcx
valued is practical and efticient [o ovcreome lhe numerical
difficulties.

The exlension to lhe case of fQW is straightforward and
Ihe lahelling of Ihe slales using Ihe series of lhe iQW al r
poinl is slill valid sinee lbe reduclion of Ihe heighl of lhe bar-
ricrs is nol suffkienlly strong lo change the arder of appear-
anee 01' the firsl stalcs at lhis point of lhe Brillouin zonc.
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Appendix B: Elements ofthe TM calculated
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