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The hole subband structure, the band mixing effects and the symmetry properties of the states in a [100] GaAs quantum well are given for the
case of infinite potential barriers, in the framework of the Kohn-Liittinger model using the Full Transfer Matrix technique. The calculations
demand not too much computational effort and are in good agreement with experimental results. Our labelling of the states, performed
according to the dominant contribution at kr = 0, where the states are pure light and heavy hole states, agrees with that presented by
Chang and Schulman at variance with that of other authors. The band mixing away from the Brillouin Zone center leads to changes in the
contributions of the light and heavy hole components to each state.
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Para el caso de un pozo cudntico infinito [100] de GaAs, se presentan la estructura de subbandas y los efectos de la mezcla de las bandas en
las propiedades de simetria de los estados, en el marco del modelo Kohn-Liittinger usando la técnica de la Matriz de Transferencia Completa.
Los cdlculos no exigen mucho esfuerzo de computo y estdn en buena concordancia con resultados experimentales. Nuestro etiquetado de los
estados, realizado de acuerdo con la contribucién dominante en kr = 0, donde los estados de huecos pesados y ligeros son puros, coincide
con el propuesto por Chang y Schulman pero difiere del de otros autores. La mezcla de los estados lejos del centro de la zona de Brillouin

conduce a cambios en las contribuciones de las componentes de huecos pesados y ligeros a cada estado.

Descriptores: Estados de huecos; mezcla de las bandas; simetrias discretas
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1. Introduction

The dispersion relation of the hole subbands in quasi-two di-
mensional (Q2D) heterostructures made of III-V and II-VI
materials has received substantial attention in the last ten
years. Theoretical calculations show the highest hole band
to have a low effective mass in both strained and unstrained
systems [1] and, in addition, show a highly nonparabolic
subband dispersion near the Valence band maximum [1,2].
These effects have potential significant practical interest in
new devices. In recent years several theoretical calculations
were made in Q2D systems analyzing the hole subbands be-
cause the band mixing between heavy and light hole bands in
GaAs-AlGaAs systems. Most of them use x - p Hamiltonians
in different schemes [1-12].

The Kohn-Liittinger (KL) model Hamiltonian is a prac-
tical one to study the hole subbands in these materials and it
is flexible in including external perturbations such as exter-
nal fields [7, 12] and strain [1]. The main effect of this model
Hamiltonian for those materials is the mixing of light and
heavy hole bands away from the I" point which substantially
affects the optical properties [5] of systems made of such ma-
terials.

The hole subband structure in quantum wells (QW) has
been previously studied with a Kohn-Liittinger Hamilto-

nian [4,7,9, 10, 12]. While these studies have added substan-
tial contributions to the elucidation of this problem, there
remain some aspects which do not appear to have received
sufficient attention and/or which because of their interest
deserve further clarification. These are essentially of three
types, namely: (1) The effect of the discrete symmetries when
the initially 4 x 4 Hamiltonian is block-diagonalized by ap-
propriate transformations and the consequences of this on
the wavefunctions of the states of the subspaces of solu-
tions thus obtained. (2) The labelling of the hole states of
the QW. This would seem to require an explanation—not al-
ways clarified—of the criteria on which the labelling is based
for different values of the 2D in-plane wavevector and, in any
case, it should be consistent with the conclusions of the cal-
culations based on tight-binding schemes [5], which is not
always the case. (3) Various techniques have been employed
for the numerical calculations [4,7,9, 10, 12] which appear
to be useful and efficient but their practical usefulness for
other potential users would improve if some technical details
of instrumental significance for their implementation were
explained. The aim of this paper is to address such questions.

For all these issues it suffices to study the case of a
quantum well with infinite barriers (iIQW). We shall study
a GaAs well grown in the [100] direction, start from a
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4 x 4 Hamiltonian and employ a Full Transfer Matrix (FTM)
technique [13-15], different from the usual Transfer Matrix
method which involves only amplitudes [16].

The remaining parts of this paper are organized as fol-
lows: Sect. 2 presents the FTM in the case of a KL model
Hamiltonian for flat band potential, in Sect. 3 a description
of the main discrete symmetries of the KL Hamiltonian is
given together with their consequences for the states. Sec-
tion 4 gives the dispersion relation and the squared wave-
function of the IQW in the axial approximation and Sect. 5
gives the numerical results together with its analysis. Finally
some conclusions are presented in sect. 6.

2. TM for flat band KL model

The infinite-potential barrier case of a GaAs QW, grown in
the [100]-direction, considered as the z axis is analyzed. A
detailed analysis of the form of the KL Hamiltonian for dif-
ferent directions in the structure is given in [10]. In this paper
the assumptions, conventions and notation used by Broido
and Sham [4] were used, particularly the order in the basis

functions for the x - p Hamiltonian. Then taking into account
J

I"IU = A;h";’. =t Bgli;;? e V.(:) - F
Cry + iDgyk:
L = [Aest + Bik2+V(z)-E
n Cag+ i Dayhks
and k. = —i (d/dz). Expressions for Ay, A2, By, Ba, Cyy,

D,, and k* are given in Appendix A. Here and henceforth,
hole energy is counted as positive. For the eigenvalue prob-
lem

{AYE(k, B) } ua(x) = 0. (s)

Due to translational symmetry in the (z,y) plane of the sys-
tem, the solutions of (3) and (4) are written in the usual form

91,3(2)
92,4(3)
Since the secular determinant of (5) is the same for both U
and L Hamiltonians, the eigenvalues are equal so, for the sake
of illustration, hereafter the U case will be considered. In the
flat band case the solution (6) can be written as:

a1(2) - hy
g2(z) ha
From (3) and (5)—(7), the algebraic system of equations for
the flat band potential is:
A]Hz + Bg)\2 + &
Cry + tDzy

where & = V; — E; 1} is a constant.

From the zeros of the secular determinant of (8), one can
obtain non trivial solutions. The fundamental magnitudes to

Puu(r) = eFemthid g, (7) = glk=athuy) . (6)
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symmetry considerations [17], the KL Hamiltonian to deal
with is

P+@ R-T' 7.5'+713.,T” T
- Rs_Tﬂ. P* —T S T'
Hol‘ —S*+—LT _T? P—Q ;‘:+§%1 " (])
V3
P* S+ LT R +T" P+Q

Here and throughout the paper k,, k,., k. denote Bloch
wavevector components and 7, 72, 73 the Liittinger param-
eters. The variables PP, ), R, T, T" and S are given in Ap-
pendix A.

The usual case J = 0, whose validity was amply dis-
cussed in Ref. 4, is considered. A unitary transformation [4]
rearranges the order of the states and separates them in two
blocks according to their Kramer degeneracy, so the Hamil-
tonian (1) is block-diagonalized into two 2 x 2 blocks, which
are labeled “up” (U) and “low” (L) in analogy with electron
spin.

- HY 0

r_ 3 2
Hu ‘ U H[_ 1 ( )

where the blocks are given by
("ry == iD,r-y}:: l (3)
Aski + BikI+V(z) - E ' '
Cay =4 0un ’ @

Arks + BokZ +V(2) - E

[ . T ,
use are taken in atomic units with ap taken as the Bohr's ra-
dius and Ry as the Rydberg constant.
Now the determinant of (8) reads (in atomic units)
try —4Szyq

(qu:‘}, + ’Jgf]z + L": _
aq> +big* + &

tzy +152y4
which is a fourth-order polynomial equation, whose solutions
are

=0, 9)

1 , |
oG = E ( = ardr — Fgm-)»
@2 = —q, (10)
1 — 2
43 = [ — (—\/15; — gl — ﬂr)‘
s = —q3.

For the definitions of ay, as. by, bs, qr, q, E g, s tey, ap and
A, see Appendix A. With the aforementioned values ( 10),
one can find the solutions as

azg? +big? + €|
—(tey +1529q4) .
as the linearly independent solutions for the flat band case,
where A, is the normalization constant, which can be writ-
ten as

Puj(Z)=hyje™* i=12,34, Q1
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To introduce the FTM one defines the two-component su-
pervector [13]

Pu(z)
Pu(2)

The FTM MY (21, z,) can be defined as the 2 x 2 supermatrix,
which transfers any solution ®,,(2) from z, to z; [14], i.e.,

P, (21) = MY (21, 2,) - (o). (13)
|

B, (z) = : (12)

- 2 B ¥ - . '
[a22 + 01 (a3, - 3,) + E]" +4biahya}; + (toy — iS2yi)(te + iSeya;)

|
To obtain MY (€, &,), where & = 2,/a, and £, = z,/a,

the following expression can be applied [13]:

MY (&,&) = N(&) - N(&) ™, (14)

Where N(£) is a matrix of the linearly independent solutions
of the system of equations. It can be cast as

hyeiré hygetazé higeisé hygetas€

hmeiqlf hzzeiqu h23eiqu£ h24eiq4é (15)
N(g) = igih11€' ¢ igahypei®26  igahyzeist  iguhy4eids|

iqtha1€ ¢ igohaet®t  iqzhazei®st gy hoei9st

By substitution of (15) in (14) and performing the corre-
sponding matrix operations, the following structure for the
FTM elements can be obtained

1 ~ =
M{j(&1,60) = 2= |6 cos(d) + € cos(da)
T

+ 67 sin(gy) + £ sin(q'g)] . (16)

where we used ¢; = ¢;(§, — &) ; i = 1,3. The matrix ele-
ments coefficients for ij- (&1,&,) are given in Appendix B.

3. Discrete symmetry properties of the KL
Hamiltonian

When studying the KL Hamiltonian it is useful to take ad-
vantage of the discrete symmetries it has. As pointed out in
Ref. 7, the two basic discrete symmetry properties are the
time reversal invariance (TR) and the inversion of coordinate
z (IC) without changing the value of the in-plane wavevector.

The basis set used in Ref. 7 was different from the one
used here. The TR operator on the basis of Ref. 7 is given by
K_.\}’H - Eyfto, where

0 o

2"':rry 0

Here the APB subscript corresponds to operators given in the
basis of Ref. 7, while the subscript BS will correspond to our
basis, which we recall is that of Ref. 4. Here and henceforth
Oz, 0y and o, are the Pauli matrices and K, - V indicates
the complex conjugate—not the Hermitian conjugate of any
operator V.

Itis necessary, then, to change the order of the basis func-
tion used from APB to BS. The matrix to do this operation is:

erl w0 0000
g1 0

B 0 & 0 .0 (2
00 0 —i

which leads to the following form for the TR operator:
- 0 oo K,
Kps = . o= W 18
BS e R 0 (18)

Using (18) on the KL Hamiltonian we have Kggﬂokgé =
ﬁoKﬂ. Here and henceforth 0 is the 2 x 2 null matrix.

Consider now the unitary transformation U [4] that
block-diagonalizes the KI. Hamiltonian (1), ie., which al-
lows to analyze the system of equations as two different
but spatially equivalent sub-systems with smaller matrices.
The operator Kgs conmutes with U and separates the states
“Kramer +” (U Hamiltonian) and “Kramer — (L Hamilto-
nian) to time reversal (it is not difficult to show that the trans-
formation U is related to the TR operation). Then the KL
Hamiltonian (1) is invariant under TR and every sub-space of
it has a definite value of Kramer degeneracy,

The initially 4 x 4 KL Hamiltonian is also invariant un-
der IC operation [7], which corresponds to a change of sign
of the z coordinate only without changing the value of the in-
plane wavevector. This operation corresponds to inverting all
coordinates and performing a rotation through 7 in the (z, y)
plane. Performing the operation of changing the & - p basis to
ours, the operator for IC given in Ref. 7, takes the following

Rev. Mex. Fis. 46 (4) (2000) 337-347



340 L. DIAGO-CISNEROS, H. RODRIGUEZ-COPPOLA, AND R. PEREZ-ALVAREZ

expression:

) (19)

. <% 0
s I

where I is the 2 x 2 identity matrix. From (19) it can be
readily seen that Gy is unitary and its application reads:
dasHo(—2)dns = Hy(z). This operation produces in the
wavefunction the following result: 655 ¥ (—2) = p¥(z) with
p = %1, denoting the parity. It is worth noticing that the par-
ities of the components of the supervector are opposite, L.e.,

— Forp= +1itis
¥y (2) = —Wy(—z2)
¥>(2) ¥y (—2)

— Forp=—1litis
‘—q’l(z) _ |~¥1(=2)
—'I‘z(z) - ‘1’1(—*2) ’

Considering the transformation U that block-diago-
nalizes the Hamiltonian, it can be shown that

UH, (2)U! = UdnsHo(—2)0psU™" = Hy(=2). (20)

Due to the fact that the operations dgs and U do not com-
mute, it is not possible to keep the symmetry under IC in the
2 x 2 sub-spaces U and L away from the T point, although
the whole 4 x 4 Hamiltonian keeps always the IC symme-
try. Once the block-diagonalization is performed, the opera-
tor 6 s changes to

UsaeU =T =| 0 o @n

¥

where f‘ﬂs is a unitary operator. Equation (20) can be cast as

Y (2) = DasH(—2) s, (22)
which gives the following relations:

HY(2) = 0, H"(-2)0s,

H'(2) = o HY(-2)0,. (23)

Relations (23) show explicitly that the sub-spaces U and L
are not invariant under IC for a non-zero value of K.

]

2 [1 o= COS(j; cos tfg]

At kK = 0, on the other hand, both Hamiltonians U
and L are diagonal and thus invariant under the IC opera-
tion. The matrix o, performs the IC operation and leads to
the following symmetry property of the sub-space wavevec-
tor 0, ¥y . (—2z) = p¥y . (z). This shows that the two com-
ponents of the wave-vector in each sub-space have opposite
parities. This analysis supports the results given in Ref. 12
and in this paper, where the square of the wavefunctions de-
picted in their figures and in ours later, are not symmetric
with respect to the well center at any s # 0, but are sym-
metrical at K = 0.

Then, for the hole subbands given for one sub-space of
the KL Hamiltonian, the T point is a particular one where the
states decouple in the case of no external field or strain, given
independent series of states for heavy and light holes with
parity defined. When moving away from the Brillouin zone
center, the mixing of the bands leads to a lack of IC symme-
try of the states of the components 2 x 2 sub-spaces, even
though the whole 4 x 4 state remains symmetric.

Relations (23) allow one to find the symmetry transfor-
mation of the envelope functions and the TM. It can easily be
deduced that the TM fulfils the equality

B, MYL (=2, —20)E2 = M"Y (2, 25), (24)
where
_loz O
=
4. Dispersion relation and local spectral

strength for the iQW

Let us now study the states of the iQW with the KL Hamilto-
nian given for one of the 2 x 2 subspaces, say U for instance.
To obtain the trascendental equation for the dispersion rela-
tion of the iQW the following boundary conditions must be
satisfied:

0

0 =
i \«,a;{m“ AT

Using (25) with TM, the secular determinant for the states
can be written as

@u(Lw} = { (25)

M13(st 0)M24(L1u~ U) = p‘/f',lii(Lun O)Mld(Lwa O) e 0' (26)

which after some algebra can be cast as

27

sin ¢y sings =

Expressions for oy and a are given in Appendix B.

Some algebra shows (27) to be identical to that derived in
Ref. 3 for the I point.

2 4
tzy 1 ( [an g) (g a2qi
Szy Q143 s a CLE o

[ Turning now to the important case k.. = 0, this limit must
be taken in (27). To do so, one considers that £(gr,q2) is an
even function of g, and hence the function V. £(gr, ¢:) has
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to be odd. Then at g = 0 we have p, = const [18], which
leads to

a ('71 +272) _ 28)
‘ﬁ Y — 272 Eun

Considering a parabolic approximation to the dispersion law
for the heavy and light holes bands in this limit, the energy

can be cast as

Eun = (m — 2m) G, (29)
i =(n+2m)d.
From (29) and (28),
4 = a3, (30)

atgr = 0.
One has to ensure that (27) is not a trivial identity in this

limit. One has
e
]im( L) =0;
gr —0 S;ry

lim (% - ) = 2,97,

ar—0 \ a2q

2y
143

which eliminate this possibility.
Also, by using condition (30) and also § = 7n, it is easy
to see that

lim (1 - cos®§) = 0;

lim (Sin2 ti) ==}
qr —0 qr —0

which excludes the possibility of turning (30) into a trivial
identity.

Using (27) in the resulting expression in this limit we ob-
tain

sin? § =0,

which leads to the uncoupled series of levels

- h? ( 2y2) m\?

HH = . 41 Y2 I.)
E—ng(+2)ﬂg 31)
LH = 2m, 71 Y2 7 )

a which unambiguously label the hole subbands as heavy
(larger effective mass) and light (smaller mass) at the center
of the Brillouin zone.

As in the case of finite barriers the secular equation can
be cast in a form similar to (26) (see Ref. 13), the similar indi-
vidual series for heavy and light hole states can be obtained.

On letting £, grow from the initial zero value we identify
unambiguously the HH and LH bands. The infinite barrier
simplification allow us to follow up this issue analytically but
any lowering of the barriers to real life values cannot in prac-
tice alter the relative ordering of the energy levels, at least for
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the lower values of the quantum index n, which are usually
the ones that matter for most physical properties.

To study the mixing of holes the square modulus of the
wavefunction was evaluated by using the FTM representation
of the state. This gives

DY(£,gr, €) = [Mp (£,6)2' (&))"
x [MRp(€,6)¢'(&)] - G2

We considered boundary conditions (25) in (32). Then, the
mixed terms vanish and an expression with explicit heavy-
hole and light-hole contributions is derived:

DY = Dy + DLy (33)
Also the square modulus of the wavefunction of L states was
evaluated. Taking advantage of the symmetries described
above, we obtain the relation

T E i) = DY (€ jore—E): (34)

5. Numerical results

To determine the dispersion relation of the hole states in the
iQW the Eq. (27) must be numerically evaluated. As usual
this is written as

Z(q1,q3) = sinqi singz — f (¢1,G3,q1,43) (35)

where f (g1, 43,q1,q3) is the right-hand side of Eq. (27).
Function Z(q1,q3) is generally a strong nonlinear, two-
dimensional and complex-valued function whose zeros we
are looking for.

Methods for root finding are formally divided into zero-
searching techniques and minimum-searching techniques. In
the first category the most common method is the Newton-
Raphson (NR) [23].

Taking into account the complex character of (35) one can
separate its real and imaginary parts and explicitly write the
corresponding nonlinear system of equations involved. There
are no good universal methods for solving systems of two
or more nonlinear equations, due to the fact that both Zy and
Zg are two arbitrary unrelated functions. They have zero con-
tour lines that divide the plane (g1, g3) into regions. In Fig. 1
a typical situation is sketched.

Although the NR provides a very efficient convergence
process provided one has an educated initial guess and well
behaved functions in the system of equations, this is not our
case because even though the educated initial guess can be
obtained from the series (31) for the iQW at the I point, the
functions of the system (35) are not well behaved. Then the
NR badly fails to converge. So, it is necessary to resort to
minimum searching techniques. The procedure is to start with
the initial guess at ¢, = 0, mentioned before to define a box
in which the zero is located. At a new value of qr the solution
just obtained for the previous one is used as the new guess to
find the new box. This procedure is called “follow the box.
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FIGURE 1. Schematic representation of the zero-contour bound-
aries of functions Zx and Zs. Solid curves refer to Zx(q1,q3),
dashed curves to Za(qi1, g3 ), which the real and imaginary parts of
function Z given by (27). Each contour line divides (g1, ¢3) plane
into positive and negative regions. The desired solutions (global
minima) are the intersections of these unrelated zero curves. The
circles correspond to global minima, the filled rectangles corre-
spond to local minima and the non-filled ones refer to isolated min-
ima.

There are points of accidental degeneracy in the disper-
sion relation where the assignation becomes ambiguous. To
overcome this difficulty a change in the procedure must be ef-
fected. Instead of the procedure “follow the box”, a mapping
of all extrema of the system of equations must be used [19].
These extrema include maxima, global minima, local and iso-
lated minima (See Fig. 1 for every kind of extrema). To de-
termine the accuracy of the determination of such extrema
the function Zyop is evaluated [23], whicH is the modulus of
function (35).

The desired solutions are the global minima, because the
local and isolated minima are the wing bands [20] which are
a consequence of the incomplete basis representing the & - p
functions used.

For actual solutions the accuracy obtained, determined by
the value of Zyop was within 10714-107"¢ and for isolated
minima it was within 10~*~10~, This difference allows one
to properly determine the actual solutions.

For the determination of the dispersion relation the zero
of energy was taken at the top of the bulk valence band of
GaAs and the values for the Liittinger parameters were taken
from [4]. In the computation there were several points for
which the accuracy achieved for actual solutions decreases
with respect to the interval mentioned above for determined
ranges of values of ¢,, although higher than the accuracy
for local and isolated minima. This is presumably due to a
stronger interaction between light and heavy hole bands in
this range.

As will be seen in all dispersion figures, our dispersion
curves are always higher in energy than those obtained for
the fQW of the same width, as expected, but the same over-
all look is always obtained. The figures show several stan-

dard features such as nonparabolicity, the anisotropy in the
in-plane dispersion and the saddle point behavior of subbands
HH2 and HH3 at I" point [2, 3].

In some numerical studies of essentially the same system
as studied here [7,9, 12], a different ordering of the states ap-
pears to be obtained, with HH2 and LH1 interchanged with
respect to the present results. We note, however, that the la-
belling proposed for the different states is in these cases as-
signed without any explanatory criterion to the numerical re-
sults obtained in the calculation, while in the tight binding
calculation of [1, 6] the LH or HH assignments are explained
and interpreted—albeit in a different scheme from ours—and
the ordering thus obtained is identical to that of the results
obtained here.

Another general result can be seen from our figures. For
all well widths the bands of states LH1 and HH3 appear to
cross each other. This “crossing™ is obtained by analyzing
the full extrema picture and this result, although expressed in
Ref. 6 explicitly, is not reflected in the curves of their Fig. 1,
in which they obtained an anticrossing point. Our calcula-
tion, based on the study of the square modulus of the wave-
function allow us to determine whether a crossing or anti-
crossing occurs. On general grounds it can be stated that the
point must be of anticrossing since for the point group of the
KL Hamiltonian (Dy43), at g = 0 corresponds the group
5y, whose double group has only the irreducible represen-
tation Ls which have states of the same symmetry, so they
must anticross.

Noticing that for the iQW of 120 A in the range 0 <
ke < 0,0178 A~ the function Z(q1, gs) is strictly real, the
NR technique can be used in this range. This validates the
strategy “follow the box™" used because a complete agreement
was achieved by both techniques for that case.

In Figs. 4-6 the components of the square modulus of
the wavefunction of different states are depicted for both the
U and L subspaces. They show the IC symmetry of the states
whether corresponding to the I" point (Fig. 4) and the absence
of it at any other point (Figs. 5 and 6), and also the comple-
mentary shifting for states of the U and L states.

In Fig. 2a the first four hole subbands for a GaAs iQW of
50 A are presented along the (10) in-plane direction. Our la-
belling derived unambiguously from series (31) is coincident
with that proposed in [1, 6] and differs from that reported by
others authors in [7, 9, 12] who interchange the labels of the
states HH2 and LH1. Subbands LH1 and HH3 “anti-cross”
cach other at the point ., = 0,055841 A=1. It also depicts
the hole valence band structure reported in [12] for a fQW
case and the overall picture for both is the same. It is impor-
tant to stress that the legend with the labelling of the subbands
of the fQW for both graphics, follows our criterion for the
sake of a proper comparison of the subbands in both, their and
our calculations. Figure 2b shows the six first hole subbands
for a GaAs iQW of 78 A along (10) in-plane direction. The
LHI1-HH3 “anti-crossing” occurs al Ky = 0,035761A1.
These results were compared with those obtained in [7] and
the agreement was good for the corresponding states. Itis im-
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d=50A <10>
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FIGURE 2. a) Dispersion of the first four valence subbands in a
GaAs iQW of 50 A along the (10) in-plane direction. Full lines
correspond to our results, dashed lines correspond to curves for dif-
ferent values of the magnetic field. These results were taken from
Ref. 12; b) Dispersion relation of the first six subbands in a GaAs
iQW of 78 A. Full lines refer to our results, different symbols were
used for the results given in Ref. 7 for a fQW.

portant to note that the HH4 subband stands below LH2 in our
result and does not appear in theirs. That result also agrees
with that obtained by Chang and Schulman along the [100]
direction and derives from expression (31). For both graphics
(a) and (b) some comments must be done: The I" point is a
singular one because both heavy and light holes are degen-
erate and some formalism like that of the FTM fails down.
Using the iQW case at this point one is allowed to obtain
independent series (31) for HH and LH states, which unam-
biguously define the sequence of them although with a certain
overestimation of their values. Is this fact, which makes rel-
evant the use of this model. Beside that, the finiteness of the
hole-barrier potential is not a strong enough condition to rear-
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FIGURE 3. Dispersion of the two lowest valence subbands in a
GaAs iQW of 54 A, The full lines show the present calculated
dispersion. Open circles and rhombus show the dispersion values
corresponding to a hot-electron acceptor luminescence experiment
for a GaAs-Alg.25Gag.75 As QW given in Ref. 21.

range the states. So the iQW approach is expected to be sig-
nificantly easier to deal with.

The LH1-HH3 anti-crossing appears in our calculations
like a zero-gap degeneracy and in Ref. 6 it appears with a
minigap. Leaving aside questions of numerical feasibility of
the computing methods used to overcome that difficulty, we
think that this is due to limitations of our model in which, on
the first hand, the « - p basis is not complete (truncated) and,
in the other, some linear % terms in the Hamiltonian (1) are
neglected [4].

In Fig. 3 the first two subbands for a 54 A QW are shown
together with the experimental results of hole dispersion
bands in a fQW determined by hot electron acceptor lumi-
nescense [21]. Even though our model does not take account
directly of the spin split band and the infinite barrier approxi-
mation has been made, a reasonable semi-quantitative agree-
ment is obtained-note that the energy differences are of a few
millielectron volts.

Figure 4 show the components of the square modulus of
the wavefunction of the states in subspaces U and L for the
4 lower hole states at the I" point in an iQW of 50 A. The
curves labeled 1(3) are the HH components of the U(L) sub-
space and curves 2(4) the LH components. Also curves of
the U(L) subspaces are depicted in solid(dashed) line. As can
be seen, the curves of both subspaces coincide and have IC
symmetry.

Figure 5 shows the components of the square modulus of
the wavefunction of the U(L) subspace of the 4 lower hole
states at ki, = 0.0L A~!. Curves labeled 1 (also with dashed
line) and 3 (also solid line) are the HH components of the U
and L subspaces respectively. The same occurs for curves 2
(also dashed line) and 4 (also solid line) for the LH compo-
nents. They show lack of symmetry and the complementary
shifting, although the shift form one curve to the other is not
too big due to the fact that . is near the T' point.
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FIGURE 4. Components of the square modulus of the wavefunction of the hole states HHI, HH2, LH1 and HH3 at the T" point in a 50 A QW.
Curves 1(3) are contributions of HH components for both U and L sub-spaces and curves 2(4) are the LH contributions.
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FIGURE 5. Components of the square modulus of the wavefunction of the same states as Fig. 4 at kr = 0.01 A~1. Curves labeled 1(3) are
the HH contributions of the up (low) sub-space and curves 2(4) are the same for the LH contributions.

Figure 6 shows the components of the square modulus
of the wavefunction of the LH1 and HH3 states at two dif-
ferent points of the Brillouin Zone, one just before and the
other just after the point of accidental degeneracy depicted in
Fig. 2a, to see whether this pointis a crossing or anticrossing
point. Figures 6a and 6b at the point £, = 0.05440 A-!and
Fig. 6¢ and 6d the same states at the point £ = 0.06 AL,
The LH1 state must have one contribution with one zero and
the other without any and, as can be seen, the dominant one
is that with a zero which must be identified with HH. This be-
haviour occurs for both points in the Brillouin Zone. On the
other hand, the HH3 state must have a contribution with two
zeros and the other with one. The HH contribution is dom-
inant in both kr points. For the point after the degeneracy
the energy which seems to be the HH3 subband has its con-
tributions as expected for the LH1 subband and the contrary
happens to the energy that seems to be LHI. This supports
the statement that this accidental degeneracy point is an anti-

crossing with zero gap, in correspondence with the general
arguments given above. We conjecture that the zero value for
the gap is due to the incompleteness of the & - p basis consid-
ered.

6. Conclusions

The dispersion relation for the iQW of GaAs has been calcu-
lated for the KL model Hamiltonian using the TM method,
with good agreement comparing our results with those ob-
tained by other methods of calculation. An interchange in the
labelling of the states was found in several authors with re-
spect of the labelling which suggests series (31), which in
turn agrees with that given in Ref. 6.

The discrete symmetries of the KL Hamiltonian for a
symmetric QW in the basis most commonly used were de-
scribed. This basis allows for a reduction in the number of
equations to deal with (one of the sub-spaces U andL). The
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FIGURE 6. (a) and (b) components of the square modulus of the wavefunction of the HH and LH contributions for the LH1 and HH3 states

at the point k7 = 0.05440 A~ for the same QW of Fig. 4; (c) and (d) are the same for the point k7 = 0.06 A~!

accidental degeneracy point.

lack of the symmetry under IC for the states of the sub-spaces
at k; = 0 was shown both analytically and numerically, by
evaluating the square of the wavefunction of those states, al-
though the whole 4 x 4 state keeps this symmetry. With this
evaluation the confirmation of an anti-crossing of the acci-
dental degeneracy point of HH3 and LH1 subbands is borne
out, in agreement with [6] and general symmetry arguments.
Nevertheless, at k£, = 0 the absence of coupling of the bands
leads to satisfying IC symmetry at each sub-space. Physically
speaking, the I" point is singular for this Hamiltonian since at
this point the bands are decoupled and the states have definite
parity as “isolated systems” in this point. Once one moves
away from this point, the coupling between bands is con-
nected, the system is no longer isolated and then does not
keep the parity defined in each 2 x 2 subspace.

The strategy “follow the box” for the numerical evalua-
tion of a dispersion relation strongly nonlinear and complex
valued is practical and efficient to overcome the numerical
difficulties.

The extension to the case of fQW is straightforward and
the labelling of the states using the series of the iQW at T’
point is still valid since the reduction of the height of the bar-
riers is not sufficiently strong to change the order of appear-
ance of the first states at this point of the Brillouin zone.
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Appendix A: Parameters of the KL Hamiltoni-
ans
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Appendix B: Elements of the TM calculated
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