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Ising lattices are defined for regular polyhedra with spin occupying vertices and interactions laying along edges. Mixed ferromagnetic and
antiferromagnetic interactions are considered, x being the concentration of the former. Competition among local fields brings in frustration
making non trivial to solve for physical properties of such lattices. Here, we characterize the most important ground state properties of
these systems such as energy, remanent entropy, average frustration segment, diluted lattice (including unfrustrated domains), and site order
parameter. The functional dependence on z is established in each case, comparing among the 6 different polyhedra studied here. The role
plaid by topology through aspects such as shape of faces and coordination number is brought out. When possible, a comparison with similar
two-dimensional flat lattices is performed.

Keywords: Ising models; frustration; regular polyhedra

Se definen redes de Ising para poliedros regulares con espines ocupando los vértices e interacciones a lo largo de las aristas. Se consideran
interacciones mixtas ferromagnéticas y antiferromagnéticas, siendo = la concentracién de la primera. La competencia entre campos locales
genera frustracién haciendo no trivial la solucién de las propiedades fisicas de tales redes. Caracterizaremos las propiedades mds importantes
asociadas al nivel fundamental de estos sistemas, tales como energia, entropia remanente, segmento de frustracién promedio, red diluida
(incluyendo dominios sin frustracién) y pardmetro de orden de sitio. En cada caso se establece la dependencia funcional respecto de z,
comparando entre los 6 poliedros estudiados aqui. Se establece el rol jugado por la topologia mediante aspectos tales como forma de las

caras y nimero de coordinacién. En tanto es posible, se efectia una comparacién con redes planas bidimensionales similares.

Descriptores: Modelos de Ising; frustracién; poliedros regulares

PACS: 75.10.Hk; 75.40.Mg; 75.50.Lk

1. Introduction

Ising lattices with mixed ferromagnetic (—J) and antifer-
romagnetic (+.J) interactions have been studied for two
decades as simple theoretical models for spin glasses [1,2].
All of the abundant literature produced for this system and
its variations needs to make assumptions for boundary con-
ditions to keep uniform the coordination number through the
system.

In the case of flat two-dimensional lattices, periodic
boundary conditions are normally imposed. However, poly-
hedra are closed two-dimensional objects where no assump-
tion needs to be made about boundary conditions. Our main
interest here is to characterize ground state properties of
closed +.J Ising lattices whose spins occupy the vertices,
while interactions lay along the edges of regular polyhedra.
Another interesting feature of polyhedra is that coordination
number 5 can be studied besides 3, 4, and 6 that arise natu-
rally in flat two dimensional Bravais lattices.

Previous work on two dimensional £J Ising lattices has
dealt with flat lattices with equal amount of ferromagnetic (F)
and antiferromagnetic (AF) interactions [3]. In the present
paper we want to make progress in two directions: a) calcu-
lating two dimensional lattices without need of defining spe-
cific boundary conditions, and b) varying z, the concentra-
tion of F interactions in the full range [0,1]. Beyond previ-

ously reported properties for z = 0.5, such as ground-state
energy per interaction, remanent entropy, average frustration
segment and site order parameter, we would like to add here
the new concept of diluted lattice [4] and its associated prop-
erties.

We concentrate here on the ground state properties of the
following special two-dimensional objects: tetrahedron (S,
octahedron (S%), cube (S®), icosahedron (5'2), and dodec-
ahedron (S2%). We will also include the spherical Fullerene
(599, which is very close to a regular polyhedron. The main
characteristics of these geometrical artifacts are presented in
Fig. 1.

These systems relate geometry and topology in differ-
ent ways, so different properties show particular dependen-
cies on the different characteristics presented in Fig. 1. Re-
sults from our numerical study can be compared in a general
way with theoretical and numerical results obtained for two-
dimensional +.J Ising lattices. This will allow to bring out
the influence that connectivity and dimensionallity have on
each of the different properties reported below.

Spins interact via an Ising Hamiltonian of the form

N
H(N)=Y " J;88;, ("

<]
where .J;; stays for the type of interaction (+1 for AF and —1
for F), while S, is the normal Ising spin orientation degree of
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Tetrahedron : §* Octahedron : S®
N=4,I"=6 N=8,F=12
n=3,P{t)=4 n=4,P(t)=8

Dodecahedron : S*°
N=20,1%=30

Icosahedron : S'?
N=12,1'*=30
n=5,P(t)=20

Sph. Fullerene : S%°
N =60, 1% =90
n=3,Ple)=12 n=3

P(e) = 12, P(d) = 20

FIGURE 1. Polyhedra considered in this paper and their main char-
acteristics. N: number of spins or “size” of the polyhedron; T
number of total interactions; n: coordination number; P: num-
ber of plaquettes that can be adapted to explicitly show the kind of
plaguette we are refering to P() (¢: triangular, s: square, e: pen-
tagonal, d: hexagonal). Single (double) lines at the edges represent
F (AF) interactions. Curved plaquettes (marked by dots at the cen-
ters) are joined by frustration segments.

freedom (+1 or —1 for simplicity). A state corresponds to a
set of V ordered spins. Such Hamiltonian is invariant under
the inversion of all spins so it is enough to look at the 2V ~!
independent states. The number of terms in the sum varies
when going over the different polyhedra and it is equal to
I the number of interactions in each case, when we con-
sider nearest-neighbor interactions only. The ratio between
the number of F interactions over IV is precisely the con-
centration x. For each possible « in a given system, R ran-
domly prepared samples were fully calculated (R = 1000
for the different systems, except S°, where R = 500). We
have developed computational algorithms for each kind of
polyhedron, allowing exact knowledge of all possible ground
states and zero-temperature properties of each sample. Self-
averaging properties reported below represent average values
over the ? independent samples.

2. Basic definitions

We will briefly review the definitions of the main properties
to be calculated and discussed below. We begin with topolog-
ical considerations refered to the real lattice to continue with
properties based on the ground states.

A plaguette is defined as the minimal closed circuit
formed by interactions [5]. Thus, plaquettes are equilateral
triangles for S, S8, and S'2, they are squares for S%, they
are pentagons for 52°, while S presents a mixture of pen-
tagonal and hexagonal plaquettes. A plaquette is said to be
frustrated or curved when it is formed by an odd number of
AF interactions, so not all these interactions can be simul-

taneously satisfied when going around the circuit. In Fig. 1
curved plaquettes are marked by dots at the center. The num-
ber of curved plaquettes in a given sample will be denoted
by Fe

A topological theorem [6-8] says that the distribution of
curved plaquettes determines the thermodynamic properties
at 0 K. This is achieved by joining curved plaquettes in pairs
by means of imaginary lines going over the centers of these
and other intermediate plaquettes; such lines are called frus-
tration segments. The length A of a frustration segment is the
number of crossed interactions, that turn out to be frustrated
for that ground state. In Fig. 1c we illustrate a frustration seg-
ment of length 1 joining two square curved plaquettes. In Fig.
1d we show a frustration segment of length 2 going through
a flat plaquette joining two triangular curved plaquettes. All
frustration segments that define a ground state add up to the
frustration length of the ground state A4, which corresponds
to the total number of frustrated bonds in any of the ground
states. Usually, a frustration length can be obtained in many,
say W, different ways, each corresponding to a particular
way of drawing the P /2 frustration segments. If the sym-
metry of Hamiltonian is invoked we realize that for each set
of frustration segments there are two antisymmeltric spin sets
which points to a total ground state degeneracy of 2.

The energy of the ground state E¥ weights with —1 (—.J)
each satisfied bond and with +1 (+.J) each frustrated bond.
Namely, £} = —I™ + 2A}Y. To ease comparison among the
different polyhedra, it is convenient to normalize this magni-
tude dividing by 7™V, and to label the result for each polyhe-
dron according to N. That is to say

o N AN N
e P, (R e O e s L 2
. 7 + N - N (2)

here n is the coordination number for each particular system.

For a particular sample the ground state is obtained by
a combination of frustration segments of different lengths.
It is interesting to notice that the composition of frustration
segments varies from sample to sample. Here we report the
average frustration segment of each system considering all
frustration segments over all samples. Namely,

- Ago
REY iy &
X P,
p=1
where p runs over the R samples for that case.

Rather than the degeneracy of the ground manifold it

makes more sense to study the remanent entropy o, which
can be expressed as

SN _ In ‘l_-V‘
N

where we neglect additive constants and the constant of

Boltzmann kp is taken as unity if temperatures and energies
are both measured in units of .J.

4)
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The diluted lattice is defined by removing all interactions
that frustrate in any of the W independent ground states [9].
The interactions that remain in the diluted lattice will be
called bonds and their number will be denoted as B. Then.
the ratio formed by the number of bonds in the diluted lat-
tice to the total number of interactions in the original sample
will be defined as h,, the fractional content of unfrustrated
interactions. Namely,

BN
Y v (5)

When all ground states are known, parameter hg" can also
be calculated by means of

1 L& |sese — gy
h;}:I_NZ (ZL"Q—J')divW], (6)

1< @

where the first sum runs over the IV pairs of nearest neigh-
bors 77, the second sum goes over « that represents the W in-
dependent ground states. Thus, S¢* is the spin of site ¢ for the
state c. The operator div means integer division. Two general
properties of h ,‘;" follow from a careful analysis of this expres-
sion: this parameter is restricted to the interval [0, 1] and the
value of h.;:" is independent of the ergodic separation done on
the system. Actually, the result for h;" remains unchanged if
the sum over o runs over the 20 ground states.

The diluted lattice can also be examined in a microscopic
way finding that bonds tend to cluster in a non trivial way,
forming unfrustrated regions [9]. The size r of a region is the
number of connected bonds. It turns out that for each topol-
ogy there are prefered sizes as it will be reported for the large
polyhedra.

In a similar way, we can define p;V , the fraction of spins
that never flip when scanning the W ground states on one
half the configuration space defined by the ergodic separa-
tion. Then this parameter is very sensitive to the way ergod-
icity is broken. We will follow a particular way of breaking
ergodicity as depicted below using the following definition
for this site-order parameter [4]:

N w
N 1 g w s
t (a3

so p,’ is restricted to the interval [0, 1].

All of the above properties will be calculated for each
polyhedron, calculating many samples for a given x, s0 a re-
liable average value is obtained reporting functional depen-
dence of the properties with respect to the relative concentra-
tion of interactions.

3. Results and discussion

Discussion will be organized in the same order in which defi-
nitions were introduced in previous section. Figures 2, 3,4, 5
and 9 present average results over all samples (( }) for the dif-
ferent properties as functions of . Special symbols are used
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FIGURE 2. Average normalized energies as functions of the con-
centration of ferromagnetic interactions.

to characterize each polyhedron in all these illustrations. The
density of points in each curve is in direct correspondence
with IV, as changes in = occur in steps of 1/I". This is in-
deed the case for all the polyhedra considered here with the
exception of S% for which we have used a coarser interval in
the intermediate region where all properties show an approx-
imate constant behavior.

3.1. Energy per interaction (5‘:' (x))

Average results are presented in Fig. 2. Let us begin the dis-
cussion from the limiting values at z = 0.0, and = = 1.0. For
the latter all interactions are F, so no frustration is present, the
total energy is — IV, which leads to the trivial ferromagnetic
result  (¢)V(1.0)) = —1.0, for all polyhedra. On the other
extreme, all interactions are AF that implies that all plaque-
ttes with even number of interactions are flat, while all pla-
quettes with odd number of interactions are frustrated. Hence,
(5(0.0)) = —1.0. In the case of S°° all hexagonal plaque-
ttes are flat while all pentagonal plaquettes are curved joined
in pairs by 6 frustration segments all of length 2, leading to
(£5(0.0)) = —66/90 = —0.73, as can be read in Fig. 2. The
remaining polyhedra () exhibit all their plaquettes curved at
x = 0.0, with all frustration segments of length unity, lead-
ing to the common expression (¢7(0.0)) = —1.0+Pc/IN. It
follows from here that (2°(0.0)) = —0.60, and (£;(0.0)) =
(€3(0.0)) = (¢,*(0.0)) = —0.33. One striking general prop-
erty is that the average energy per interaction remains con-
stant in the interval 0.2 < @ < 0.8, with values that reflect a
property for each geometry as can be seen in Fig. 2.

The case of equal amount of F and AF interactions,
x = 0.5, deserves a special discussion because it is at the cen-
ter of the plateau and it has been a case usually calculated in
numerical simulations. In order of increasing energy we find,
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(€89(0.5))=—0.81; (E;U(O 5))=—0.79; (¢ 5,(0 5))=—0.73;
(4(0.5))= — 0.67; (£8(0.5))= — 0.60; (£}(0.5))= — 0.59.
Wc observe that energy is minimized in hexagonal plaquettes,
while it is maximized in triangular plaquettes. These results
can be compared with simulations in 2 dimensions where
{£,(0.5))=—0.82, —0.70, and —0.56, for honeycomb, square
dnd triangular lattices respectively [10]. The agreement of the
general trend is evident. The case of the dodecahedron, with
pentagonal plaquettes, finds no analog in flat two dimensional
Bravais lattices. A curiosity is found when comparing S'? to
529 although they have the same number of interactions the
latter has more energy per bond than the former due to its
larger number of plaquettes, therefore many curved plaque-
ttes at @ = (0.5, thus frustrating more interactions and raising
energy.

Systems S and S'? share the value 3 for their coordi-
nation number and they have very similar energy per inter-
action with the spherical Fullerene having a slightly lower
value. They have the same number of pentagonal plaque-
ttes, hence the presence of the intrinsic frustration already
discussed for the case =z = 0.0. However, in 5% such frus-
tration is diluted by the presence of 20 hexagonal plaque-
ttes; notice that the dilution effect diminishes as = approaches
1.0. Finally, we point out that the cube is the only system
to exhibit a symmetric behavior for this parameter. Namely

(e5(®)) = (e5(1 - z)).

3.2. Length of frustration segment ()\5" (z))

Results are presented in Fig. 3, corresponding to averages
over all frustration segments found in the sets of 2 samples
for each concentration corresponding to a particular polyhe-
dron. Generally speaking, at z = 1.0 no frustration is present
and none frustration segment is to be found. As we move to
the left, a single AF bond brings in 2 neighboring curved pla-
quettes leading to frustration segments of length unity for all
systems, as it shown at the far right of Fig. 3 for the value

= (IN - 1)/I" corresponding to each system. On the
other hand, for z = 0.0 (all interactions are AF) there are
three different situations: ) the cube presents no frustration in
its square plaquettes and its frustration segment remains un-
defined; ii) 5*, 59, 5%, and 52° present fully frustrated pla-
quettes that can be paired by frustration segments of length
unity only, leading to (A)'(0.0)) = 1.0, for N = 4, 6, 12
and 20; iii) the sphcr:cal Fullerene presents 12 pentagonal
[rustrated plaquettes which do not share any common inter-
action, since each of them is surrounded by flat hexagonal
unfrustrated plaquettes thus leading to frustration segments
of length 2.0. All of these values are shown by the numerical
simulations presented in Fig. 3.

For intermediate values of x a tendency to constant val-
ues in the frustration segment is clearly seen. The case of §4
is trivial as only frustration segments of length unity are pos-
sible; we include this results in Fig. 3 for completeness only.
On the other hand, S drops very quickly from the value 2.0
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FIGURE 3. Average lengths of frustration segments as functions of
the concentration of ferromagnetic interactions.

to a value slightly over 1.0 when as few as 15 AF in-
teractions are present, reaching a value that remains ap-
proximately constant from there on. Tendencies segregate
in two groups according to the coordination number of the
systems. Lower average frustration segments correspond to
polyhedra with coordination number 3, namely, for S%,
520, and S%°, while S® and S'? possess larger values
for their average frustration segments. Numerical simula-
tions render the following values at the middle of the
range: (A5%(0.5))=1.06; {A2°(0.5))=1.05; {A5(0.5))=1.09;
()\G(O 5) ) L.20; (322(D. 5)):1.24, It is interesting to notice
that (A%°(0.5)), (A28(0.5)), and (A® (0.5)) have coordination
number 3, as in honeycomb lattices for which it holds that
(Ag(0.5))=1.1 as obtained by theoretical models [10] and
numerical simulations [4] in good agreement with present re-
sults. The coordination number is 4 in the case of S% as in
flat square lattices for which (A, (0.5))=1.2 [10], in perfect
agreement with our results. The case of S!2, with coordi-
nation number 5 admits no direct comparison with Bravais
two-dimensional lattices. However, it is interesting to point
out that for triangular lattices with coordination number 6
it is found that (A (0.5))=1.3 [10], which makes the result
(A5(0.5))=1.24, found here quite on the general tendency.
All this discussion allows us to conclude that ()\N( z)) is pri-
marily determined by the coordination number of the lattice.

3.3. Remanent entropy (o (z))

Average results are presented in Fig. 4. For =1, we always
get the ferromagnetic singlet which means o™ (1.0)=0.0, for
all N. At the other extreme, it is only the cube that presents
an unfrustrated antiferromagnet, leading also to null rema-
nent entropy. All other cases can be calculated by basic com-
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FIGURE 4. Average remanent entropies as functions of the concen-
tration of ferromagnetic interactions.

binatorial analysis. S? needs 2 frustration segments to join
the two pairs of curved plaquettes, which can be achieved in
3 different ways, therefore (o1(0)) = (1/4)In3 = 0.275.

The degeneracy of the octahedron is less obvious. Let us
suppose we orientate the octahedron so we can talk about a
top triangular plaquette (North), a bottom triangular plaguette
(South) and six lateral plaquettes. The top plaquette can be
joined by a frustration segment to any of its 3 neighboring lat-
eral plaguettes; so does the bottom plaquette in a completely
independent way; the four remaining lateral plaquettes can be
joined in two pairs in a unique way. The degeneracy of this
system is then given by the product 3 x 3 x 1 = 9, leading to
(a(0)) = (1/6) In9 = 0.366.

S12 can be solved in a similar manner. Again we have tri-
angular plaquettes at the North and at the South. We also find
18 lateral triangular plaquettes, separated in two groups by an
equatorial contour (not on a plane) formed by 6 AF interac-
tions. Both the top and the bottom plaquettes join any of their
respective 3 neighboring lateral plaquettes in 3 independent
ways. The remaining 8 “northern” lateral plaquettes and the
8 “southern” lateral plaquettes are so packed that they find
only 4 different ways in which they can be paired. Therefore
the degeneracy is 3 x 3 x 4 and the remanent entropy at this
extreme is given by (¢12(0)) = (1/12) In 36 = 0.299.

A major change occurs when going to S*° since plaque-
ttes are now pentagonal presenting more connectivity as com-
pared to the preceding triangular plaquettes. We can now talk
about a pentagonal plaquette at the North and a similar one
at the South; an equatorial contour (not on a plane) formed
by 10 AF interactions separates the 5 “northern” lateral pla-
quettes from the 5 “southern” lateral plaguettes. North can
pair to any of the “northern” lateral plaquettes in 5 different
ways; the same holds for South. The 8 remaining lateral pla-
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quettes can be paired in 5 different ways. The degeneracy is
now 5 x 5 x 5 and we get (¢2°(0)) = (1/20)In 125 = 0.241.

S99 can be easily treated due to its similarity with S2°.
Both present 12 frustrated pentagonal plaquettes when z = 0.
In both cases they are paired in 125 different ways with frus-
tration segments of length 1 for S2° and of length 2 for $6°.
This makes a huge difference since each of the 6 frustration
segments in the spherical Fullerene has two different and in-
dependent paths (each going through a different hexagonal
plaquette), thus leading to a total degeneracy of 125 x 25,
Then, (¢%°(0)) = (1/60) In 8000 = 0.150.

All of the above theoretical results agree well with the
results of the numerical simulations as it is shown at the ex-
treme left in Fig. 4. Again we find a tendency to constant
results for the approximate interval 0.2 < x < (.8, except an
irregular behavior of S* due to its small size and S° to a lesser
extent. We leave out of this discussion the case of the tetra-
hedron. At = 0.5 remanent entropies take values between
0.05 and 0.10, excepting the octahedron whose remanent en-
tropy is around 0.20 at the center of the interval. Results
for small square and triangular lattices in two dimensions
give (¢(0.5)) ~ 0.11 [4], while the tendency in the ther-
modynamic limit has been estimated at 0.07 [6]. Therefore,
the polyhedral lattices present remanent entropies in general
agreement with two-dimensional lattices. In a refined analy-
sis we find that the lower entropy is presented by the spherical
Fullerene and the icosahedron. On the contrary, the octahe-
dron presents a large entropy, contrasting with the icosahe-
dron that also presents triangular plaquettes. However, in B8
there is always a double route for all frustration segments of
length two thus raising degeneracy, while in S1'2 frustration
segments of length two have only one possible path.

The icosahedron falls faster to (o(z))=0.0 (a singlet)
than any of the other systems so its plateau is also smaller as
compared to other polyhedra. As z — 1.0 the number of AF
interactions diminishes and they tend to be distributed evenly
through the lattice producing pairs of neighboring curved pla-
quettes that can be joined by frustration segments of length
unity uniquely. This is a common feature to all polyhedra
under consideration. However, the icosahedron presents the
unique property by which all frustration segments of length 2
and 3 occur in only one possible way, while in the other poly-
hedra they can occur in several possible ways. Then for S 12
the singlet is reached at « values clearly under 0.9.

3.4. Fractional content of unfrustrated interactions

(hy' (z))

Average results are presented in Fig. 5. In the ferromagnetic
limit (z = 1.0) no frustration is present in any of the systems
and the common result {(4¥(1.0)) = 1.0, holds. On the other
extreme, at & = 0.0, S® presents no frustration leading to
(h(0.0)) = 1.0, for a perfectly ordered AF cube. The cases
with pentagonal and triangular plaquettes exclusively (52,
54,59, and S'?) present full frustration and (1} (0.0)) = 0.0,
for them. In the case of S% in the AF limit the 12 pentagonal
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FIGURE 5. Average fractions of unfrustrated interactions as func-
tions of the concentration of ferromagnetic interactions. Solid line
represents a theoretical expression valid for flat triangular lattices.

plaquettes are frustrated, while the 20 hexagonal plaquettes
remain unfrustrated; then, the 30 interactions between hexag-
onal plaquettes are the only ones that never frustrate, leading
to (h$°(0.0)) = 30/90 = 0.33, as corroborated by the nu-
merical simulations of Fig. 5.

In the central portion of Fig. 5 we find again a tendency
to constant values except for S* and S° due to their small
sizes. For the case of the latter, a clear modulation is seen:
systems with odd number of AF interactions lead to more
frustration than the case of even number of AF interactions,
which is reflected in the oscillatory results of (hg (z)) pre-
sented in Fig. 5. Triangular lattices on the plane exhibit a
similar general tendency as shown by the continuous curve
in Fig. 5. Such a curve was obtained by the method of the
sublattice [10] and it is followed closely by results of numer-
ical simulations. Here, it represents the average tendency for
(S ().

Another system with triangular plaquettes is S'? which
can be seen to follow the general tendency of the curve ob-
tained for triangular plaquettes on the plane, although the nu-
merical values are higher here. This speaks of less frustration
in (hy*(x)) as compared to (h$(x)). The reason is the same
already discussed above: frustration segments of length 2 oc-
cur with two possible trajectories (thus frustrating several dif-
ferent interactions) in S®, while only one trajectory is possi-
ble for segments of length 2 in S12.

The general tendency of the theoretical curve for triangu-
lar lattices is even followed by 529 formed by pentagonal pla-
quettes (also odd number of elements). Results are displaced
to higher values of the parameter as a consequence of the
dominance of frustration segments of length unity between
neighboring pentagonal plaquettes, with only one possible
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trajectory, leading to fewer frustrated interactions than in tri-
angular plaquettes. Results for S 60 are very close to those of
520 reflecting the similarities between these two systems.

Again, the cube is the only system to exhibit symmetry
with respect to 2=0.5 due to the invariance of curved plaque-
ttes under an interchange of F and AF interactions. The gen-
eral tendency here follows the curve for square lattices (not
shown) obtained also by the method of the sublattice [10].

At 2 = 0.5 we find that systems with triangular pla-
quettes show the lower values: (hS(0.5)) = 0.59, and
(hl?(0.5)) = 0.70. Then we find the only system with
square plaquettes: (hg(O.S)) = 0.71. The higher values for
this parameter are for systems with pentagonal and hexag-
onal plaquettes: (h2°(0.5)) = (h5°(0.5)) = 0.75. In two-
dimensional systems it is found that (h,(0.5)) takes the value
0.50 for triangular and square lattices, while it is 0.75 for hon-
eycomb lattices. All of this allows concluding that values for
(hX(x)) are mainly decided by the geometry of the plaque-
ttes.

3.5. Unfrustrated domains in diluted lattices

Unfrustrated interactions or bonds form the diluted lattice of
each individual sample. Tt turns out that bonds tend to clus-
ter in regions free of frustration each behaving as a partial
spin glass. Here we study size distributions of such regions
for polyhedra with V > 12. For each system, at a given con-
centration z, regions of a given size r are counted through the
R randomly prepared samples. Results for this spectral anal-
yses will be presented in figures combining different concen-
trations for the same system.

334, 9'°

At z = 1.0 there is only one region of size 30, while for
2 = 0.0 the diluted lattice is empty and no regions can be de-
fined. Size distributions for x; = 5/30, z; = 15/30, and
3 = 25/30 are presented in Fig. 6. A general comment
refers to the presence of the three concentrations through al-
most the entire range of possible sizes. However, some pe-
culiarities arise for each concentration at certain sizes. Thus,
for zy, at least 10 frustrated plaquettes remain which explains
the absence of regions with 7 > 25. At this concentration, do-
mains of small size are preferred due to the prevalence of high
frustration. On the other hand, for z3 regions of larger sizes
are the most abundant since frustration is more localized. Re-
gions of size 1 are more abundant for smaller z, in agreement
with previous discussion. Regions of size 2 are absent for z;
and z3, while they are barely present for x4, due to topolog-
ical reasons [11]. A very striking feature is observed for w3,
where several sizes multiples of 5 tend to be preferred to oth-
ers; this is more evident for sizes such as 3, 10, and 15. Such
behavior is a result of the topology of this system where it is
possible to draw contours involving 5 bonds in many differ-
ent ways; on each side of the contour the number of bonds
can be a multiple of 5. The distribution for x5 exhibits large
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FIGURE 7. §°. Size distribution of unfrustrated regions for three
different concentrations of ferromagnetic interactions.

oscillations jumping from a very abundant size (r = 5) to an
almost nonexistent size (r = 6); this is again a manifestation
of the topology of these systems which finds preferred sizes
and shapes for unfrustrated regions [12].

3.52. 5%

At 2 = 1.0 there is only one region of size 30, while for
x = 0.0 the diluted lattice is empty and no regions can be
presented in Figs. 6, 7 and 8 can be defined. Size distribu-
tions for z; = 5/30, xa = 15/30, and z3 = 25/30 are
presented in Fig. 7. In spite of having 30 interactions, exactly
as S'2, results are clearly different from previous case. Dif-
ferences among concentrations for S2® are moderate and they
never go beyond one order of magnitude (as it was the case
for 5'?). At small concentrations smaller sizes are preferred.
The absence of size r = 11 is a common feature for the three
concentrations reported here. A region of size 1 is formed
when such a bond is common to two flat plaquettes, while
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FIGURE 8. §%. Size distribution of unfrustrated regions for equal
concentration of ferromagnetic and antiferromagnetic interactions.

the two plaquettes at the ends of the bond must be frustrated.
Such a configuration has the same probability for z; as for 25
and approximately the same for z» which is verified by the
numerical results of Fig. 7.

153 5

The extreme cases + = 1.0 and = 0.0 allow the same
general treatment of two previous cases. We studied several
relative concentrations but for simplicity in Fig. 8 we report
only the case of equal concentration, namely, z» = 45/90.
All sizes are possible and the distribution shows an approxi-
mately flat response for intermediate sizes. For other concen-
trations a similar picture holds, except at the two extremes.
So, for small values of . small regions are the most abundant,
while for large values of = large regions tend to dominate.

3.5.4. General comments

For the 3 systems recently discussed, the size distribution
presents some common features. Abundance of size | is an
absolute maximum at all concentrations that is a trivial result
since necessary conditions for its existence involves fewer
plaquettes than for any other size. However, this explanation
makes even more striking the absolute maximum presented
by S'2 at r = 25 for the largest concentration; a similar but
less pronounced situation is exhibited by S29 at r = 27 for
the three concentrations. From a more general point of view
we can notice that the three distributions thought as the over-
lap of two basic broad distributions one centered on a mode at
low values of r, and the second one centered at higher values
of r.

3.6. Site order parameter (p) (z))

Average results are presented in Fig. 9. Before going onto the
particular discussions we must remember that numerical cal-
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culations for this parameter depend strongly and funda-
mentally on the way ergodic separation is done. We fol-
low herethe approach of anchoring on the largest unfrustrated
domain which is the only region that never overturns. This
approach has been justified in general elsewhere [13] so we
apply it here to our systems in a direct way.

(p) (x)) represents the fraction of spins that do not flip
when scanning half the ground states so, at first sight, one
may think that it should be directly related to (b (x)). How-
ever, this is not so as it can be verified by comparing Figs. 5
and 9. The main reason for the difference is based on the fact
that several small regions contribute to (h (x)) without con-
tributing to (;o,J (x)). Small regions can overturn completely,
reversing their spins without bringing in frustration. An ex-
ception to this behavior is S% where these two parameters
correlate each other quite well, as discussed below.

At z = 1.0, only one unfrustrated domain exists, cov-
cring the entire system, leading to (p;\"(l.[))) = 1.0 for all
systems. On the other hand, at 2 = 0.0, it is only the cube
that possesses (p (0.0)) = 1.0, due to the lack of frustration.
In 5% we are left with 30 regions of size 1, so no real large
unfrustrated region can be defined leading to (pf®(x)) = 0.0.
In all other cases we deal with fully frustrated systems in this
limit, so the site order parameter (pJ (0.0)) vanishes for 54,
5,99 . ma 3%

Al intermediate concentrations we have a segregation of
results. They have a complex behavior that is not entirely de-
termined by either coordination number or shape of plaque-
ttes. S* presents the largest results among all systems. Re-
sults for (py(x)) jump from 0.0 (at x = 0.0) to 1.0 with just
one F interaction going from an empty lattice to another one
with a single hole (just one localized frustrated interaction).
Such rigid arrangement does not allow any spin flip. On the

other hand, S¢, also with triangular plaquettes but a larger co-
ordination number, presents the smallest results for (pg (z))
for concentrations defined by odd numbers of F interactions
in close relation to results reported in Fig. 5 for (hg (z)). Sys-
tem S'2, again with triangular plaquettes but with the largest
coordination number, shows the second highest results for the
site order parameter. The cube presents an intermediate and
symmetric behavior. 5%° gives results just under those ob-
tained for the cube in the intermediate region. Finally, we get
5% with a low and slightly oscillatory behavior for (pS°(x)).
We can say that (pq r)) is higher in systems where segments
of length unity dominate. Oscillations, when they arise, can
also be understood in terms of differences of frustration seg-
ments by the change of curvature of two neighboring plaque-
ttes by the addition of a single F interaction thus changing the
number and length of frustration segments.

At x = 0.5 we find the following values 0.86, 0.83, 0.74,
0.71, 0.71, and 0.59, for (p(0.5)), (p”(O 5)), (pg(O.S)),
(p2°(0.5)), (p5(0.5)), and (p3°(0.5)), respecnvely.

4. Conclusions

Properties of Ising systems defined on regular polyhedra vary
strongly through them according to coordination number,
type of plaquette and connectivity among plaquettes for a
given frustration length. Superimposed to all this there is a
dependence with x, the relative concentration on F interac-
tions.

In the cube all properties are symmetric with respect to
x = 0.5 since its plaquettes are squares with even number
of interactions. In the case of systems with triangular and
pentagonal plaquettes (odd number of interactions) there is
not symmetry as the system goes from a collection of fully
frustrated states at = = 0.0 to an unfrustrated ferromagnetic
singlet at # = 1.0. The case of the spherical Fullerene goes
from a partially frustrated situation to the unfrustrated ferro-
magnetic case.

A common general property shown by all parameters for
all systems is that their numerical values tend to be constant
(or oscillate around constant values) in the range 0.25 <
x < 0.75. For some properties and systems this range can
be slightly extended to both sides.

Largest values for the energy (E;V (x)) go to higher coor-
dination number. As a second order effect, we find that pla-
quettes with less sides present higher energy. This is shown
in Fig. 2.

For the average frustration segment (A} (z)) the general
tendency is again that larger values are obtained for larger
coordination numbers around = = 0.5. No clear second or-
der effects are noticed. Frustration segments elongate toward
large values of x before collapsing to (/\;,\’(1.0)) = 1.0. This
is a consequence of the increasing probability of having just
two curved plaquettes when few AF interactions remain in
the system (such pair of plaquettes can be at maximum sepa-
ration in some samples). This behavior is presented in Fig. 3.
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In remanent entropy (o™ (z)) itis S% the only system that
clearly segregates from the rest as seen in Fig. 4. This is due
to a unique property of the icosahedron: any frustration seg-
ment of length two can be drawn in two possible ways thus
increasing the degeneracy for those ground energies. Size N
acts as a minor discriminator following the expression (2.3).

The fraction of unfrustrated interactions (h;" (z))
presents a less trivial behavior. The lowest values are for S°
for the same reason given in previous paragraph: more possi-
ble ways of drawing frustration segments mean a reduced di-
luted lattice, so (h{()) presents the lowest values. However,

values oscillate accordmg to whether the number of F bonds
is odd (lowest values) or even (highest values). The weak de-
pendence is on the number of neighboring plaquettes for each
geometry. Thus, for $% each plaquette is surrounded by 6 or
5 plaquettes, so chances are high that a frustration segment of
length unity will stay constant frustrating a fixed interaction;
this leads to high values for (hg°(z)). A similar situation is
obtained for S'? with 5 eurroundmg plaquettes and for S*
with 4 surrounding plaquettes. This observations can be ver-
ified in Fig. 5.

Size of unfrustrated regions presents a bimodal distribu-
tion: on one hand there is a tendency to producing many iso-
lated regions of very small size r, while, on the other hand
large regions are also highly probable. Regions of intermedi-
ate size (around 1 /2) are less likely. Topology strongly mod-
ulates this general tendency so some sizes appear as “'magic
numbers” behaving as almost forbidden for some concentra-
tions. This is clearly seen in Figures 6, 7, and 8, where the
logarithmic scale masks the real effect of the two contribu-
tions to the bimodal distribution.

Once the criteria of separating ergodically by means of
the Inrgesl unfrustrated region is used, the site order param-

eter (pq ()) is the ratio of the number of spins attached to
such largest region over the original number of spms in the
lattice N. This is a difference with respect to hg(z)" where
large and small unfrustrated regions contribute. Having es-
tablished this difference, we conclude that (pg (z)) is larger
for systems that favor short localized frustration segments,
condition that is maximized by S* and S*°. On the contrary

such condition is minimized by S%° and S®. The latter present
oscillations with z, since the number of curved plaquettes
and the length of frustration segments depend strongly on
whether the number of AF interactions is even or odd.
Polyhedral systems relate well to two-dimensional lat-
tices only when the normalized energy (5;‘;"(:17)) is consid-
ered, where the coordination number establishes the relation-
ship. Then S*, S®, and S'? stay close to the result for trian-
gular lattices at x = 0.5; S%(0.5) is also close to the result
for square lattices; S%°(0.5) yields also an average energy in

good agreement with honeycomb lattices. Although 529 finds

no analog in flat two-dimensional Bravais lattices its energy
values lay between those for square and hexagonal plaque-
ttes.

For properties other than the normalized energy, no single
relationship between two-dimensional and polyhedral sys-
tems can be found. Then, beyond a simple geometrical pa-
rameter such as coordination number, topology plays an im-
portant rdle. Moreover, the effect of topology varies through
the different parameters studied here telling that all of them
are necessary if Ising spin systems are to be fully character-
ized.

All of the above conclusions are free from any assump-
tion with respect to boundary conditions. This represents
a clear advantage over flat two-dimensional lattices, where
some kind of assumption needs to be made to keep the co-
ordination number constant (periodic, antiperiodic or fixed
boundary conditions). We have gone over three consecutive
values for the coordination number: 3, 4, and 5, which al-
lows us to clarify the réle of this element separate from di-
mensionality. In summary, previous conclusions can be read
with the idea of stressing the importance of each geometri-
cal and topological element in the properties of closed two-
dimensional systems.
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