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The col.lis~on of aplane parallel.shock wave wilh aplane paralleJ cloud of uniform dcnsily is analysed for [he case in which magnetic fields
and ra~tatlve los ses arc nol consldered. General analytic solutions are discussed for the case in which the densily of Ihe c10ud is greater than
thal 01 Ihe surrounding environment. This prohlem generalises one of the c1.lssical prohlems in gas dynamics: Ihe collision belween a shock
wave and i.l solid wall.
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La colisión de una onda de choque plano-paralela con una nube plano-paralela de densidad uniforme es analizada para el caso en el que
cam~s magnéticos y perdidas por radiación no son consideradas. Se discuten soluciones analíticas generales para el caso en el que la
densidad de la nuhc es mucho mayor que la del gas que le rodea. Este problema generaliza uno de los problemas clásicos en el estudio de la
dinámica de gases: la colisión entre una onda dc choque y una pared sólida.
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I. Inlroduction

The prohlem of the eollision of a shock wave wilh a cloud
has heen intensely invesligaled in lhe pasl hy several aUlhors
(see, for example, Ref. I and referenees lherein). The sim-
plest assumption lo make is lo considcr a c10ud [or which
gravitational cffccts are nOl considercJ, magnetic ficlds are
mm-important and radiativc losses are ncgligihlc. Thc fact
Ihal gravity is nol taken into aceDunt, Illakcs it possihlc lo
consider Ihe dcnsity of lhe c10ud as uniformo Thc complete
3D hydrodynamical problem is extrcmely complicatcJ. cven
undcr lhe simplificalions mentioned ahoye. Howcvcr. numer-
ical simulalions have beco done for this case which ullirnatcly
givc r¡se to instabilitics causing a complete disruption 01'lhe
elouu [1].

This anicle describes how lhe solution 01'lhe onc dimen-
sional prohlcm can he ohtained. It has beco argucd in the past
that al least ror Ihe case in which Ihe dcnsity contras! is high,
i.e.. lhe ratio of lhe cloud's density to that uf the external en-
vironment is high. the prohlem has 10 he very similar to the
one founu in Ihe prohlem of a eollision of aplane parallel
shock with wilh a solid wall [2, 3J.

Many Astrophysical phenomena give rise lo collisions
hetwccn a shock wave and a cloud. Por cxamplc, when a su-
pcrnova explosion oecurs, lhe inlense cjection uf energy from
the supcrnova into Ihe intcrstcllar IllcdiuT11 produces a sphcr-
ical shock wave which expands ioto the intcrstellar mcdium.
Several cxamplcs cxist for whieh collisions 01' Ihis cxpand-
ing shock have heen ohserved lo interael with clouds embed-
ded in the intcrslcl1ar medium. This intcraction is very im-

punanL, sincc il scems to induce, under not very well known
circumstanccs, gravitational callarse and star formation [4].
Anothcr scenario is presented hy the expansion of jets around
active galaclic nuclei. A pair 01'jets cxpand in opposite di~
reetions from the nuclci of lhe galaxy creating a bow shock
which inlcracls with the intergalaetic medium. lt is Ihe in-
tcraction 01' this expanding bow shock with c10uds or galax-
ics embeddcd in clustcrs 01'galaxics that provides a mecha-
nism in which shock-cloud interactions take place. It seems
that this intcraction is able lo induce star formalion very
cfficicntly. (fl)

Having all this considerations in mind, the prcscnt pa-
pcr aims lo give a simple way of solving a particular case al'
Ihe whole prohlcm. This anicle providcs an analytic descrip-
tion 01' Ihe (lne dimensional prohlem of a collision belween
aplane parallel shock wilh aplane parallel "c1oud" houndeu
by two langential discontinuities. It is assumed that the spe-
cillc volul1lc in lhe cloud is a quanlity of the first order, in
othcr wonls solulions are givcn for Ihe case in which the dcn-
sity of the cloud is l11uchgrealcr than that of the surrounding
cnvironrnenl.

2, General description of lhe problem

Consider two plane parallel infinite tangential discontinuities.
Thc doud. or internal region lo lhe tangcntial discontinu-
ilics has uniform pressure Pe ami density Pe. Thc environ-
mcnt. or cXlernal region to the cloud has also uniform values
01' prcssurc 1'1 and density [JI rcspcctivcly. Aplane parallel
shock wave is travclling in the positivc .r direction and evcn-
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tually will cullide with the left buundary uf the cluud at time
t. = fa < O. For simplicity we aSSllmc fram now o~ that lhe
dcnsity ol' lhe c10ud is greater lhun that of the envlfonment.
By knowing the pressure 1'2 and densily 1'2 behind the shock
wavc. it is possible lo salve lhe hydrodynamical problcm tllus
defined.

Thc prohlcl11 01' lhe collision of a shock wavc and a {un-
gentinl discontinuity is wcll known [5]. Since al lh.e i~st,~nta-
neDUSlime of collision lhe values or, sayo Ihe denslty In ¡raol
and hehind the shuck are Pe and 1'2 respectively, the slandard
jUI1lP conditions for a shock no longer ho1d. A discontinuity
-in Ihe ¡n¡tiat conditions (first ¡n¡tial discontinuity) oecurs.

When a disconlinuity in the ¡n¡tial conditions occurs, lhe
values of lhe hydrodynamical quantities need nol lo have any
relation al aH hctwecll thcm al lhe surface 01' discontinuity.
Howcvcr, certain relations need to be valid in the gas if slable
surfaces of discontinuity are to be created. For instance, lhe
Rankine-Hugoniot relations have to be val id in a shock wave.
What happens is that lhis initial discontinuily splits into sev-
eral discontinuitics, which can be of one of lhe lhrce possihle
lypes: shock wave, langential discontinuily or wcak discon-
linuity. This newly formed disconlinuitics move apan from
each olher with respect to the plane of farmation ofthe initial
discontinuity.

Very general argumenls show lhat only one shock wave
or a pair of weak discontinuities bounding a rarefaction wave
can move in opposite directions wilh respect lo the poinl in
which the inilial discunlinuity look place. For, if two shuck
waves move in the same direclion, the shock al the fronl
would have to move, relalive to lhe gas hehind il, with a
vcJocity less lhan that of sound. However, tlle shock behind
must move with a velocity greater than that of sound with re-
specl lo the same gas. In olher words, lhe leading shock will
he overtaken by the one behind. For exaclly lhe same reason
a shock and a rarefaction wave can not move in the same di-
rection, and this is due lo lhe fact that weak discontinuilies
move al the velocity of sound relalive to lhe gas they move
through. Finally, lwo rarefaction waves moving in the same
direction can not become separated, since the velocities of
their houndaries wilh respect lo the gas they move through is
the same.

Boundary conditions demand that a tangential disconli-
nuity musl remain in lhe point where the initial discontinuity
took place. This fol\ows from the fact that lhe discontinuities
formed as a resull of the initial discontinuily must be such
thal they are able lo take the gas from a given state at one
side 01' the inilial discontinuity lo anolher state in lhe oppo-
site side. The state oflhe gas in any one dimensional prahlcm
in hydrodynamics is given by Ihree parameters (say the prcs-
surc, lhe density and the velocity 01' the gas). A shock wave
howevcr, is represented by only one parameter as il seen fram
lhe shoek adiabatic relation (Hugoniot adiabatic) for a poly-
(ropie gas:

where p and V stand 1'01' pressure and specific volurnes rc-
speclively, 'Y is the polylropie index of lhe gas and lhe sub-
scripts f and ú lahellhe Iluw in frunt of and behlOd the shuck.
Por a givcn lhermodynamic statc oflhe gas (i.e., for given PI
and VI) lhe shuck wave is determined completely since, foe
instanee,l'o wuuld depend only un Vb accordlOg lo the shock
adiabatic relation. On the other hand, a rarcfaction wave is
alsu described hy a single parameter. This is seen from lhe
equations which describe lhe gas inside a rarefaction wave
whieh moves lu lhe left with respeet lo gas at rest beyund its
right boundary [5]:

where C4 and CR represenl lhe sound speed behind and inside
the rarefaction wave respeclively. The magnitude 01' the ve-
locity ol' the llow inside lhe rarefaclion wave is !Un in that
systcm of rcference. The quantilies P4 and PR are lhe pres-
sures behind and inside lhe rarefaction wavc respectively. The
corresponding values 01' the dcnsity in lhe regions just men-
tioned are p,j and PRo

With only two parameters al hand, il is not possihle lo
give a descriptiun of the thermodynamie state of the gas. It is
lhe tangential discontinuity, which remains in lhe place where
lhe initial discontinuily was produced, lhal accounts for the
lhird parameter needed to describe the state of lhe fluid.

When a shock wavc hilS a langential discontinuily, a
rarefaclion wave can nol be lransmiued lo the other side
01' the gas bounded by (he tangenlial discontinuity. For, if
thcre would be a transmitlcd rarefaction wave lo lhe other
side 01' lhe tangential discontinuity, the only possible way
the boundary conditiollS could be satisficd is ir a rarefaction
wave is reflected hack to the gas. In olher words, two rar-
efaction waves separate fram each other in 0(. posite direc-
tions wilh respect to lhe tangenlial discontinuity thal is left
after lhe inleraction. In order to show thal this is not possi-
ble, consider a shock wave travelling in lhe positive x direc-
tion, which compresses gas 1 inlo gas 2 and collidcs wilh
a tangential disconlinuity. After lhe interaclion lwo rarefac-
lion wavcs separale fram cach other and a tangential dis-
conlinuity remains hctween thcm. In lhe system of refer-
cnce where the tangential discontinuity is al rest, the veloc-
ily of gas 2 is V2 = - 1

1
::

2.j -dp dV, where P3 is lhe pres-
sure uf gas 3 surrounding lhe tangential disconlinuity. Ac-
cordingly, the vclocity of gas 1 in the same system 01' ref-
erenee is v] = - ~~:l.j-dpdV. Since lhe produet -dpdV
is a monotonical1y increasing function of the pressure and
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FIGURE 1. Al] incoming shock travelling to the right (IOp panel)
hits a tangenlial discontinuity al time io < O. This produces two
shods lTloving in opposite directions with respcct to the place
of formation (middle panel). When Ihe transmiucd shock ioto the
cloud (region e) collidcs wilh its righl boundary a reflected rar-
cfaction wavc (region R) boundcd by two tangentiaJ discontinuities
and ;1 shock transmiued to the external medium (Iower pancl) are
formcd. Arrows rcpresent direction of different boundaries. or the
f10w itself. Th'c numbers in (he flgurc label different regions of the
flow. Dashed lines represclU shocks. r.bsh.dot are wcak discontinu-
ities and conlinuous oncs are tangential discontinuities. The systcm
of rcfcrcncc is chosen such that lhc tangcntiaI discontinuitics which
are left as a result 01'the collisions are always at rest.(6)

Thc differcnce in vclocitics VI - V2 has the same valuc in
any systcm of refercnce and so, it follows thal VI S VZ. in
particular 00 a system of reference with [he incidcnt shock al
Test. Howcver, for the incident shock lO exist, it is necessary
Ihut VI > 1.12. SOtwo rarefaetian waves can 1101be formed as a
rcsull of thc interaction.

So faro il has beco shown that aftcr the collision oetween
the shock anu lhe houndary of the elouu, a firsl initial uis-
continuity is [orrned. This situation can flol occur in nature
in any manncr and the shock splits ioto a shock which pcn-
clralcs [he cloud and eithcr Dne of a shock, oc a rarcfaction
wavc (bounded by (wo weak discontinuities) is rellcclcd [rom
the point of collision. \Vilh respccl to the poinl 01' formal ion
01'lhe initia! discontinuily, boundary conditions demand that
a tangential disconlinuity musl reside in lhe region separaling
Ihe disconlinuities previous!y formed.

In a shock wave,lhe velocilies (v) in fronl anu hehind the
shock are rclatcd to one anolhcr by thcir difference:
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O s: 1'3 s: 1'1, Ihen

['" ¡P' ¡'"-Jn V-dPdVS:vl-v,:'ó V-dPdV- V-dPdV.
O O PI

according lo the shock adiabatic rclation. Since V2 - Ve is
given hy Eq. 6, Ihen:

whcre"f ami "fe represent the polytropic indexes of the cnvi-
ronmcnt and lhe cloud respectivcly. VI ami Ve are lhe specific
volumes on the corresponding regions. In other words, a nec-
essmy anu sufficient conuition for having a reOccled shock
from tite houndary oí"lhe two medi3, ullder the assulIlplion of
inilial pressure equilibrium belwecn tlle cloud 3nd the ellvi-

wherc lhe subscripts J and b label the flow of lhe gas in [ront
anu hehinu ¡he shock wave,

If aftcr lhe first initial disconlinuity t\Voshock waves sep-
arate wilh respect to the poinl of collision, then according lo
Eq. (6) the velocilies of their fronl flows are given hy v, =
-J(p3 -pd(v, - 1'3') and v, = J(p3 -1',)(1'2 - 1'3).
whcrc the regions 3 and 3' bound Ihe tangcntial discontinuity
which is al rest in this particular systcm of rcference (see IOP

anu miuulc panels of I'ig. 1), Due lo the facllhatp3 ~ p-, anu
hccause the difference t'2 - Ve is a monotonically increasing
fUllction 01'the pressure ])3, then:

ronment, is given hy Eq. (7). Since for the prohlem in ques-
tion VI > Ve and lhe polylropic indexes are of the same arder
of magnitudc, a retlecled shock is produced.

In lhe same form, at time t :::::O when the lransmilted
shock reaches lhe righl langenlial disconlinuily localed al
.1: ::::: O, anolher (sccond) inilial disconlinuily musl occur. In
this case, we must invcrt lhe inequality in Eq. (7), changc
"1 hy "1, anu 1'2 hy 1'3, where 1'3 is Ihe pressure behind Ihe
shocks prodllccd hy the firSI initial discontinuity. Again, us-
ing the S<llllCargulllent for lhe polylropic indexes, il fol1ows
thal afler this inleraclion a weak disconlinuity bounded by
{wo rarefaction waves musl be rel1cclcd from the houndary
hetween the two llledia. As a rcsult of the interaction, once
again, houndary conditions demand thal a tangcntial discon-
tinuily rcmains helween Ihe newly fonned discontinuities.

This situatioll continucs until Ihe rarefaction wave ard
the left tangential Jiscontinuity 01' lhe c10ud collide al time
t = T > O. At this puint, two rarcfaction wavcs scparating
from cach othcr from lhe point al' formatiol1 will be prodllced
once a stationary silualion is reached, and a tangclltial dis-
conlilluity \ViiI be separating the ncwly forlllcd discontinu-
¡Iies. Onc can conlinue in a somewhal indefinite manncr with
the solution hUI, for Ihe sakc 01'simplicity the calculations are
slopped al this point. Figure I shows a schematic dcscription
of lhe solution dcscribcd ¡¡hovc in a system uf rcfcrencc such
thal lhe tangcntial discolllinllities which are left as a resull of
the dilTcrent intcractiolls are al restoThe numhcrs in Ihe I1gure
¡abel dilTercnl regions in Ihe l1ow.

(7)

2V,
be - 1)1'1+ b, + 1)¡'2'

(1'2)b-I)+ b+ 1) -
1'1

VI Ve---------> ----------
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3. First initial discontinuity

According lo Fig. 1, aftcr lhe first ¡n¡tial discontinuity lhe ab-
solutc valucs of lhe vclocities (v) oftlle flow are related hy

(8)

it ro\lows that
\130 -
¡:;;-

(¡ + l)pz + b - 1)P30
b - 1)pz + (¡ + I)P30 '

be + I)PI + b, - 1)1'30
b, - 1)1'1 + (¡, + 1)1'30'

( 18)

( 19)

With the aid ofEq. (6), the velocities ofEq. (8) are given by

(21 )

(20)

V~i = (pz - pd(\ll - Vz),

v; = (P3 - PI )(\1, - V3'),

v~ = (P3 - Pz)(\Iz - V3).

(9)

(10)

(11)

Vt 4,P2P:1 z.
Vz I(¡ - l)pz + (¡ + 1)P30)

Substitution 01' Eqs. (16), (17), and (20) in Eq. (8) gives the
required solution:

~: = -~ Cal;(3),
where

!'rom the shock adiabatic relation, Eq. (1), and Eqs. (13)-( 15)

v~= vL - v;'(P:lo - PZ) + 1';{Vz - 1730), (16)

v; = (¡':lo - PI){Ve - ~,~), (17)

(23)

(22)

f" =:2

(
P30 PI)
])2 ])2

( V30) (1'30 )')= 1-- - --1
\12 P2

{3= (v;:)1--11 'e

( ~10)(¡ - 1) - (¡ + 1) V;-
(¡ - 1) + (¡ + 1) (1'30) ,

1"

lolz = 41: (P30 -1) (1'30 _1'..'.-) (1 _ V30) (1- Vj,) .
le P2 ])2 P2 V2 Ve

The specitic volumes \130 and v~~are given by Eq. (18) and
Eq. (19) respectively. For completeness, approximations lo
Eq. (21) for the case 01' a very strong incident shock and that
of a weak incident shock are given

VI (3/-1)(/-1)
I~ (/e + 1)(/+ 1)'

and ( == (Pz - p¡)j¡'1 « 1 in the weak limil. Figure 2 shows
a plot ofthe pressure P3 as a function of lhe strenglh of lhe in-
cident shock. It is interesting to note lhat cven for very strong
incident shocks lhe ratio P3/P2 differs from zero, which fol-
lows directly from Eqs. (12) and (22). This simple means that
the reflected shock is not strong, no maUer the initial condi-
lions chosen.

There are certain important general relations for which
the ahove reslllts are a conseqllence oL Firstly, by definition
the pressure 1'2 bchind Ihe shock is grcater than lhe pressurc
Jll of lhe environment. Now consider a strong incident shock,
lhen since fJ3 > 1'2 » PI, it follows lha! lhe transmiued
shock inlo Ihe cloud is very strong. Also, the retlected shock
does not have to comprcss too much the gas oehind ir to ac-
quirc lhe rcquired equilibriurn, so il is not a strong shock.
This last stalerncnt is in agreement with Eq. (22). In general,
for any strcngth of the incidenl shock, sincc the inequality

where

( 12)

(13 )

(14)

( 15)

1'3 =P30 +P31

(3/ - l)pz - (¡ - 1)1'1
(¡ - l)pz + (¡ + I)PI '

where ]J:~o is lhe value ofthc pressure hehind the reflected and
lransmiued shock s for lhe case in which lhe cloud has specific
volume 17, = O. For lhis particular case, Eq. (12) determines
P30 as a funclion of PI and ])2, which are initial conditions
lo lhe prohlem. Due to the fact that the gas is polylropic, this
relation is the required Solulion to the problem.

In order to get a solution more adequate to the general
case, we can approximale lhe whole solulion under the as-
sumption that \le is a quantity of lhe first order, so

Inserting Eqs. (9)-(11) ioto Eq. (8) and substituting for
lhe spccific volumes from Eq. O), one ends with a relation
which relates Ihe prcssurc P3 as a function of P2, ]JI and Ihe
polytropic indexes in an algebraic linear formo Straightfor-
ward manipulations show that lhe resulting equation does nol
have an casy analytic solution, cven for the particular cases
in which a strong or wcak incidcnt shock col lides with lhe
eloud.

In order lo find a sel of analytic solutions, let us first de-
scribe a particular soIution lo lhe problem. If we consider a
cloud with an initial infinite density -a solid wall, then Eq. (8)
lakes lhe form V2 = V:'h, antl a "zeroth order" solution is
found [5]:

where the qU<lnlities with a star are of the firsl order and the
sllhscript O represents lhe values al zeroth order approxima-
tion. Substitution 01' Eqs. (13)-(15) into Eqs. (10) and (11)
gives:
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0.6

0.2

(27)

whieh is very similar lo Eq. (7). In Ihe same fashion unóer
lhe assumption that lhe polytropic indexes are of th~ same
order 01'mugnitudc. El). (26) implics Ve< VI, which was an
¡n¡tial assumption. Allhough Eq. (26) is nol sufficicnt. duc lo
t.he fae! that Ve is a f1rst ordcr quantity \Ve can use in what
tollo\Vs:

The inequalilies in Eq. (24) and Eq. (27) will prove lo be
uscfullatcr whcn \Ve choase a more suitahle reference systcm
to describe lhe problcm in qucstion.

0.6 \,,,,,
o:
'"~

0.4

__ Non Perlurbed
____ Perlurbed
._._._. Weak lJmll

o
O 0.2 0.4 0.6

P';P2

06

4. Second initial discontinuity

Le! us now analysc the situation for which O < t < T. To
bcgin with let us pro ve that

according lo lhe shock adiabatic relation for lhe transmitlcd
and rcflcctcd shocks. Sincc P3 > P'2 > PI and V~< VI il
follows tha!

(28)

(29)

as 1'1 -+ O, (30)
Pl

1lJI - 1lJ:J :::: Vc.

1',1[ V2]- < - -(-y - 1)+ (-y+ 1)- -+ O,
1'2 2 VI

Let us now prove a vcry general property of lhe solution.
Regions 2 and 3 are related to one another by the sLock adi-
ahatic rclation. Since the gas in regions 3' and 4 obey a poly-
"opie equalion of state 1'3/1', = (V,/V3, )", it follows Ihal

according to the shock adiahatic relation. This result implics
that most 01'the encrgy fmm lhe incoming shock has been in-
jectcd to the cloud, no mattcr how slrong the initial incident
shock ¡s. Only a vcry srnall amount 01' this cncrgy is trans-
mittcd to thc cxlernal gas that hcs in the other side 01' the
cloud. Nole thal this result is 01"a very general nature since
no assumptions aboul the initial density contrast 01'the envi-
ronmcnt were madc.

Now, due to the ract that V:JI < V4 < VI, VI < Vz < VI and
f' fC > 1 for a rcasonahlc equation 01'statc, this relation can
he hrought lo the 1'01'111

1'1 = (V1' )" (-y + 1)112- (-y - 1)113
1'2 V, (-y + 1)113- (-y - 1)112.

whcre lhe vclocitics W¡, 1,'2 and Ve are defincd in Fig. l. Sup-
pose Ihat the inequalily in Eq. (28) is nol valid, then, hy ex-
prcssing Ihe vclocitics as function oflhe specific volurnes and
pressures hy means of Eq. (6) and the fael thal1'2 > PI,
1'3 > 1', anu V" > V" il follows lhal 1'3 .;, Pe; then as Ihe
cloud's dcnsity grows without Iimit, so does (J:i. Necessarily,
Eq. (28) has lo he valid for suflicienlly small values of the
cloud's specific volumc. It is important to point out that since
'Wz :::: Iu:.! - UJ¡I :::: 1/'2 - 1/1}, lhc gas in region 2 as drawn in
Fig. l travcls in thc positive ;r direction. According to Fig. l
llows in region 1 and 3 are related hy

(26)

(25)

(24)

ji,

V,(1''' - 1'¡)
> (-y, - 1)1'1+ (-y, + 1)1'3'

(1'3)(-y- 1)+b+ 1) -
1'1

jll
--------->

V2(1'3 - 1'2)
b - 1)1'2+ (-y+ 1)1'''

FIGURE 2. Variation of the pressure P3 bchind the transmitted
shock into the cJoud as a function of the strength ol' thc ¡n¡tial inci-
dent shock. The continuous line shows the case fm which the cIoud
is a solid wall with innnitc dcnsity. Thc dashcd curve is the solution
al flrst ordcr approximation for which the doud's spccillc volume is
a quantity of the first arder. The acoustic approximation fm which
the incident shock is weak, al the same order of accuracy. is repre-
sented by a dot-dashed curve. Thc perturbed solutions were plotted
assuming pc/ PI = 100 fm polytropic indexes "f == fe := 5/3,
corrcsponding 10 a monoatomic gas.

Indecd. sinee jl3Vz/(V, - jl2) > V2 holus, anu the ¡eff hanu
sitie 01' this incquality is just Vsl according lo mass flux COI1-

scrvation across lhe rctlccted shock, lhe rcsult follows.
On the other hanu, from Eqs. (10) anu (11), sinee 1'2 >

]JI it follows that a ncccssary and sufficient condition for
V"2 > Ve lo he tfue is that \12 - VI > Ve - V1" This las1
condition is satisfied for sufficiently small valucs 01'Ve. Tu
givc an estimule of lhe smallness of the cloud's spccific vol-
ume nceued, note that a nccessary and sufficient condition for
\12 - F3 > Fe - VI' lo he valid is

1'3 > 1'2 > PI holus, eonlinuily uemands Ihat the relleclcd
shock can nol be strong and, more importantly, that lhe pcn-
ctrating shock is always strongcr than lhe retlectcd one.

Sccondly, very general inequalitics are satisficd by lhe vc-
locitics "2, Ve. Vsl as dcfincd in Fig. l. For instancc.
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In arder lo continue with a solutíon al first arder approxi-
malioo io V" oole lhal we have lo use Eqs. (13)-(15) logelher
wilh

where the quantilies with a stnr are of the first arder. The vc-
locities W¡ and W3 can be expressed as [unctiaos of the spe-
ciflc volumes aod pressures by meaos of Eq. (6), for wbicb
afler subslitulioo of Eqs. (31 )-(33) it follows:

__ Non Perlurbed
____ Perlurbed

~_~_i~80~t~~il
0.6 0.8O,0.2

o
O

0.2

0.8

0.4

0.8

FIGURE 3. Variation of the pressure P4 bchind the transmitted
shock into lhe external medium as a function of the strength of the
incident shock. The continuous line represents lhe case for which
the c10ud has infinite density and so il does nol transmit any shock
to the external medium. The dnshed curve represents the case for
which the c1oud's specific volurnc is a quantity of the first order.
The long-dashed (dash-dotted) curve is the limit for which a strong
(wenk) incident shock collides with the doud al the same order of
approximation. The perturbed curves were produced under the as-
sumption that pc/ PI = 100 for monoatomic gases.
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(37)

(36)

(35)

(34)

(31 )

(32)

(33)

V4 = V4*,

V4, = VI + V4~'

•
V4~= - vI.1l.,

"(PI

V: = V3~ (P30) lho
1'1

By subSlilUlioo of Eqs. (34)-(36) aod Eq. (11) io Eq. (28) lbe
rcquircd solution is [ound:

wt = -]J4V4~'

'"3 = "'le~ 1 (V"(,P30 V3~ - V"(,Pl V: ) .

Tbe specific volumes bebiod lbe lraosmitted shock aod
the rellccteu rarcfaction wave are obtained fmm the shock
adiabatic rclation and thc polytropic equation of state fOf the
gas ¡nside the rarefaction wavc:

396

1'4-=

whcre

'1<= 2.fk
"(, - 1

(r+'I<1\),

h, + 1)1'1/1'2 + h, - 1)P301P2
h, - 1)Pl/1'2 + h, + 1)P301P2 '

(38)
1l follows frum Eq. (39) lhal P. « 1'2 as lhe slreoglh

of the incident shock increascs without Iimit. This result was
giveo hy a very geoeral argumeol io Eq. (29). Figure 3 shows
the variation of the pressure P4 hehinJ the shock transmitted
to the environrnent as a function of the strength of the ¡nitial
incident shock, after the sccond initial discontinuity.

Fur completcncss the Iimits for the case uf slrong and
weak incident shocks <uegivcn:

A = )P30 _

])2

Having found values for the pressures p; and p: as a func-
tian af the in¡tial conditions PI, P"2, VI and Ve, the problem
is completely solved. Indeed, using the shock adiabatic rela-
tion V2 is known. With this, the valucs af V3~'V1*' V4* and
V.~are determioed hy meaos of Eq. (19), (20), (36), aod (37)
respeclively. The complete valucs for prcssurc and specific
volumes are ohtaiocd thus wilh lhe aid of Eqs. (13)-( 15) aod
Eqs. (31 )-(33). The velocilies oflhe 110w,as deflned io Fig. 1,
are calculated either by mass flux conscrvalion on crossing a
shock, or hy the formula given ror the vclocity discontinuity
io Eq. (6). lhe hydrodyoamical values of the pressure PR aod
densily Pn inside the rarefaction wave come fmm Eqs. (2)-
(5).

In order to analysc lhe varialions of the hydrodynamical
quantities as a funclion 01"position and time, Jet us now de-
scribe (he prohlem in a syslem uf reference in which Ihe gas
fa!" away to the right of Ihe clout! is always at rest, as presen-

S. General solution

(39)

(40)

!!.! (P30) lhe

Po! PI

"((3"(-1) 1'1 V, (V2+~),
he + 1)("(-1)1'2 VI

V2 (P3o - p¡)lp2

vh, - 1)1'l/p2 + h,+ 1)P30IP2'
r=

wilh:
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(46)

'/1.2 = V2 + Vc, (41 )

lIsl = Vsj - VCl (42)

Itsr = Vsr + Ve, (43)

¡,In =1O} -lUR, (44)

vs" =101 + lVsr. (45)

led in Fig. 4. Lel Xn ami Xtr be the coordinates of the len
and righl tangenlial discontinuities, Xd and Xsr the coordi-
nates of Ihe rcflected ana transmitted shocks produced aner
[he first initial discontinuity, Xsr the position of the transmit-
led shock ancr the second initial discontinuity ami Ia and
Xb the leh am! righl weak discontinuilies which bound lhe
rarefaclion wavc. The ncw velocities are defined by Galilean
transformations:

where tl represenlS the inilia) widlh of lhe c1oud. Hence. lhe

The direclion of mOlion of lhe flow is shown in Fig. 4 and
il follows [rom Eqs. (24), (27), and (42) Ihal ti" poinls lo lhe
len in lhis system al' reference. Since. in [he same frame, Ve

and w} point to the right, continuity across a weak disconti-
nuity demands VR to Jo it in the same way.

The tangcntial discontinuities and [he shocks produced
by the ¡nitial discontinuities move with constant velocity
throughout the gas. This implies that the time at which [he
first initial discontinuity takcs place is

tl
to = ---,

Usr

4' :
'y;....-w,.
-:

3' i R i 4
;.......,..i
1 i~-..:~:
; ,
i ~;

,
:U".-------:
•..

3

HYDRODYNAMICAL INTERACTION BE1WEEN A SHOCK WAYE AND A CLOUD. ONE DIMENSIONAL APPROACH

C

.,-',
FIGURE 4. Description of the problcm of a collision of a shock
wilh a doud in a system of reference for which Ihe gas far away lo
the right (at x = 00) is always al resl. Originally a shock is trave!.
ling lO (he righl .md hits a tangential discontinuity (top panel). This
produces a disconlinuity in the ¡n¡tial conditions so a rcflected amI
transmitted shock are produced; the gas in the doud bcgins (o ae-
cclcr:lIc (middlc panel). Evcntually the Iransmitted shock ioto the
cloud collides with its right boundary producing a "rencelcd" rar-
cfaclion wave boundcd by two weak discontinuities (region R) and
a lransmitted shock into lhe external medium (Iower panel). In lhis
syslem of reference every single discontinuity produced by means
of {he interaelion move to the right, except for the rcf1ccted shock
produced after the first eolJision. Arrows represent lhe direclion of
motion of various boundaries and direelion of f1ow.Numbcrs labeJ
different regions of the tlow. Dashed Jines represent shock waves.
dash-dotted ones weak diseontinuities and continuous ones tangen-
tial discontinuities.
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FIGURE 5. Variation ofthe pressure P and density p (with respect to the initial pressure PI and density PI ofthe environment) as a function of
position x (normalised to the ¡nitia! width orthe c10ud 6) and dimcnsionless time t (in units of the time 6/cl-where Cl is the speed of sound
in the external medium). Dashed ¡ines represent shock waves (5). dot-dashed Hnes are tangential discontinuities (T), whieh are boundaries
01'(he doud. and short41ong dashed ¡¡nes represent weak discontinuities (W). which hound a rarefaCliol1 wave. The system of referenee was
chosen so Ihat gas far away to lhe right of lhe diagram is al rest. Thc diagrnm shows the case for which pc/ PI = 104• and the polylropie
índices correspond to a monoatomie gas.
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•2o
el l/ti.

-2-.o

02

FIGURE 6. Variation of lhe widlh of the c10ud in units of ilSoriginal
size ~ as a function of lhe dimensionless quantity el t/~. Where
el rcpresents lhe sound speed of the gas for lhe external environ.
ment and t the time. The curve was produced under the assumption
that pc/ PI = 10.1. The gas was considered lO be monoatomic.

When lhe shock collides wilh the boundary oflhe cloud. a
discontinuity in the initial conditions is produced. This splits
lhe incoming shock into two shock waves: one which pen-
elrates Ihe clolld and one which is reflected hnck to the ex-
ternal medium. Whcn Ihe Iransmitted shock into the cloud
rcaches Ihc Opposile houndary, anolher disconlinuity in the
inilial conditions is produced. causing the Iransmission 01' a
shock wave to lhe external medium and lhe rcflcction of a
raref~lction wave from the poinl of collision.

(47)

(48)

(49)

(50)

(51 )

(52)

(53)

(54)

+ lO¡t,

.r" = -fi - 1L,,(1 - lo),

.rtl = -fi + ve(t - lo).

(,e + 1 ).ra = -t --2-W3 + C4

:rfr = 101 t.

positions uf aH differeot discontinuities [Uf fo < t < O are

Figure 5 shows lhe varialion of lhe pressurc and dcnsity as
a fUlletínn 01' time and position in a syslem of reference in
which lhe gas faf away lo rhe r¡ght of lhe cloud is al rest.

Thc width of lhe cloud varies with time, and it follows
from Eq. (49) and Eq. (53) lhat this variation is given by

and for () < I < r, Eqs. (48) and (49) are val id logether wilh

6. Surnrnary

Thc time T al which rhe left langential discontinuity caHíJes
wilh lhe left houndary of the rarefaction wavc is given by
.7."1/ = :ra• and tllus

whcrc 8(t) is lhe Heaviside stcp function. This linear Telarion
is plotted in Fig. 6.

:\"(1) = (")(1)11111 + fi - ve(t - to), (55)

The problem of a collision of aplane parallel shock wave
with a high dcnsity cloud hounded by twa piune parallcltan-
gcnlial discontinuitics has hecn discusscd. Radiation losses.
magnetic Ilelds and self gravity 01' the cloud werc neglected.
General anal y tic solutions were found for the simple case in
which the ratio 01' Ihe environment's density to that of lhe
dOlld's dcnsily is a qllantity of the first order.
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