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Hydrodynamical interaction between a shock wave and a cloud. One dimensional
approach
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The collision of a plane parallel shock wave with a plane parallel cloud of uniform density is analysed for the case in which magnetic fields
and radiative losses are not considered. General analytic solutions are discussed for the case in which the density of the cloud is greater than

that of the surrounding environment. This problem generalises one of the classical problems in gas dynamics: the collision between a shock
wave and a solid wall.
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La colision de una onda de chogue plano-paralela con una nube plano-paralela de densidad uniforme es analizada para el caso en el que

campos magnéticos y perdidas por radiacién no son consideradas. Se discuten soluciones analiticas generales para el caso en el que la
densidad de la nube es mucho mayor que la del gas que le rodea. Este problema generaliza uno de los problemas cldsicos en el estudio de la

dindmica de gases: la colision entre una onda de choque y una pared sélida.

Descriptores: Hidrodinamica; ondas de choque

PACS: 47.40.N

1. Introduction

The problem of the collision of a shock wave with a cloud
has been intensely investigated in the past by several authors
(see, for example, Ref. 1 and references therein). The sim-
plest assumption to make is to consider a cloud for which
gravitational effects are not considered, magnetic fields are
non-important and radiative losses are negligible. The fact
that gravity is not taken into account, makes it possible to
consider the density of the cloud as uniform. The complete
3D hydrodynamical problem is extremely complicated, even
under the simplifications mentioned above. However, numer-
ical simulations have been done for this case which ultimately
give rise to instabilities causing a complete disruption of the
cloud [1].

This article describes how the solution of the one dimen-
sional problem can be obtained. It has been argued in the past
that at least for the case in which the density contrast is high,
i.e., the ratio of the cloud’s density to that of the external en-
vironment is high, the problem has to be very similar to the
one found in the problem of a collision of a plane parallel
shock with with a solid wall [2, 3].

Many Astrophysical phenomena give rise to collisions
between a shock wave and a cloud. For example, when a su-
pernova explosion occurs, the intense ejection of energy from
the supernova into the interstellar medium produces a spher-
ical shock wave which expands into the interstellar medium.
Several examples exist for which collisions of this expand-
ing shock have been observed to interact with clouds embed-
ded in the interstellar medium. This interaction is very im-

portant, since it seems to induce, under not very well known
circumstances, gravitational collapse and star formation [4].
Another scenario is presented by the expansion of jets around
active galactic nuclei. A pair of jets expand in opposite di-
rections from the nuclei of the galaxy creating a bow shock
which interacts with the intergalactic medium. It is the in-
teraction of this expanding bow shock with clouds or galax-
ies embedded in clusters of galaxies that provides a mecha-
nism in which shock—cloud interactions take place. It seems
that this interaction is able to induce star formation very
efficiently.(®)

Having all this considerations in mind, the present pa-
per aims to give a simple way of solving a particular case of
the whole problem. This article provides an analytic descrip-
tion of the one dimensional problem of a collision between
a plane parallel shock with a plane parallel “cloud” bounded
by two tangential discontinuities. It is assumed that the spe-
cific volume in the cloud is a quantity of the first order, in
other words solutions are given for the case in which the den-
sity of the cloud is much greater than that of the surrounding
environment.

2. General description of the problem

Consider two plane parallel infinite tangential discontinuities.
The cloud, or internal region to the tangential discontinu-
ities has uniform pressure p. and density p.. The environ-
ment, or external region to the cloud has also uniform values
of pressure p; and density p; respectively. A plane parallel
shock wave is travelling in the positive x direction and even-


mailto:sergio@mmo.cam.ac.llk

392 S. MENDOZA

tually will collide with the left boundary of the cloud at time
t =ty < 0. For simplicity we assume from now on that the
density of the cloud is greater than that of the environment.
By knowing the pressure p and density p2 behind the shock
wave, it is possible to solve the hydrodynamical problem thus
defined.

The problem of the collision of a shock wave and a tan-
gential discontinuity is well known [5]. Since at the instanta-
neous time of collision the values of, say, the density in front
and behind the shock are p. and p respectively, the standard
jump conditions for a shock no longer hold. A discontinuity
in the initial conditions (first initial discontinuity) occurs.

When a discontinuity in the initial conditions occurs, the
values of the hydrodynamical quantities need not to have any
relation at all between them at the surface of discontinuity.
However, certain relations need to be valid in the gas if stable
surfaces of discontinuity are to be created. For instance, the
Rankine-Hugoniot relations have to be valid in a shock wave,
What happens is that this initial discontinuity splits into sev-
eral discontinuities, which can be of one of the three possible
types: shock wave, tangential discontinuity or weak discon-
tinuity. This newly formed discontinuities move apart from
each other with respect to the plane of formation of the initial
discontinuity.

Very general arguments show that only one shock wave
or a pair of weak discontinuities bounding a rarefaction wave
can move in opposite directions with respect to the point in
which the initial discontinuity took place. For, if two shock
waves move in the same direction, the shock at the front
would have to move, relative to the gas behind it, with a
velocity less than that of sound. However, the shock behind
must move with a velocity greater than that of sound with re-
spect to the same gas. In other words, the leading shock will
be overtaken by the one behind. For exactly the same reason
a shock and a rarefaction wave can not move in the same di-
rection, and this is due to the fact that weak discontinuities
move at the velocity of sound relative to the gas they move
through. Finally, two rarefaction waves moving in the same
direction can not become separated, since the velocities of
their boundaries with respect to the gas they move through is
the same.

Boundary conditions demand that a tangential disconti-
nuity must remain in the point where the initial discontinuity
took place. This follows from the fact that the discontinuities
formed as a result of the initial discontinuity must be such
that they are able to take the gas from a given state at one
side of the initial discontinuity to another state in the oppo-
site side. The state of the gas in any one dimensional problem
in hydrodynamics is given by three parameters (say the pres-
sure, the density and the velocity of the gas). A shock wave
however, is represented by only one parameter as it seen from
the shock adiabatic relation (Hugoniot adiabatic) for a poly-
tropic gas:

Vo _O+lpr+G—1)ms
Vi (y=1pr+(y+Lp’

(1)

where p and V stand for pressure and specific volumes re-
spectively, «y is the polytropic index of the gas and the sub-
scripts f and b label the flow in front of and behind the shock.
For a given thermodynamic state of the gas (i.e., for given py
and V) the shock wave is determined completely since, for
instance, p, would depend only on Vj, according to the shock
adiabatic relation. On the other hand, a rarefaction wave is
also described by a single parameter. This is seen from the
equations which describe the gas inside a rarefaction wave
which moves to the left with respect to gas at rest beyond its
right boundary [5]:
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where ¢4 and ¢g represent the sound speed behind and inside
the rarefaction wave respectively. The magnitude of the ve-
locity of the flow inside the rarefaction wave is wp in that
system of reference. The quantities ps and py are the pres-
sures behind and inside the rarefaction wave respectively. The
corresponding values of the density in the regions just men-
tioned are py4 and pp,.

With only two parameters at hand, it is not possible to
give a description of the thermodynamic state of the gas. It is
the tangential discontinuity, which remains in the place where
the initial discontinuity was produced, that accounts for the
third parameter needed to describe the state of the fluid.

When a shock wave hits a tangential discontinuity, a
rarefaction wave can not be transmitted to the other side
of the gas bounded by the tangential discontinuity. For, if
there would be a transmitted rarefaction wave to the other
side of the tangential discontinuity, the only possible way
the boundary conditions could be satisfied is if a rarefaction
wave is reflected back to the gas. In other words, two rar-
efaction waves separate from each other in opposite direc-
tions with respect to the tangential discontinuity that is left
after the interaction. In order to show that this is not possi-
ble, consider a shock wave travelling in the positive = direc-
tion, which compresses gas 1 into gas 2 and collides with
a tangential discontinuity. After the interaction two rarefac-
tion waves separate from each other and a tangential dis-
continuity remains between them. In the system of refer-
ence where the tangential discontinuity is at rest, the veloc-
ity of gas 2 is vy = — _fp’;ﬂ v/—dpdV, where p3 is the pres-
sure of gas 3 surrounding the tangential discontinuity. Ac-
cordingly, the velocity of gas 1 in the same system of ref-
erence is v; = — f;;‘ V/=dpdV . Since the product —dp dV/
is a monotonically increasing function of the pressure and
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0 < p3 < pp, then

P2 P1 p
- V=dPdV <v; —v, S/ vV —dPdV w/ 2\/ —dPdV .
0 0

7

The difference in velocities v; — v has the same value in
any system of reference and so, it follows that v; < vs, in
particular on a system of reference with the incident shock at
rest. However, for the incident shock to exist, it is necessary
that vy > w5, so two rarefaction waves can not be formed as a
result of the interaction.

So far, it has been shown that after the collision between
the shock and the boundary of the cloud, a first initial dis-
continuity is formed. This situation can not occur in nature
in any manner and the shock splits into a shock which pen-
etrates the cloud and either one of a shock, or a rarefaction
wave (bounded by two weak discontinuities) is reflected from
the point of collision. With respect to the point of formation
of the initial discontinuity, boundary conditions demand that
a tangential discontinuity must reside in the region separating
the discontinuities previously formed.

In a shock wave, the velocities (v) in front and behind the
shock are related to one another by their difference:

vp == /(s — pp)(Vs — Vh), (©)

where the subscripts f and b label the flow of the gas in front
and behind the shock wave.

If after the first initial discontinuity two shock waves sep-
arate with respect to the point of collision, then according to
Eq. (6) the velocities of their front flows are given by v, =
~V/(ps = p1)(Ve = Var) and vz = /(p3 — p2)(V2 - V3),
where the regions 3 and 3’ bound the tangential discontinuity
which is at rest in this particular system of reference (see top
and middle panels of Fig. 1). Due to the fact that p3 > p» and
because the difference v, — v, is a monotonically increasing
function of the pressure ps, then:

. ) 2V,
V2=V > (P2 - (Ye = Dp1 + (e + Dp2’

according to the shock adiabatic relation. Since vy — v, i
given by Eq. 6, then:
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where « and 7, represent the polytropic indexes of the envi-
ronment and the cloud respectively. V; and V, are the specific
volumes on the corresponding regions. In other words, a nec-
essary and sufficient condition for having a reflected shock
from the boundary of the two media, under the assumption of
initial pressure equilibrium between the cloud and the envi-
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FIGURE I. An incoming shock travelling to the right (top panel)
hits a tangential discontinuity at time to < 0. This produces two
shocks moving in opposite directions with respect to the place
of formation (middle panel). When the transmitted shock into the
cloud (region C) collides with its right boundary a reflected rar-
efaction wave (region R) bounded by two tangential discontinuities
and a shock transmitted to the external medium (lower panel) are
formed. Arrows represent direction of different boundaries, or the
flow itself. The numbers in the figure label different regions of the
flow. Dashed lines represent shocks, dash-dot are weak discontinu-
ities and continuous ones are tangential discontinuities. The system
of reference is chosen such that the tangential discontinuities which
are left as a result of the collisions are always at rest.

ronment, is given by Eq. (7). Since for the problem in ques-
tion V; > V. and the polytropic indexes are of the same order
of magnitude, a reflected shock is produced.

In the same form, at time ¢ = 0 when the transmitted
shock reaches the right tangential discontinuity located at
x = 0, another (second) initial discontinuity must occur. In
this case, we must invert the inequality in Eq. (7), change
v by 7. and p» by p3, where p; is the pressure behind the
shocks produced by the first initial discontinuity. Again, us-
ing the same argument for the polytropic indexes, it follows
that after this interaction a weak discontinuity bounded by
two rarefaction waves must be reflected from the boundary
between the two media. As a result of the interaction, once
again, boundary conditions demand that a tangential discon-
tinuity remains between the newly formed discontinuities.

This situation continues until the rarefaction wave and
the left tangential discontinuity of the cloud collide at time
t = 7 > 0. At this point, two rarefaction waves separating
from each other from the point of formation will be produced
once a stationary situation is reached, and a tangential dis-
continuity will be separating the newly formed discontinu-
ities. One can continue in a somewhat indefinite manner with
the solution but, for the sake of simplicity the calculations are
stopped at this point. Figure 1 shows a schematic description
of the solution described above in a system of reference such
that the tangential discontinuities which are left as a result of
the different intcractions are at rest. The numbers in the figure
label different regions in the flow.
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3. First initial discontinuity

According to Fig. 1, after the first initial discontinuity the ab-
solute values of the velocities (v) of the flow are related by

Uy + Ve = V24 (8)

With the aid of Eq. (6), the velocities of Eq. (8) are given by

v3; = (p2 — 1) (Vi = Va), 9)
v2 = (p3 — p1)(Ve — Var), (10)
v: = (p3 — p2)(Va = V3). (11)

Inserting Egs. (9)—(11) into Eq. (8) and substituting for
the specific volumes from Eq. (1), one ends with a relation
which relates the pressure p3 as a function of ps, p; and the
polytropic indexes in an algebraic linear form. Straightfor-
ward manipulations show that the resulting equation does not
have an easy analytic solution, even for the particular cases
in which a strong or weak incident shock collides with the
cloud.

In order to find a set of analytic solutions, let us first de-
scribe a particular solution to the problem. If we consider a
cloud with an initial infinite density -a solid wall, then Eq. (8)
takes the form vs = ws;, and a “zeroth order” solution is
found [5]:

Ps _ 37—Dp2—(v-1)p
P2 (y-Dp2+(y+1p’

(12)

where pj, is the value of the pressure behind the reflected and
transmitted shocks for the case in which the cloud has specific
volume V.. = 0. For this particular case, Eq. (12) determines
p3, as a function of p; and ps, which are initial conditions
to the problem. Due to the fact that the gas is polytropic, this
relation is the required solution to the problem.

In order to get a solution more adequate to the general
case, we can approximate the whole solution under the as-
sumption that V, is a quantity of the first order, so

P3 = P3g + P35, (13)
Vz = Vg, + V5, (14)
Var = J, (15)

where the quantities with a star are of the first order and the
subscript 0 represents the values at zeroth order approxima-
tion. Substitution of Egs. (13)—(15) into Egs. (10) and (11)
gives:

+}?§(V2 - .['f30)= (16}
vz = (p3, —p1)(Ve — V31). (17)

3 = 03, — V3 (s, — p2)

From the shock adiabatic relation, Eq. (1), and Eqgs. (13)—(15)

it follows that

Vap _ (v +1)p2 + (v — 1)ps, (18)
Vo (y=1Lp2+(v+ps,’

V:: (ff + 1)171 4 ('Y( == 1)P30 (19)
Ve o (e —Dp1+ (e + 1)ps,

V2 (v = Dpe + (v + Dps]’
Substitution of Eqs. (16), (17), and (20) in Eq. (8) gives the
required solution:
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The specific volumes V3 and Vi are given by Eq. (18) and
Eq. (19) respectively. For completeness, approximations to
Eq. (21) for the case of a very strong incident shock and that
of a weak incident shock are given

ps___ 40+l Ve (37— 1

P2 By -12W \.+1

:* (& < I/C
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P1 Ye "l bz ‘Vl

where
e=a, A8 =Dy -1)
Ve (le + (v + 1)’

and ¢ = (p2 —p1)/p1 < 1 in the weak limit. Figure 2 shows
aplot of the pressure p3 as a function of the strength of the in-
cident shock. It is interesting to note that even for very stronG
incident shocks the ratio p /ps differs from zero, which fol-
lows directly from Eqs. (12) and (22). This simple means that
the reflected shock is not strong, no matter the initial condi-
tions chosen.

There are certain important general relations for which
the above results are a consequence of. Firstly, by definition
the pressure p; behind the shock is greater than the pressure
p1 of the environment. Now consider a strong incident shock,
then since pz > po > p, it follows that the transmitted
shock into the cloud is very strong. Also, the reflected shock
does not have to compress too much the gas behind it to ac-
quire the required equilibrium, so it is not a strong shock.
This last staterent is in agreement with Eq. (22). In general,
for any strength of the incident shock, since the inequality

+ n) . (22)
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FIGURE 2. Variation of the pressure p3 behind the transmitted
shock into the cloud as a function of the strength of the initial inci-
dent shock. The continuous line shows the case for which the cloud
is a solid wall with infinite density. The dashed curve is the solution
at first order approximation for which the cloud’s specific volume is
a quantity of the first order. The acoustic approximation for which
the incident shock is weak, at the same order of accuracy, is repre-
sented by a dot-dashed curve. The perturbed solutions were plotted
assuming p./p1 = 100 for polytropic indexes v = v. = 5/3,
corresponding to a monoatomic gas.

p3 > p2 > pp holds, continuity demands that the reflected
shock can not be strong and, more importantly, that the pen-
etrating shock is always stronger than the reflected one.

Secondly, very general inequalities are satisfied by the ve-
locities vy, v, vy as defined in Fig. 1. For instance,

Vst > V2. (24)

Indeed, since Vv / (V3 — Va) > va holds, and the left hand
side of this inequality is just vy according to mass flux con-
servation across the reflected shock, the result follows.

On the other hand, from Egs. (10) and (11), since p, >
py it follows that a necessary and sufficient condition for
vy > v, to be true is that Vo — V3 > V. — Vi, This last
condition is satisfied for sufficiently small values of V.. To
give an estimate of the smallness of the cloud’s specific vol-
ume needed, note that a necessary and sufficient condition for
Va — V3 > V. — Var to be valid is

Va(pz — p2) Ve(ps — p1)
(y=Dp2+(y+1Lps = (ve = D1 + (v + ps’
according to the shock adiabatic relation for the transmitted

and reflected shocks. Since p3 > p» > ppand Vo < V4 it
follows that

(25)

Vi V.
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=D+ G+ 1(2) e D+ et 1) ()
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which is very similar to Eq. (7). In the same fashion, under
the assumption that the polytropic indexes are of the same
‘.:)r-cler of magnitude, Eq. (26) implies V. < 1/, which was an
initial assumption. Although Eq. (26) is not sufficient, due to

the fact that V,. is a first order quantity we can use in what
follows:

Vg > Ug. 27)

The inequalities in Eq. (24) and Eq. (27) will prove to be
useful later when we choose a more suitable reference system
to describe the problem in question.

4. Second initial discontinuity

Let us now analyse the situation for which 0 < t < 7. To
begin with let us prove that
wy < V3 + Ve = Uz, (28)
where the velocities w;, v2 and v, are defined in Fig. 1. Sup-
pose that the inequality in Eq. (28) is not valid, then, by ex-
pressing the velocities as function of the specific volumes and
pressures by means of Eq. (6) and the fact that po > py,
ps > pg and Vi > Vi, it follows that pg = pe; then as the
cloud’s density grows without limit, so does p3. Necessarily,
Eq. (28) has to be valid for sufficiently small values of the
cloud’s specific volume. It is important to point out that since
wa = |uy — wy| = us — wy, the gas in region 2 as drawn in
Fig. | travels in the positive x direction. According to Fig. |
flows in region 1 and 3 are related by
Wy, — W3 = Vp. (29)
Let us now prove a very general property of the solution.
Regions 2 and 3 are related to one another by the shock adi-
abatic relation. Since the gas in regions 3’ and 4 obey a poly-
tropic equation of state pz/ps = (Va/Va)™, it follows that

s _ (T_fi)"” (Y +1)Ve — (v - 1)V
pp \Va) (r+1)Va-(r-1)V;

Now, due to the fact that V3, < Vy < V1, V3 < Vo <V} and
~v,7e > 1 for a reasonable equation of state, this relation can
be brought to the form

P4
P2

V. ’
—(7—1)+(7+1)—£]%0, as p—1—>0, (30)
i P2

1
<3
according to the shock adiabatic relation. This result implies
that most of the energy from the incoming shock has been in-
jected to the cloud, no matter how strong the initial incident
shock is. Only a very small amount of this energy is trans-
mitted to the external gas that lies in the other side of the
cloud. Note that this result is of a very general nature since
no assumptions about the initial density contrast of the envi-
ronment were made.
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In order to continue with a solution at first order approxi-
mation in V.., note that we have to use Eqs. (13)—(15) together
with

pi =1+ Po» (31)
Vi = Vi, (32)
Vi =WV + V;, (33)

where the quantities with a star are of the first order. The ve-
locities w, and ws can be expressed as functions of the spe-
cific volumes and pressures by means of Eq. (6), for which
after substitution of Egs. (31)—(33) it follows:

w? = —piVy, (34)
2

ws = 3 (\/”rcpso 3 — V1ep1V; )

C

The specific volumes behind the transmitted shock and
the reflected rarefaction wave are obtained from the shock
adiabatic relation and the polytropic equation of state for the
gas inside the rarefaction wave:

(35)

*

Vi =-nii (36)
"rpl
3 /7.

Vii=Vy (—") ’ (37)
21

By substitution of Eqgs. (34)—(36) and Eq. (11) in Eq. (28) the
required solution is found:

pi_ [y Ve
+ TA (38)
P2 P2 Vl ( )
where
"ﬁ (Ye + )p1/p2 + (e — 1)p3, /P2
’Yc—lpl/Pz+( + 1)p3, /p2’
(psa- Pl)/Piz

V(e = Dpi/p2 + (7 + )ps, /2

P] p30

For completeness the limits for the case of strong and
weak incident shocks are given:

Py _ ¥(3y-1)
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FIGURE 3. Variation of the pressure ps behind the transmitted
shock into the external medium as a function of the strength of the
incident shock. The continuous line represents the case for which
the cloud has infinite density and so it does not transmit any shock
to the external medium. The dashed curve represents the case for
which the cloud’s specific volume is a quantity of the first order.
The long-dashed (dash-dotted) curve is the limit for which a strong
(weak) incident shock collides with the cloud at the same order of
approximation. The perturbed curves were produced under the as-
sumption that p./p1 =100 for monoatomic gases.

It follows from Eq. (39) that py < p» as the strength
of the incident shock increases without limit. This result was
given by a very general argument in Eq. (29). Figure 3 shows
the variation of the pressure p4 behind the shock transmitted
to the environment as a function of the strength of the initial
incident shock, after the second initial discontinuity.

5. General solution

Having found values for the pressures p} and pj as a func-
tion of the initial conditions p;, p2, V; and V,, the problem
is completely solved. Indeed, using the shock adiabatic rela-
tion V5 is known. With this, the values of Vii, V%, V' and

74 are determined by means of Eq. (19), (20), (36), and (37)
respectively. The complete values for pressure and specific
volumes are obtained thus with the aid of Egs. (13)-(15) and
Eqs. (31)-(33). The velocities of the flow, as defined in Fig. 1,
are calculated either by mass flux conservation on crossing a
shock, or by the formula given for the velocity discontinuity
in Eq. (6). The hydrodynamical values of the pressure p; and
density pj, inside the rarefaction wave come from Eqgs. (2)-
(3).

In order to analyse the variations of the hydrodynamical
quantities as a function of position and time, let us now de-
scribe the problem in a system of reference in which the gas
far away to the right of the cloud is always at rest, as presen-
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FIGURE 4. Description of the problem of a collision of a shock

with a cloud in a system of reference for which the gas far away to
the right (at x = oo) is always at rest. Originally a shock is travel-
ling to the right and hits a tangential discontinuity (top panel). This
produces a discontinuity in the initial conditions so a reflected and
transmitted shock are produced; the gas in the cloud begins to ac-
celerate (middle panel). Eventually the transmitted shock into the
cloud collides with its right boundary producing a “reflected” rar-
efaction wave bounded by two weak discontinuities (region R) and
a transmitted shock into the external medium (lower panel). In this
system of reference every single discontinuity produced by means
of the interaction move to the right, except for the reflected shock
produced after the first collision. Arrows represent the direction of
motion of various boundaries and direction of flow. Numbers label
different regions of the flow. Dashed lines represent shock waves,
dash-dotted ones weak discontinuities and continuous ones tangen-
tial discontinuities.
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ted in Fig. 4. Let zy and x;, be the coordinates of the left
and right tangential discontinuities, 2 and z,, the coordi-
nates of the reflected and transmitted shocks produced after
the first initial discontinuity, y, the position of the transmit-
ted shock after the second initial discontinuity and z, and
xp the left and right weak discontinuities which bound the
rarefaction wave. The new velocities are defined by Galilean
transformations:

Uy = Uz + Vg, (41)
Ugt = Vgl — Vg, (42)
Ugr = Vgr + V¢, (43)
Vp = W) — Wg, (44)
Ver = W1 + Wsp. (45)

The direction of motion of the flow is shown in Fig. 4 and
it follows from Eqs. (24), (27), and (42) that u points to the
left in this system of reference. Since, in the same frame, v,
and w; point to the right, continuity across a weak disconti-
nuity demands v, to do it in the same way.

The tangential discontinuities and the shocks produced
by the initial discontinuities move with constant velocity
throughout the gas. This implies that the time at which the
first initial discontinuity takes place is

to = — = (46)
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where A represents the initial width of the cloud. Hence, the
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FIGURE 5. Variation of the pressure p and density p (with respect to the initial pressure p1 and density p of the environment) as a function of
position z (normalised to the initial width of the cloud A) and dimensionless time ¢ (in units of the time A /c1-where ¢, is the speed of sound
in the external medium). Dashed lines represent shock waves (S), dot-dashed lines are tangential discontinuities (T), which are boundaries
of the cloud, and short-long dashed lines represent weak discontinuities (W), which bound a rarefaction wave. The system of reference was
chosen so that gas far away to the right of the diagram is at rest. The diagram shows the case for which pe/p1 =10*, and the polytropic

indices correspond to a monoatomic gas.
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positions of all different discontinuities for o < ¢ < 0 are

Tor = Ugpt, (47)
T = —A —ugy(t—ty), (48)
Ty = —-A =t 'Uc(t = t(]). (49)

and for 0 < t < 7, Egs. (48) and (49) are valid together with

1
e (ch;- w3 + (34) +unt, (50)
Ty = (w) —cq) t, (51)
Xsr = Vsrl, (52)
T =WGE, (53)

The time 7 at which the left tangential discontinuity collides
with the left boundary of the rarefaction wave is given by
Ty = x,, and thus

Tey = Vel + A. (54)

Figure 5 shows the variation of the pressure and density as
a function of time and position in a system of reference in
which the gas far away to the right of the cloud is at rest.
The width of the cloud varies with time, and it follows
from Eq. (49) and Eq. (53) that this variation is given by

X(t) = 0(t)wit + A —v.(t — to), (55)

where © (1) is the Heaviside step function. This linear relation
is plotted in Fig. 6.

6. Summary

The problem of a collision of a plane parallel shock wave
with a high density cloud bounded by two plane parallel tan-
gential discontinuities has been discussed. Radiation losses,
magnetic fields and self gravity of the cloud were neglected.
General analytic solutions were found for the simple case in
which the ratio of the environment’s density to that of the
cloud’s density is a quantity of the first order.
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FIGURE 6. Variation of the width of the cloud in units of its original
size A as a function of the dimensionless quantity ¢;t/A. Where
c; represents the sound speed of the gas for the external environ-
ment and ¢ the time. The curve was produced under the assumption
that p./p1 =10". The gas was considered to be monoatomic.

When the shock collides with the boundary of the cloud, a
discontinuity in the initial conditions is produced. This splits
the incoming shock into two shock waves: one which pen-
etrates the cloud and one which is reflected back to the ex-
ternal medium. When the transmitted shock into the cloud
reaches the opposite boundary, another discontinuity in the
initial conditions is produced, causing the transmission of a
shock wave to the external medium and the reflection of a
rarefaction wave from the point of collision.
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