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In the first part of the paper we review the singular value decomposition (SVD). This tool is a generalization of the notion of diagonalization
that can be used for matrices that can not be diagonalized in the usual sense. After stating the main theorem we discuss the use of the SVD
to find the ranks of matrices and to approximate matrices (by other matrices of lesser rank). In the second part of the paper we show how the
SVD can be used to assess if a given state in a tensor product space is entangled or not, and we provide an algorithm to produce the factors
into which the state decomposes. The SVD can also provide a “best” (in the sense of the 2-norm) separable state corresponding to a given
entangled state. The SVD provides a measure of the degree of entanglement. This measure is compared to other measures that have been
proposed. As a by-product, we show that the SVD allows the numerical calculation of the so-called Schmidt decomposition of tensor product
states. In the final part of the paper a possible extension of these methods to the case of statistical mixtures is proposed.
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En la primera parte de este trabajo revisamos la descomposicién en valores singulares (SVD). Esta herramienta es una generalizacién de la
nocién de diagonalizacién que puede usarse con matrices que no pueden ser diagonalizadas en el sentido habitual. Después de mostrar el
teorema principal discutimos el uso de la SVD para encontrar rangos de matrices y para aproximar matrices (por otras matrices de menor
rango). En la segunda parte del trabajo mostramos cémo la SVD puede usarse para decidir si un estado dado en un espacio producto tensorial
estd enmarafiado o no, y proporcionamos un algoritmo que da los factores en los que el estado se descompone. La SVD puede también dar
“el mejor” (en el sentido de la 2-norma) estado separable que corresponde al estado enmarafado dado. La SVD da una medida del grado de
enmarafiamiento. Esta medida se compara con otras medidas que se han propuesto. Como producto colateral mostramos que la SVD permite
el cdleulo numérico de la llamada descomposicién de Schmidt de estados producto tensorial. En la parte final del trabajo proponemos una
extension de estos métodos al caso de mezclas estadisticas.

Descriptores: Estados enredados; descomposicion en estados singulares; descomposicion de Schmidt

PACS: 02.10.sp; 03.65.Bz; 03.67.-a

1. Introduction the first section is devoted to an elementary exposition of this
tool given that it is not very well known in the physics com-
munity.

The singular value decomposition can also be used to pro-
vide a measure of the distance between a given state p and the
nearest (in a suitable sense) unentangled state. In all cases
our method provides the factors of the unentangled states in-
volved.

This analysis of entanglement can be performed quite
easily with the help of Maple, Matlab, Mathematica or any
other numeric and/or symbolic software package.

Consider two physical systems S; and S». According to the
principles of quantum mechanics they are to be described by
means of two Hilbert spaces H; and H,. The compound sys-
tem S3 = S U S, is also described by a third Hilbert space
H3 that is the tensor product of the spaces H; and H, so one
wries

H; = H, ® H,.

If a given vector P € H; can be written as

The SVD also provides a simple numerical algorithm
for performing the Schmidt decomposition of tensor product
states.

p=a®b

for some a,b € H; @ H, then one says that the state p is un-
entangled (separable, factorable); otherwise the state is said
to be entangled (non-separable).

There is a large (and growing) body of literature concern-
ing the relevance of entanglement in several areas such as the
transition from the quantum to the classical world, and quan-

2. The singular value decomposition (SVD)

In this section we present the singular value decomposition

lum computing among others.

In this paper we present a simple criterion to decide
whether a given state p is entangled or not. The criterion uses
the so-called singular value decomposition, for this reason

theorem in its various disguises and some of its applications
such as the estimation of the rank of a matrix and matrix ap-
proximations. For a proof of the SVD theorem the reader is
referred to Ref. 1.
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Theorem 2.1 (Singular value decomposition, matrix form)

Given a matrix T (square or rectangular, real or complex)
there exist matrices U/, V' and X such that:

1) T = UTV* (here V* denotes the conjugate-transpose
of V', or adjoint).

2) U and V are unitary (orthogonal in the real case).

3) ¥ is real, diagonal, with non-negative elements ar-
ranged in decreasing order along the diagonal. It has
the same size as T'.

This factorization of T is called “singular value decom-
position” or SVD for short.

The diagonal elements of ¥ are called “singular values”
of T. The columns of U are the “left singular vectors” of T
whereas the columns of V' are the “right singular vectors”
of T'.

Notice that

Wi WERYY,
and
TT* = US*U*

so the right singular vectors of T' are simply the eigenvec-
tors of T*T whereas the left singular vectors of T' are the
eigenvectors of T7™*. The singular values are the square roots
of the eigenvalues of either T*T or T'T™(with a few zeros
added, as needed).

This theorem can be expressed in a somewhat longer form
that is of relevance to our work:

Theorem 2.2 (Singular value decomposition)

Let V and U be inner product spaces over the field of com-
plex or real numbers. Let T : V. — U be a linear trans-
formation, ker (7') the kernel of T', Im (T') the image of T,
r = dim [Im (T)] the rank of T Let m = dim (V) and
n = dim (U).

Then there exist an orthonormal basis
y Um }

{’UI,UE!' ve 3 UpyUpgly - -

of V. an orthonormal basis {u; Uz ., Ur, Upt1,. .. ,Un} OF
U/ and real positive numbers oy, 032,... ,0r such that:

l. {Vy41,--. ,Um} is an orthonormal basis of ker (T').

2. {uy ua, ,u,} is an orthonormal basis of Im (T').

3. {v1,... ,v.} is an orthonormal basis of [ker (1)
4. {tps1,...  un} is an orthonormal basis of [Im ('T)]L
5. Tv; = asu; and T*u; = oy for 4=1,...,r.

6. Tv; =0forr <i < m.
7. Foranyw € V T(w) = ¥i_, 0i (vi, w) u;.

In Dirac’s notation (favored by physicists, mostly when
dealing with quantum mechanics) the SVD can be written
simply as

T = z o;|ui){(vil,
=

and in this way it resembles a spectral decompaosition or even
a density matrix (this is nothing but the usual outer product
expansion in a fancy notation). '

This decomposition is useful mostly when (in the case
U = V) the operator T : V' — V is not normal (a normal op-
erator is one that commutes with its adjoint so [T, T*] = 0)
because an operator is normal if and only if it has an orthonor-
mal basis consisting of eigenvectors. When the operator T' is
normal it is usually more convenient to decompose (spectral
decomposition) it as

mn

T =Y Aifvs)(wil,
i=1

where )\; are the eigenvalues of T" and {|v;)} is an orthonor-
mal basis of V consisting of eigenvectors of T (T'|v;) =
\i|vi)). However the real power of the SVD is manifest when
dim (U) # dim (V') and the matrix representing T' with re-
spect to a given basis is not square; unlike the spectral decom-
positions, the SVD remains valid for rectangular matrices.
Notice that the matrix of 7" with respect to the bases

{01 Uy o 5 Wy Uy wovn i}

and
{1 uz,..., Ury Urt1y -+ 2 Un}
is given by
ﬂ/f(T),‘h,' = {’lt", T'Uj) = (uz‘,a_,-uj) = G’j(si,j,
forj =1,2...rand
M{T)i; =0

otherwise.

Sometimes by singular values one means not just the set
By S e oy
but the same set padded with zeros
7 B0 [N

01,02, .-

in order to complete p singular values with p = min {m,n}.
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2.1. Matrix norms

In the space of n x m matrices (or of linear transformations
T :V — U) we may define a norm (the 2-norm) by

|T| = sup (@) = sup

zev \ 2] z€V,|z|=1

(where |T'z| refers to the vector norm in U and |z| to the vec-
tor norm in V'), and in terms of the SVD it can be shown that

(IT')),

IT) = o1

so the largest singular vector gives the matrix norm.
The so-called Frobenius norm (known as Hilbert-Schmidt
norm in the physical literature)

ITlF = Z | T3P = \/TW
1,7

can also be expressed in terms of the singular values as

ITle = [ loal?.

2.1.1. Matrix approximations

As we have seen

T
= Z oiug ) {v;],
=i

so we may wonder about the “goodness” of approximations
given by

h

Ty = Z CH‘!U:')(THL

=1

with i < r. Notice that T}, is a matrix of rank h.
It can be shown that [2]

”T - Th." = Oh+41

and the SVD gives a quantitative measure of how good the
approximation is.

Another measure of the goodness of the approximation is
the relative distance defined as

1T = Th| _ onga
Rd = -
|7 T

that satisfies 0 < Rd < 1.
Actually T}, is the “*best” rank h approximation to T, in

the sense that it achieves the minimum of {|T" — Ty|| |T§ has
rank /}.

2.1.2. Rank of a matrix

In linear algebra courses the lecturers cheatj. When they
teach us how to compute the rank of a matrix they always
use “nice” matrices such as

1L 2 3
4 5 6],
7 8 9

whose rank can be determined in many ways (for instance by
means of reduction to the Hermite Normal Form). But what
about the matrix?

1 0 0
=0 10°7 0
0 0 1045

which, strictly speaking has rank 3. If your experimental er-
ror is of the order of, say, 1072° then certainly you may (you
must;j) consider the 10~%5 term as zero and conclude that
rank (T') = 2. If you are using a calculator with six signifi-
cant figures then the rank has to be taken as one;j.

The SVD is the only tool (to our knowledge) that can
provide a sensible analysis of the rank for “real life” matri-
ces. In principle the rank of a matrix is the number of singu-
lar values different from zero. In practice you must choose a
tolerance tol such that any singular value less than tol will
be considered as zero. tol is normally chosen on the basis
of the experimental error in the measurements, in any case
tol is larger than the smallest number that the computer can
meaningfully consider as different from zero [Matlab uses
MAX(SIZE(T)) * NORM(T) » EPS, where EPS is
-'_‘)—52]‘

In machines with IEEE arithmetic, tol should be larger
than the smallest number larger than one that can be repre-
sented in the computer. For a PC it will be of the order of
1048,

3. On entanglement

Consider the spaces C"* and C™ and define their tensor prod-
uct by

a®b=ab’ =|a) @ |b)

(aand bare n x 1 and m x 1 matrices, respectively) so it is
an element of C"*™ (the space of all complex-valued n by
m matrices). This is the tensor product we will use, all other
tensor products are isomorphic to this one. The correspond-
ing tensor product space will be written accordingly as

C!EXTIL — Cﬂ. (‘b C’n?. i

A vector of [v) in C™*™ is called “factorable” (or “sepa-
rable”) if it can be wrilten as

Jv) = la) ® [B)

with |a) € C* and |b) € C™. Otherwise it is called “entan-
gled”.
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Next think of p € C"™™ as a linear transformation
p:C™ = C"
v pu

Theorem: p =|a) @ |b) for some |a) # 0 € C* and
|b) # 0 € C™ if and only if rank (p) = 1.

Proof: If p =|a) @ |b) then pv = a(bTv). In this case
Im (p) = span (a) and rank (p) =1

Conversely, if rank (p) = 1 then by the SVD theorem p
can be written as cab* = oa(b)” where the vectors a and b
are normalized.

This theorem gives a practical way to determine if a given
state is entangled or not: construct the tensor product matrix
and determine its rank; if the rank is one then the state is
factorable, otherwise it is entangled. In case the state is fac-
torable, the SVD yields the factors (the left and the right sin-
gular vector corresponding to the non-zero singular value).

But there remains a problem: as explained above, to de-
termine whether the rank of pis one or not can be a tricky
business if the matrix is pathological. For this reason we pro-
pose a slightly different strategy. Given a matrix p € C**™
and its SVD, say [U, X, V] = svd(p), then we can form the
best (in the 2-norm sense explained above) rank-one approx-
imation to p as

pl = B{1.73) « UL, 1) » VE, 1

(here we used Matlab’s colon notation: U (:, 1) is the first col-
umn of U and V (:, 1) is the first column of V', V(:,1)" is the
conjugate transpose of V'(:, 1)) and £(2, 2) is the distance (in
the 2-norm again) between p and pl.

Thenifa = £(1,1) * U(:,1) and b = V(;,1) pl =
a®b=abl

A useful Matlab (or Maple) program would be, then, one
giving £(1,1), £(2,2), U(;,1) and V(;,1) .

For instance, take p as

(1 2 3
P=11.001 2.001 3.001/°

then
U= —.70696 —.70726
T A—=70726 70696/ °

e 5.2926 0 0

= 0 46281 510 0}
—.34 87285 40825

V = | —.53454 21817 —.8165
—.80175 —.43651 40825

Notice that the procedure does not require the matrix to
be square.

This example illustrates the main features of the proposed
algorithm. First notice that the input matrix p was designed as
a matrix with two rows almost identical (second row is first

row plus the vector [.01, .01, .01]). This fact is reflected in the
fact that the second singular value is quite small but not zero.

As a second example consider the maximally entangled
state

s
R

(here both H, and H, are two-dimensional) so the relevant
matrix is

|a) (100) + [11))

. 0

m= V2 ;
5
V2

with singular values o; = o2 = 1/+/2. Thus |a) is at a dis-
tance 1/+/2 of the closest unentangled state, the relative dis-
tance achieves the maximum value of Rd = o5/, = 1; the
Flosest state is }‘a)c = % |00) (actually, in this case, % [11)
is at the same distance).

For all these reasons it is concluded that o (or o2 /0y)
gives a measure of the degree of entanglement: it tells if the
state is entangled or not and it also gives the distance to the
closest unentangled state. In addition, it provides a link to
modern linear algebra (via the SVD).

3.1. General spaces

Let I/ and V be finite-dimensional vector spaces over the
field of complex numbers and let n = dim(U) m =
dim (V). Let W = U @ V be the tensor product space of
Uand V.

If we introduce bases for these spaces

o= il Aln; 5 Ba ds
B= {07,050 U by
v = {u; ®v;},

then, givena € U and b € V' we can write

n

a= E a;ug,

=1

m

b= E bjv;,
j=1
n

m
a®b= Z Z a,,-bjui ® vy,

i=1 j=1

and proceed as in the previous section using the coordinates
of a, b and a®b which are in C*, C™ and C**™ = C* @C™
respectively. In other words, there was no loss of generality
in the treatment of the previous section since U is isomorphic
to C*, V is isomorphic to C™ and U @ V' is isomorphic to
cCreCm.
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3.2. The Schmidt decomposition

As a by-product of the technique described above we obtain
the so-called Schmidt decomposition of a state in H; @ Hs.
Letp € Hy @ H,, then decomposing p by means of the SVD
we obtain

=

p=)_ailud(v| =) o UV

i—1 i=1

(here U" and V" are the columns of U/ and V respectively).
Defining W* = conj (V') we have that

p= ,Z o UWiT

=1

and

r
P = Z O',‘Ui ® Wi,
=1
where the o; are real and non-negative (for this reason
in the literature one frequently finds 0/ = &2 and p =

Z::I vV G“E[ji C*_\ M"i)
3.3. Statistical mixtures

When the states in H3 = H; @ H, are not pure states and are
described by a density operator p the SVD algorithm for dis-
entanglement can still be applied with some modifications.
Below we sketch the procedure, the details are presented in a
forthcoming publication:

¢ By means of a spectral decomposition expand the den-
sity matrix p as

p= 3 Nilui)(uil
i=1

where n is the dimension of the tensor product space,
{Ai} are the eigenvalues of p and {|u;)} is an orthonor-
mal basis of the space formed by eigenvectors of p.

¢ Next use the SVD algorithm to analyze each |u;) &
H, @ H,. The measure of entanglement in this case
would be the set of the second singular values for each

I'“-i)-
3.3.1. When are all these methods likely to be useful?

In the literature, most of the time, the problems are solved ex-
actly in algebraic closed form. When numbers are needed (for
instance to exemplify the techniques) simple whole numbers
or fractions are used. But in real life data are obtained from
experiments!.

For instance, if the density matrix p is needed, it can be
obtained by measuring various observables { A;} and since

{(4i) = Tr (pA:)

(by a suitable choice of the set { A;}) p can be completely de-
termined [5]. But then the numbers to be used in the measure-
ment of entanglement are subject to experimental errors and
numerical techniques such as the SVD are absolutely neces-
sary. The SVD provides the tools to deal with experimental
(and also numerical) error so decisions (concerning rank, for
instance) can be made.

4. Conclusions

In this work we have achieved the following:

1. We have shown that a state is unentangled if and only
if the rank of the tensor product matrix is one.

2. We have shown how to determine the rank of the tensor
product matrix. We argue that (given numerical errors
or even experimental ones) the right tool is the SVD.

3. We have shown how to find the distance (in the 2-norm)
from a given state in H; @ H, to the nearest (in the 2-
norm) unentangled state.

4. We have provided an algorithm such that given p €
H, @ H, it gives:

o The first singular value of p. This number is also
the 2-norm of p.

e The second singular value of p. This number is
zero if and only if the rank of p is 1 and if and
only if the state is unentangled. This number is
also the 2-norm distance between p and the un-
entangled state pl € H; @ H, that is closest to
p.

e It provides the unentangled state p1 € H, ® H,
that is closest to p. referred to above.

e It gives the factors of p; i.e. it gives the vectors a
and bsuch thatpl =a @b

Using the second singular value o5 as a measure of en-
tanglement has several distinct advantages such as:

e oy = 0 if the state is disentangled

e Is invariant under unitary similarity transforma-
tions (i.e. does not depend on the choice of basis)

The two properties above are considered as requirements
for any “gcod” entanglement measure (see Ref. 3 and refer-
ences therein). Our measure probably satisfies the third re-
quirement as formulated by Ref. 3, since a related measure
(Frobenius norm) does indeed satisfy it [4] and in C" all
norms are equivalent. Certainly o, does not reflect the “in-
formation content” unlike the familiar measures of the form
Sy Tr (pi In(p;).

Certainly the SVD is not the only tool available for the
determination of the rank of a matrix. Other possible choices
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include the Hermite Normal Form (or row-reduced echelon
form) and the QR (orthogonal-triangular Householder) de-
composition. However the SVD is more robust and by far the
best choice if the matrices are suspected to be close to rank-
deficiency.

It has been shown that the SVD can be used to perform
the Schmidt decomposition of a tensor product state.

All the results have been stated in terms of the 2-norm,
however they remain valid, with minor modifications, in the
Frobenius norm |T|r = /3 |oi> = /Tr(TT*) that
gives rise to the so-called Hilbert-Schmidt metric. The mea-
sure of entanglement proposed by Witte and Trucks [4] is

based precisely on this norm; in our language their measure
is simply /> _,_, |oi|* where the o; are, as before, the sin-
gular values.

Finally a possible extension of these methods to the case
of statistical mixtures has been proposed.

No attempt has been made to discuss the infinite-dimen-
sional case.
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