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Two-dimensional lattice with electromagnetic gauge field and fermions included
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In this work we deal with the inclusion of fermions on a 2-dimensional lattice with electromagnetic field as the gauge field. We have improved
a previous work by introducing explicitly the Dirac gamma matrices in the fermionic determinant and by testing gauge invariance of others
terms that appear in the integrals. We find that gauge invariance is preserved, which in turn means that no It terms are needed in the effective
continuum action.

Keywords: Lattice theory; gauge theory; gauge invariance

En este trabajo tratamos la inclusion de fermiones en una red de dos dimensiones con campo electromagnético como campo de norma. Hemos
mejorado un trabajo anterior introduciendo explicitamente las matrices gamma de Dirac en el determinante fermi6nico y comprobando la
invariancia de norma de otros términos que aparecen en las integrales. Encontramos que la invariancia de norma se preserva, lo cual a la vez
significa que no son necesarios los términos de It6 en la accidn efectiva continua.

Descriptores: Teoria de redes; teoria de norma; invariancia de norma
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1. Introduction

In a previous paper [1] we have reported the invariance un-
der local gauge transformations of the partition function as-
sociated with the electromagnetic field in the presence of
fermions. This was done for the d = 2 and d = 3 cases,
d being the lattice space-time dimension. This accomplishes
the work [2] where it is shown gauge invariance for a lattice
with electromagnetic field, but in the absence of fermions.
The fact, which is actually expected because the flatness of
the /(1) manifold, has also to do with the nonsymmetric It
terms [3, 4] in the effective action, which should be added to
the action to maintain gauge invariance.

The next task was supposed to be the four-dimensional
case, but the computational job turned out very hard, going up
to some weeks of continuous work using Mathematica pro-
gram plus other simplifications in the fermionic determinant.
Such extreme work is typical when dealing with lattice gauge
theories [5, 6] so it should not be surprising.

Anyway we have opted for the easier case d = 2, but em-
ploying explicitly the Dirac matrices in the determinant, in-
stead of using some simplification introduced in Ref. 1. This
renders a resulting determinant with 8 rows and 8 columns,
that is, twice the size of that one if such matrices were ig-
nored, and this involves more calculations. Of course, the
larger the dimension d the larger the computational work.

We have organized this paper as follows: In Sec. 2 we
write the partition function Z, expressing then the corre-
sponding determinant. Section 3 is devoted to check the
gauge invariance of Z. Finally, in Sec. 4 the conclusions are
presented.

2. The fermionic determinant

For a review of lattice theories see for instance [7-10]. Here
we will concentrate in some results for a lattice, just to know
the set of variables that have to be managed and which of
them are relevant.

The problem of fermions inclusion on a lattice is not so
trivial since it brings renormalization difficulties [9]. There-
fore one has to test effectively gauge invariance of the cor-
responding action in the continuum limit @ — 0; the corre-
sponding action is written as
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We shall follow the notation of Ref. 1, with the corrected 1 6, 2 0, 1
expression for Eq. (4), where U, = e'?un . The associated > >
partition function takes the form [7]
™ d—4 0.4 a, Ag &, 1\9
_ —Ma)T7" () _cos ) 2 23 24
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We have chosen to integrate over the link variable #,, = > >
6,.Here!' # 1 = 1 and P’ represent the set of plaquettes that 1 P 2 6, 1
does not share the [ = 1 link. The figure for the plaquette and "
the definitions of the plaquette variables o, i = 1,... ,4, FIGURE 1. Two-dimensional lattice  with  plaquettes
change with respect to Ref. 1 as follows (see Fig. 1): {a, 9, a3, 4 }.

ay =0y + 0y — 01y =0y =05 + s,

ay = b1y + 0y — 13— 0yy = —0 + [y, y T 0 g
g = O3 + b4 — 015 — O3, @) = (U _1) v = (1 0) J ()
ay =014 + by — 01y — Oz,

The convention that we adopt for the gamma matrices is

v

which fulfiles
with
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and K="k O
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By =015+ 05 — 013 (5) T2
] The determinant obtained from (2) is
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where
crp = K (672 4 ¢24), cis = K(e™® — ), ¢y = K(e™¥n — ), Cop = K (€721 4 i24),
G = ]\'(e*iﬂzz L ewzs)’ By = K(e'iﬂzz = e’;gzs), e =K (e—‘igzz = ei923)1 b= [{(e‘wzz ER ei923)’ 9)
sy = K (€728 + €¥22), sy = K (e — &), gy = K(e ¥ —e¥), cea = K (€728 + &22),
ey = K (e +e%n1),  cpy = K(e ¥ —en), ¢ =K(eu-e"), o= K (e 4 i),
The terms of (det A,,,,) which contribute to 6, are displayed as
det Ay, =1+ 64K? + 768K° + aK® + bK* + cK® + dK®, (10)
with
a = —8cos ¢, (11)

b = —8(cos ¢; — COS ¢y + COS b3 — COS Py + COS Py + €OS 1 + COS Py + COS Py3)
+ 16(cos ¢s + cos ¢ + oS Py + €08 ¢og) + 32(cos P13 + oS Pyy),
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¢ = 128(— cos ¢ + cos ¢y + COS Py + COS Py + COS Py — COS P43 + COS Pyy)

— 32(cos ¢y5 + oS g + COS P 7 + COS Py + COS P19 + €OS Py + COS a1 + COS Pay), (12)

d = —256(cos ¢, — cos ¢, + oS p3 — COS Py + COS Py + COS P + COS gy + COS Py,) + 128(cos ;5 + COS By 4)

+ 64(cos g + 0S¢y + €OS gy + COS Pyy — COS Py — COS Bpy — COS g — COS Pog)

+ 32(co8 Py7 + €OS Pyg + COS g + COS Pyg + €OS g + COS gy + COS Pgy + €OS Pgy) + 512 cos @35,

and

$o = O35 + b33,

b3 = =013 — 014 — 05 + 05,
$g = =01 — 013 + Oy + 6y,
b9 = 6yy + b3 + 63y + 0,4,
b1z = =01y — 014 + 0y + 0y,
P15 = 011 + 015 + O3+ 014 + 03y + 055,
P17 =011 + 01 — b3 — 014 + 655 + 655,
19 =01 + 615+ 0y + 05y + 653 + 0,,,
Pa; = 013+ 014 + 0y + 055 + 055 +0,,,
P23 = =011 — B13 — By + 0y + 03 — Oy,

Pos = —b13 — 014 — 03y + 0,y + 653 — by,

By =611 + 6015+ 6013+ 0,4 + 6,y + 0y + 054 + 6y,
P29 = 011 + 015 — 015 — 014 + 031 + 6yy + 653 + 6,4,
P31 = =0,
P33 = =0,
P35 = 011 — 015+ 013 — 014 — O3y + 655 — 05 + 8.

— 013 — 013 — 014 — 031 + 055 + 6y3 — 0,

—9]2 + 913 + 814 i 921 +622 +623 == 924,

¢y =0y + 013 — 03 + 0,
G4 =0y — 614 — 0y + 0y,

G13 = 031 + Oy + Oa5 + 0,

Oy = —b15 + 013 — O,y + Oy,
@5 = 011 + 615 + 655 + 053,

G7 =013+ 6,4+ 0y9 + 0,3, O = =013 — 014 + O3 + 6y,
P10 = 012 + 013 + 05, + 8y, P11 = 011 — 014 + 025 + 64,

P14 = =031 + 025 + Op3 — by,
$r6 = =011 — 013 + 013 + 6,4 + 05y + 0,3,
P18 = —6y — 01 — 013 — 014+ 055 + 0,3,

Pao = =011 — 015 + 651 + 055 + 053 + 6,

-
)
0

|

= =013 — 014 + 631 + 0,5 + 6o + 0y,

Gaq = 011 + 013 — Oy + 6py + 653 — by,

Pas = 013 + 014 — O3y + 05y + 633 — Oy,

Pog = =01y =015 + 013 + 014 + 0, + Oy + 053 + 6y,
P30 = =0y, — 0,
P32 =011 + 613 — O3 — 014 — 63y + O3y + 05 — 6,

=013 — 014 + 6y + 055 + 0y5 + 0,

P3q =011 + 015 + 013+ 014 — 01 + 655 + 053 — By,

Although there exist so many terms in Eq. (13), we shall see in next section that they can be managed without difficulty to

give us the invariance that we are seeking.

3. Testing gauge invariance

Now we proceed to verify the gauge invariance of Eq. (13),
and therefore of the partition function (2).

As we can see from (3), a3 and «, do not contribute to
the integrand over ¢, , since 6, does not appear there, but a,
and «v, do contain #,. Now, for d = 2, (2) becomes

Z-l:/ dﬁl(detAnm)exp_KTl(“f“’g), (13)

where we have omitted the first integral there and K is de-
fined in Ref. 1. Furthermore, we made the approximations

cosflp =cosa; ~1— et

1 .
cosfp, = cosa, ~ 1 — En.ﬁ. (14)

Rearranging (14) and taking the continuum lima — 0,
one has

oo
2, = [ dﬁi(detAnm)exp_‘v‘”[mau%(ﬁ‘*'a")z], (15)
J =00
with
1
6, =6, - 5(51 + B,). (16)

In this work we further improve with respect to Ref. 1
by testing the gauge invariance of the remaining terms which
even if they do not contribute to the integral (14) they, how-
ever, arise directly from (13). In fact, let us consider the first
term different from constant of (10), which is Eq. (11):

cos (055 + 053) = cos (o + &),

0o = 014 + 021 — ;1. a7
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We require local gauge invariance of #p (or o) under

A(n.)],

where A(7n) is an arbitrary function defined on the lattice sites
1. Then each 6,,,, of Fig. | changes as

Hjlll =¥ 9,(471 + Q[A(” o #) - (]8}
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Baq = O34 + g[A(1) — (19)

From here one confirms easily that g is invariant under
(19). I, becomes in turn:
| [ .
122 = exp {[—51\ (By + ,62)2][——1\’(,31 + 3,) sin dp

+ (2N - M - %(ﬁl + ﬁg)g)cosdn]}, (20)

OO " 1 T
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Since 3; + 3, results to be gauge invariant, as well as &g,
one concludes that 122 also satisfies such property.
Similarly

where

and

—2[\"9'12 9!2 1
=
4

(22)

cos (fByy — B2 + 13 + 8]1) = COoSs (0‘1 + Jﬂ). (23)

with d, = a4 — @3 — B2, invariant under (19), as well as

o= ‘,‘\])-[ B L (Bi+82)2) [N~ M+ N(51+82) ']_ (24)

Zy

Proceeding in the same way we obtain that the other terms

08 (22 — 021 — 614 — 012) = cos (a; — &3),
53 = (‘)“ + 912. (25)

etc., are gauge invariant.

Notice that

Ccos (922 + By3) = co8Has c08023 — sinfaz sinflaz  (26)
is not convenient to be integrated directly for our purposes,
since neither 623 nor the remaining integral, which is pro-
portional to (3, — Hz)z, are gauge invariant; nevertheless
the whole term [right hand side of Eq. (18)] has the re-
quired invariance as we saw already. So we have shown that
all the terms (13) that contribute to (2) are gauge invariant
and then the partition function satisﬁe‘; the same property.
(—1)

One also realizes that since cosa; = Z (crp)?™ and

n=0

o0

s . . .

sina; = Y éﬂ—_}mml)-’""'“ these expressions are gauge
n=o

invariant in general.

4. Conclusions

We have found that the effective continuum action for
fermions on a lattice with electromagnetic field is gauge in-
variant. This result, which also means that the Ito terms are
not necessary in the continuum action, could be expected
since we have in first instance a flat manifold, but the in-
sertion of fermions leave out such expectations. Besides, we
have decided to perform the calculations explicitly at least for
the 2-dimensional case. For larger dimensions one must in-
vest a lot of computational work. In fact, we have intended to
perform the calculation of the 16 x 16 determinant, which is
the d = 4 case following Ref. | but with negative results. The
computational time employed was about 2-3 weeks, contin-
uously, using a work station and a Mathematica program.
Since our purpose is simpler, just to show the mentioned in-
variance, and because it was hoped to confirm it, we preferred
to follow the way outlined in this paper.
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