INVESTIGACION REVISTA MEXICANA DE FISICA 46 (5) 446-452 OCTUBRE 2000

Excitation of gravity modes in the parameter space of the tidal wind system (II):
magnetic effects
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The Navier-Stokes, continuity and energy balance equations including magnetic effects for an inviscid compressible fluid in the ionospheric
F-region were perturbed around the tidal phenomenological solution. We imposed adiabaticity and incompressibility to the perturbation. Our
results satisfy the internal gravity wave (IGW) dispersion relation. The stable and unstable regions of these modes were derived as a function
of two control parameters, the colatitude # and the slow time evolution for tidal modes 7. These regions were obtained for different values
of the magnetic field intensity, showing good agreement with observational data for the South Atlantic anomaly. Our model predictions for
other magnetic field intensities corresponding to other latitude dependences need to be contrasted with new observational data. In addition
we show for some hours and latitudes that, resonant interaction occurs between low frequency tidal waves and two high frequency gravity
waves. In these regions, where tidal modes are linearly unstable. the gravity group velocity is modulated by a function of the tidal phase
velocity.
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Hemos perturbado —alrededor de la soluci6én de mareas fenomenolégica— las ecuaciones de continuidad y balance de energia que represen-
tan la regién F de la ionésfera (fluido ideal y compresible). Se han incluido efectos magnéticos e impuesto adiabaticidad e incompresibilidad
a las perturbaciones de modo que nuestras soluciones satisfagan la relacién de dispersién de las ondas de gravedad internas. Las regiones
estables e inestables de estos modos se han representado en términos de dos pardmetros de control: la colatitud 6 y el tiempo de evolucién
de los modos de marea 7. Estas regiones fueron obtenidas para diferentes valores de la intensidad de campo magnético mostrando un buen
acuerdo para los datos observacionales que representan la armonia del Atlantico Sud. Mostramos también que para ciertas horas y ciertas
latitudes se observa interaccién resonante entre las ondas de marea de baja frecuencia y dos frecuencias altas de los modos de gravedad. En
estas regiones, donde los modos de mareas son linealmente inestables, la velocidad de grupo de las ondas de gravedad se ve modulada por la
velocidad de fase de las ondas de marea.

Descriptores: Ondas de gravedad; mareas; regién F de la iondsfera; efectos magnéticos

PACS: 47.20; 47.35

1. Introduction In addition we examined the hypothesis about when grav-
ity modes in the F atmospheric region can be described by
stable and independent resonant triad. This is, the linear tidal
mode is unstable, giving rise, by a weakly nonlinear interac-
tion, to two stable gravity waves of finite amplitudes.

The paper is organized in the following way: the model,
is presented in Sec. 2. In Sec. 3 the procedure and the approx-
imations for solving the equations including magnetic effects
are given. Section 4, is devoted to the resonant interaction

analysis. Finally, in Sec. 5 we summarize our conclusions.

In the previous work (from now on Paper I) [1] we ob-
tained the linear stable and unstable regions of a basic quasi-
stationary tidal system (perturbative gravitational time of in-
terest ¢ < 7 characteristic tidal time). In that model the grav-
ity modes were obtained as a perturbation of a phenomeno-
logical solution of the TWS. The stability regions were de-
rived as a function of two control parameters, the colatitude ¢
and the slow time evolution of the tidal modes T (day time).

Of various effects which have not been considered in Pa-
per I, the hydromagnetic force would be most complicated for
rigorous treatment. This is so as it requires additional electro-
magnetic equations along with the fluid dynamic ones includ-
ing the hydromagnetic force. A simple way to deal with this
problem is to follow Kato and Matsushita’s [2] approach. As
an application of the procedure developed in Paper I, we in-
cluded the hydromagnetic force with the expression given by
Kato and Matsushita, to study its influence on the stability
regions.

2. The model

There is an extensive literature devoted to the description of
atmospheric tidal winds produced by gravitational and ther-
mal effects [2, 3]. Tidal fields are described by linearizations
around the steady state of the Navier-Stokes, continuity and
energy balance equations of a compressible non-adiabatic
fluid, taking into account Coriolis effects, the gravitational
potential due to the earth, the sun and the moon, and thermal
effects as well.
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Assuming the earth gravity as constant (g) and neglecting
viscous effects we can write

%:-%—2@xv—qz+}'+}‘mag, (1)
Ip

E%-V (p?) =0, (2)
DP 2 Dp _

Dt % Dt = (y = 1)Qp, (3)

where F is the force associated to the tidal gravitational po-
tential (sun and moon) and }'mag = (J x B(})/p includes the
magnetohydrodynamic effects. J=0 (E+7x By), E is
the electric field, By is the earth magnetic field and o is the
electrical conductivity. Q are the heat sources, @ is the earth’s
rotational velocity, v = C'p/Cly, s is the sound velocity and
D /Dt is the total derivative.

As we mentioned before, for the treatment of the mag-
netic contribution we adopted Kato.and Matsushita’s ap-
proach [2]. This simple approximation is to replace (J x
By) /p by the term proportional to ¥, neglecting the electric
field which is only important in the upper dynamo region.
Then, in this approach the magnetic force results

4)

where v is the velocity component perpendicular to the
magnetic field.

Notice that in this simple approximation for the region of
interest, Fp,,, does not depend on € and 7. As we said, the
neglected term in (J x gg)/,o is proved to be negligible in
the region of interest and Finag < Feoriolis- Then the over-
all assumptions and hypothesis of Paper I hold in the present
calculation. Again, we can obtain the IGW through the per-
turbation of Egs. (1) to (3) around the steady tidal solutions,
|

Fmag = avy = (0B} /p)vy
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taking into account that for the IGW the atmosphere behaves

as an adiabatic and incompressible stratified medium, de-

scribed as a large-scale quasi-horizontal velocity field. For

the tidal fields we take an average phenomenological solu-

tion whose functional dependence is the same as in Paper 1.
The resulting -perturbed equations are

v=[U(z,y,2,7),V(z,y,2,7),W(z,7)], (5a)
p=p(z,7), (5b)
P = P(z,7), (5¢)

where the horizontal dependence of W, p and P has been ne-
glected (Paper I). We choose a local coordinate system where
z is parallel to 9, g is parallel to ¢ and 2 is perpendicular to
the earth surface. 6 is the colatitude.

Our aim is to obtain the IGW through the perturbation of
Egs. (1) to (3) around the steady tidal solutions, taking into
account that for the IGW the atmosphere behaves as an adi-
abatic and incompressible stratified medium. Thus, we im-
pose adiabaticity and incompressibility to the perturbation.
For the tidal fields we take an average phenomenological so-
lution whose functional dependence will be given below.

The expressions of the perturbation amplitudes A; of the
velocity @, the density p and the pressure P can be written as

U’ U A,
V! 4 ) A,
w'l=I|w i ei(k-f—wt) A3 (6)
I p A,y
e 2 A;

respectively, where w = wy + iw; and k are functions of the
parameters  and 7. We consider that, up to zero order, the
amplitudes A; are not time dependent.

Following the same hypothesis made in Paper I, the resulting perturbed equations are

; - ou ou au
p{z (t')'-k—w) +5;—Ct'] A, +P(‘8;—2¢z) A2+P(T+2¢1;)A
(8t . o , , ] ;
+|3p + @ FU) +2(,W — 6.V) — aU| Aq +ikAs =0, (7a)
L J
av - av av
p(a*‘ 2¢, )Al +ﬂ[ ( k—u.)—*-%-a] A2+p($_2¢’r) A;
v ‘
5 + (7 VV) +2(6.U — W) — aV | Ay +ik,As =0, (7b)
o aw aw ow . p
— 206, A + 2peAs + p [z (U.k—w) - J A+ [ ot W +2(6:V - $,U) + 9| As +ik. A5 =0, (70)
[
%As +[i(7F—w)+ (V- 7)]Aq = 0, ) The amplitudes B ():(*) as well as the phases and periods
0z of the diurnal and semidiurnal tides respectively are shown in
2 (7 K — W)Ay — (7 F - wiAs =0, (9)  Table I of Paper I and for o we took the value 10~ Semu [2).

The functional dependence of the tidal velocity field @ are
given in Paper I.

Note that due to the proportionality of § to 7, the y depen-
dence of these expressions has been absorbed in the 7 de-
pendence. The density p(z), the amplitudes B(z), and their
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derivatives dp/dz, 9By [0z, 0By [0z and 0Bw [0z were
estimated from tables and graphics as the ones given in Ta-
bles I and II of Paper I for a height z = 300 km.

3. Magnetic effects

The system given by Egs. (7) to (9), has nontrivial solutions
in the amplitudes A if its complex determinant is equal to
zero. After a long but straightforward calculation we obtained
the determinant that gives two equations in wy and wy. The
modes that can be excited are those with wy > 0. We obtain
these excitation regions and the damping ones (wy < 0) look-
ing for the boundary curves wy = 0. These curves are the
separatrixes between damping and excitation zones.

Setting wy = 0 we obtain that w, must satisfy the follow-
ing equations:

Coo + Ciowr + meﬁ + Cgo(.uf’i + (lmu.#j}2 =0, (10a)

Doo + Diowsr + Daow? + Dsow? =0, (10b)

where the coefficients C and D depend on the component
of the wave vector k and the control parameters (6, 7), their
expressions are given in Appendix I. For the resolution of
Eq. (10) we followed the procedure described in Paper I. That
is, since the dispersion relation is unique either Eq. (10a) and
Eq. (10b) are the same (if Ciow? is negligible) or the set of
roots of Eq. (10b) is included in the set of roots of Eg. (10a).

If we estimate from literature wx and k characteristic val-
ues of the IGW and using the TWS parameters [1], we no-
tice that, for the extreme values of w, ~ 102 min~! and
47 -k ~ 1072 min~! there is an order of magnitude of dif-
ference between Cyow? and me;{ In the average case this
relation gives a difference of two or three orders of magni-
tude. Then we can say that Cpw? < Cmu If we repeat
the same procedure for the other terms, we found that again,
as in Paper I, Cag/(wrCao) < 10°. This allows us to neglect
the term Cypw? in Eq. (10a) and consider that Eq. (10a) and
Eq. (10b) are the same term by term.

From this assumption we were able to determine a func-
tional form (denoted by f) for the set of points (8, 73) in the
parameter space (#, 7) that satisfy the condition w; = 0 and
the associated wave vector h(F) 7) in selfconsistent way. Note
that the consistency of the method will be proved if the re-
sulting values satisfy the hypothesis of the model (about the
autonomous condition and the local wave number) and the
inequality estimated previously from phenomenological val-
ues. From the predicted values of the model given in Table 111
of Paper I, we have: wg ~ 51072 min~!; v ~ A/T ~ 1072

m/min: k. ~ 1073 m~? then Cypw? is less than two order of
magnitude than Cgr,u,-?,.
Then

FO 0y, 7) + D8y, ) + fP (8, 1)’
+ EAf(By, T, ) =0 (11)

and therefore vector k in the separatrix is given by

ke = k) (00, 7) + kD (B, ) + k) (0, 7y)a?

+ EAky (B, 1, 0), (122)
ky = kO (86, 70) + kD (B, 7o)+ EAKy (85, 75, ), (12b)
k, = k® (s, ) + EAk. (B, v, @), (12¢)
where

ol - o
1O = (E© -7) + (VQ 2 (142)
fO=U kP +V-k -z, (14b)
f(Z) = I ; kg‘”, (14¢)
Af = Ak U + Ak,V + Ak W, (15)

the explicit expressions of which are given in Appendix IL

In Egs. (11) and (12) the term with parameter £ is propor-
tional to the stratification of the medium. The parameter £ is
related to the Brunt-Viisili frequency N [4]. In our model,
for the reference height z = 300 km, £ = —2.910~% min*/m
corresponding to a Brunt-Viisald frequency of about N =
1.2 min~—!. The terms proportional to £ can be thought of as
corrections, which are proved to be negligible. Note that if
a = 0 the equations in Paper I are recovered.

The solution of Eq. (11) gives the boundary values (6, 75)
in the parameter space where wy(6y,7) = 0 and they are
shown in Fig. 1a for the case v = 0. As it was already men-
tioned these separatrix lines, separate the damping and ex-
citation regions. The values of k out of these curves are un-
known but close to the boundaries they must coincide with
the values Prcv:ous]y obtained. Moreover, near the separatrix
lines, the & values must be continuous and cannot be too dif-
ferent from the set obtained before. Then, for the parameter
values @ =~ 8, and T &~ 7, we can assume k(f) T) & L(Eb Ty)
and wg (0, 7) ~ w(fy,7) and solve the original equations
(obtained through the complex determinant) so as to obtain
wp near the borders, outside the separatrix lines. The sign
of wy(4/~) indicates respectively the growth or damping of
the perturbation in each region. The corresponding results are
symbolized with plus and minus signs in Fig. 1.

The earth magnetic field is latitude and longitude depen-
dent and its intensity ranges from 0.25 to 0.40 Gauss around
300 km [5]. This dependence is not taken into account by the
ion—drag force in Kato and Matsushita’s approach; then in or-
der to study the magnetic influence, we considered different
values of By for different colatitudes (see Table I).

In Figs. 1b and lc we show the damping and excitation
zones corresponding to high and low colatitude intensities of
By, respectively. Figure 1d represents the zones correspond-
ing to the carth magnetic field intensity of the South Atlantic
anomaly (Bp=0.25 Gauss, colatitude ranging from 40°-80°).
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FIGURE 1. Excitation and damping regions for the IGW as a function of 8 and T for (a) & = 0, sign + denotes excitation zones and sign —
denotes damping zones. The separatrix lines between each zone are denoted by Si;(b) a = 8 x 10~ % sec™!: (©)a = 4.5 x 104 sec™:
and (d) & = 3.125 x 107 % sec™! (South Atlantic anomaly). The separatrix lines between each zone are denoted by Si.

TABLE 1. Magnetic field intensity and coefficient o for low and
high colatitudes and the South Atlantic anomaly.

[ Bo (Gauss) a (sec™ )
10°-30° 0.40 8.000 x 10~
30°-70° 0.30 4.500 x 10~*
40°-80° 0.25 3:195 % 10~*

As we mentioned the magnetic field is latitude and longi-
tude dependent then, in Fig. 1b—1d we only show the latitude
zones where the magnetic intensities used occur.

Comparing Figs. Ib and lc with Fig. la we notice that
the damping and excitation regions have varied as a function
of the magnetic field intensity. However, comparing Fig. la
(a = 0) with Fig. 1d, we note that the differences are not

so pronounced for the South Atlantic anomaly case. In Fig. 2
we contrast the experimental results obtained by Giraldez et
al. [6] for Argentina (Buenos Aires # = 0.96 rad, Tucuman
# = 1.10 rad and San Juan # = 1.03 rad) with the pre-
dicted damping and excitation zones calculated both with and
without considering magnetic field (Fig. 1d and la, respec-
tively). S; corresponds to separatrix lines between excitation
and damping zones with a = 0 and S'; denotes separatrix
lines with & = 3.125 x 10~* sec™!. The agreement with
the experimental data is highly satisfactory. A data set more
widely spread in latitude is necessary to compare with the
predictions of Figs. 1b and Ic.

4. Resonant interaction

As itis well known nonlinearities in the equations and bound-
ary conditions governing any wave motion, lead to wave in-
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FIGURE 2. Experimental values of spectral power density in the
range 10-90 minutes obtained at: 0 Buenos Aires, () Tucumin
and A, V San Juan. S; denotes the separatrix lines between ex-
citation and damping zones with a = 0. §'; denotes the sep-
aratrix lines between excitation and damping zones with a =
3.125 x 107% sec™! (South Atlantic anomaly).

teraction. Nonlinear terms can be thought of as forcing the
linear oscillations, being the response of the same order as
the forcing term. An exception takes place when any of the
forcing terms has the same period and wavenumber as one
of the normal modes. This is called resonant interaction. Two
waves may interact at second order to excite a third wave by
resonance if not only are their frequencies added to that of
the third wave but their wavenumbers are also added [7].

A resonant triad occurs only if the dispersion relation is
such that

F(Fy + Ea) = fU1) + f(R2) (16)

and
ks = ky + Ko (7

This dispersion relation may be such that no triad of
waves can satisfy all the resonance conditions. There are two
kinds of resonant conditions

wy = wy +ws with El = .1_(7‘2 + ]i,_:g, (18)

Wi = ws — w3 with E]_ = Ez = ii;;;. (19)
In order to obtain finite and stable tidal and gravity ampli-
tude disturbances, conditions given by Eq. (19) must hold.
If condition of Eq. (18) holds, the amplitude of a wave with
frequency w; is nonlinearly unstable [7, 8] . Independent res-
onant triad are usually associated with problems with one

space variable and therefore only a scalar wavenumber [8]
Consider the following triad (kl,kg,g) where Ikll ~
|ie| ~ |k| and |&] < |k|. Thenk; = k + &and ky = k
form a resonant stable triad if
f(&) = f(k) -

F(Be) =Vt £ (20)

. b
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FIGURE 3. Tidal wavenumber k. as a function of the latitude € for
separatrix Ss.

For the tidal waves the mode identification is normally based
on the observation of the vertical structure and the tide tem-
perature. The horizontal components are usually neglected
(kI ~ kI ~ 0) [2]. Typical values in literature are kT ~
10=* _1 for diurnal tides and k7 ~ 107° m~! for semidi-
urnal tides.

Equation (20) can be thought of as an"equation from
which the tidal &7 modes can be obtained for each pair of
(A.7) values. Imposing a relative error |F(ET)/f(kT)| <
10~ with

af kT =0 (21)

POT) = FT) - 5| ¥
= | BG

we can obtain the k7 values solving numerically Eq. (21).

For simplicity we solve Eq. (21) for the simplified model
without magnetic effects. In that model the predicted grav-
ity modes are k¢ ~ 107° ,k§ ~ 107" m~! and
kG ~ 1073 m=1 for the separamx lines between exc1tat10n
and damping zones, denoted by S;,S3 and Ss in Fig. la.
We can assume collinearity between gravity and tidal waves
which generally implies independence between triad if Eq.
(21) is satisfied. For this group the numerical calculation gave
us k7 values between 107% m~' and 107* m~'. A typical
situation is displayed in Fig. 3 for the separatrix S3. Curve a
corresponds to frequency w; and curve b to w,. These values
are in very good agreement with the observational data men-
tioned above and with the phenomenological tidal solution
used in Paper I (a linear combination of diurnal and semidi-
urnal tides).

For the separatrix Sy, S5 and Sy the predicted kf values
are of the same order of the k¥ ~ 1072 m~! values and
k& ~ 107> m~*. For them we could not find the triad which
satisfies Eq. (21). Then, for these separatrixes the collinearity
condition (k. = k;‘f = ()), can be a strong hypothesis or an
approximation of higher order must be required. Work in this
direction is in progress.
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5. Conclusions

The Navier-Stokes, continuity and energy balance equations
including magnetic effects for an inviscid compressible fluid
in the low atmospheric F-region were perturbed around the
tidal phenomenological solution. We imposed adiabaticity
and incompressibility to the perturbation.

We derived the linear damping and excitation regions of

IGW for different values of the magnetic field intensity, in
the parameter space of our model (Figs. 1-5). The separatrix
lines (lines between excitation and damping zone of IGW)
present a functional dependence with latitude ¢ and the slow
time evolution of the tidal modes 7.

We examined the case of the South Atlantic anomaly
(Fig. 4) and found that the predicted time dependence of k
and w is in very good agreement with model predictions of
Giraldez et al. [6] and Canciani [9], and are confirmed by
experimental data given in Fig. 5. These values do not dif-
fer much from the calculations without taking into account
magnetic fields (Fig. 1) and are also indicated in Fig. 5.

However, great differences of the general pattern ofre-

dp
C =
= 52

{r:rl{?_."- k) + (¢

—

gions are observed for low and high latitudes magnetic in-
tensities (Figs. 2 and 3). These model predictions need to be
contrasted with data more widely spread in latitude.

We also show how to calculate the tidal and gravity
modes as a function of latitude and time, for those hours that
it is possible, assuming they form a resonant independent and
stable triad. In these regions, where tidal modes are linearly
unstable, the gravity group velocity is modulated by a func-
tion of the tidal phase velocity.
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Appendix I

The coefficients C of Eq. (11a) are:

- E) (ka2 — 2y ) + o8 + 2000, — dazdp. + 20001002 — 2 (200 + Yoo ) W

ow

- G[Zk:.ez(-ﬁ- k) + aorpy — 20, (u W + —)] - 0’20’2}

0z

+p{(ﬁ‘-k)4 (V- )[(/3+zm¢ )ﬂ —2(2uy + u )}

ow

— (7 k)? [(\:/ LR i ‘)( P Or + mgbz) -3+ 4(1)2]

0z

e OW o . aw OWNY 1O o
+a[(v-k) (82 +3(\7’-1))—{—‘Zd)mzj/](v-v)—ng = (nz+g)]a [a; (V-9 — (7-F) ]}
) P .
Cio = 524 = 200(F- F) = 8 (kamo — 2hy ) + 20k}
S ey OW AV :
TR o 75 T A YO - 2
+p{2(t A)[(V 92 - 27 B + 5 S0z — 2o, ﬁ+4c1>]
— g 3%’ = - 2 -,
_ %a(i k)[az +3(V ))]+2a (@ k)},
Lo L, OW av B}
Cao = m—+p{6 v kR — (V- 1)? - 5, ™ +26 bz + 21, + B — 49% + [81/1/ +3(v.5‘)] _202}:

-

Cizp = —4p(v- k),
Cyo =p.
The coefficients D of Eq. (11b) are:

a au
Doy = :

+ (7 k) [+265 (1 + 2¢) — ayma] + O/[k:szv}-z

o e AW av
+ p(@ k){(v.v)[fZ(U k)” + 0z UZ_QE
oW oW
i L iy LS
+ 2v¢ (T A')[Q(L B +% 0z ( 0z

aVv : 2
2 {2y 20,5 — 2hes?0, (G +262) + ks [T B +2 (1 — 20.) 6. + )

— 2y Gy + 2T K) (a1 — V)] - kzs2cy2}

/ ) 3 ) ow
¢y —2mid, — P+ 4‘1’2] - (2n1¢. + B) = + 4v,

— 2% - ﬁ)) + 2 by — ‘1}22] + (7 k) (%—L: + (V- 6))},
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dp
Dy = 5;{

— 2k, 5%(T

= Lo ow
+p{(¥-0) 60 R - Fom+

—2(7+2V1)¢x+a[6(ﬁ-1€)2 -

(b:l: + 2, + B — 4@2]

ow

o (ﬁg%?. W 1?)—21.01% +132]
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k) + a1z — 2¢5 (p+ 20) 4 20 (o — Vi) )

(8}

a SR
Dzo:kzszgg—sp(a-k){(v-ﬁ)+a}, Dso = 2p{(V - ) - 2a},
where
ow oW W oU aw
oy =g+ 20V +—— 5t +EW’ Q2~Q+W Vg 03=§¢m+(g+—)¢:,
,_Uav_auav ouav_au ov 52U OV UV
=By 9z 0z Oy 7= 8: 0z 9z 9z =9z ot ot 0z’
U oV _ou oV
= ay 8:17’ o = 6$ ay:
U, U U, U ow
Vl—a(fﬁ:cﬁ‘ az(pz’ Vg = S 0" + 8z¢’z¢z+§z_ z
L e 1% B _av
u—(l"vv)+§t_: =0 U o W, L .—82_2¢’x-
Appendix II

KO = {02 (BV = 6) + 62 (205 = 2016: +2maV) + O Tms = b (e + 20 + (202 + 702) W}

(L r20))
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