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We find a close analogy between electrodynamics and the non-relativistic treatment of the motion of a particle in rotating frames. We then
pass to the special relativistic case and propose a Lagrangian containing a skewsymmetric field w**. We find that in the relativistic case the
analogy previously mentioned is broken. Finally we show that the Hamilton principle as applied to classical particles in motion in rotating

frames is equivalent to the choice of geodesics in a Finsler geometry.
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Existe una estrecha analogia entre la electrodindmica y el tratamiento no relativista del movimiento de particulas en sistemas rotantes. Esta
analogia se rompe en el caso relativista, en el que es necesario proponer un lagrangiano que contiene un campo antisimétrico w*" . Finalmente
demostramos que el principio de Hamilton aplicado al movimiento de particulas en sistemas rotantes es equivalente a la existencia de

geodésicas en un espacio de Finsler.

Descriptores: Sistemas rotantes; espacios de Finsler: campos clésicos
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1. Introduction

In general relativity it is possible to describe the motion
of a particle under fictitious forces as due to the peculiar
shape of the geodesics in a Riemannian space. In particu-
lar, for a frame that rotates in flat 4-space, we can show
that the 3-space is not flat and that the time is not uniform.
In this case the centrifugal and the Coriolis actions are ac-
counted for by adopting the prescriptions goo = 1 —w?r?/c?,
goz = —wr?fe, g1 = gap = g3z = —1.

This prescription is not the only way, as this paper at-
temps to show. There is a formal analogy between the Lorentz
force and the fictitious forces in a rotating frame. We ex-
plore this analogy and propose a covariant Lagrangian that
describes the fictitious forces in the context of special relativ-
ity. The motion of a particle in rotating frame is thus seen as
the action of certain field 4, in an inertial frame.

This new description leads us to the following proposi-
tion: Since Hamilton’s principle is, in this case, equivalent to
a geodesic condition, the motion of the particle, as registered
by a rotating frame, appears as geodetical motion in a Finsler
space, where g, = 0. (1 + ¢/c*)?, with ¢ = A, A# /2.

2. Notation and conventions

Throughout this paper space-time points will be associated
with contravariant components [4]

#* = (2%, r) = (ct, 2, ¥.2):
The differential line element is

ds? = dzdz® = guudrida”

with
Joo =—g11=—ga2=—g33=1;, gu =0
forjp £ v.Thusse, = gu.2* = (ct, =r),and
a* = (9/edt, -V},
9y = (3/cot, V).

Also 8% = 1for ¢ = v, and zero for p # . Summation
convention is valid for repeated indices:

patie o =10 1 268% 553 = 1;248:
4-velocity is defined by:
| zH > . it
e Ve v=(1 -2, dr=Z.
dr ¢ v
Finally:
(K0 _ cijk (1230 _ g

3. The non-relativistic case

In classical, non-relativistic mechanics the motion of a free
particle as seen from a rotating frame [3] is described by
dw
a:—wx(wxr)42wxvé~£xr (1)
or

F=m —wx(wxr)+vx(2w)—%(wxr), 2
0
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where we take in consideration that dw/dt = 0w Jat, as
Vw = 0 and dr/dt = 0. With the definitions

A=W %L, (3)
A-A A?
= - = —— 4
¢ 5 5 4)
we have
Vo =wx (wxr),
V x A =2w.
Thus
A
F:??l[*v¢—%—t+VX(v>(A):|. (5)
Now, using the shorthand definitions
g:-Vgﬁ)—%?:—wx(wxr)—%(wxr), ©)
G=V X A=2w, (7)
we have
F=m[g+vxG]. L (8)

This approach formally reduces to the Lorentz force well
known in electrodynamics. In our case, both A and ¢, are
expressed in terms of the "field” quantity w. In fact ¢ and A
are not independient fields due to (4).

Without any mention of inertial frames (except by the fact
that w is measured relative to them) and working the whole
problem in the rotating frame we may propose a correspond-
ing Lagrangian, as seen from the rotating frame as

1 ’
b= im-uz +mv-(wxr)+ %(w x r)?

= %rm;z +mv-A —mg. (9)

The potential ¢ describes centrifugal effects, A /Jt (cor-
responding in electrodynamics to Faraday effect) describes in
our case inertial forces due to w. The term v- A is responsible
for Coriolis force. Let’s note that w depends just on time so
that any variation will be “propagated” instantaneously. This
behavior is that of an “action at a distance” theory.

Now, from (6) and (7) it follows that g and G, the cen-
trifugal and Coriolis fields, satisfy the equations

vV -G=0, (10)
IG
Vxg+ e 0, (11)
and, from (3), (4), (6) and (7),
Vg = 211}2, (12)
YVx G =0 (13)

Equation (10) corresponds in magnetism to the vanishing
of magnetic flux, (11) corresponds to “the Faraday effect”;

according to (12) the rotation is the “source” of centrifugal
field, and (13) may be generalized to

1 0g
W R G =1, (14)

« being a quantity with units of velocity. As dg/dt # 0
in general, in our “action at a distance” theory we have
a — oo in order to satisfy (13): rotation is propagated in-

stantaneously.
Let’s note, from (6), (7), (10), (11) that

V2 = —2uw?,
Vel =10,

Now, by using (9) the canonical momentum for a particle

p=mv+mA

=mv +mw Xr, (15)

and the canonical energy can be calculated from (2) by scalar
product with v; we get

d [v? OA
Il IS R 1
mdt ( 5 +¢> v TR (16)
so that
2
B = m; + mi amn

as in the electromagnetic case. Energy, given by (17), is con-
served if A = 0 (i.e. if w = 0).

4. The relativistic case

The preceding notes show that it is possible in the Newto-
nian approach to establish an analogy between inertial and
Lorentz forces. However, as it will be clear later, this analogy
is broken down in the relativistic version of the problem.

In the following lines we will write a covariant La-
grangian by assuming that inertial effects correspond to the
existence, in an inertial frame, of a skewsymmetric field w*"
satisfying the requirements of special relativity and without
any appeal to general covariance.

We propose
L = me(l + ¢/c)y/uaur + mA,ut, (18)
with
Ay = wipz”, (19)
A A7
= (20)

Lagrange’s equation of motion is

a(ony oL _
dr \ Qu° dze
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where 7 is the proper time. This equation leads to

d (D o T ted
o |™ 1-{-(_:—_2 u’ | = me¢™Hu, +mad’ g, (21)

where ¢, is defined by
(brru b a_uAa - 80'-’4;1- (22)

Equation (22) shows that it is possible to introduce a
skewsymmetric tensor analogous to the electromagnetic field
in special relativity.

The specific form of the Lagrangian in (18) has been cho-
sen in such a way that the non-relativistic limit, [Eq. (5)], is
obtained. In fact, from Eq. (21) for v/¢ < 1, and using the
following conditions and definitions:

o ¢ = -G, = AT — A orG =V x A,

o w0 =0,

. ; 194! 1
;)(l - 81‘40 - (1‘_11 v 10 § e e 1‘
® () 8 ( Ve ) = Bi "
Bl e . A
e = E[(AO)‘ - (A)‘!] = 3

we obtain

I , _
;—f(mz") = m(—¢7 v + ¢*%u%) — (Vo)

= meT* Gy — EBA u® — m(Vo);,
c Ot
or
AA
F=m|vxG- %? - Vo| =mlg+v x G
as in (8).

In order to arrive to this result we have assumed w™ = 0.
This condition may be expressed in covariant form as

r

U
wh = —ePy, L (23)
o
where w0, is the angular velocity 4-vector and U, is the 4-
velocity of the observer relative to the origin of the rotating
frame. In standard notation, (23) is writen
i0 (w x U)i
W =——
[
L gk
w = — (u"kUU - wnUk).
P
In the simplest and usual case the observer is at rest in the
origin so that

wh = €ijk U?k ‘

w" being the dual of w' in 3-space; in an equivalent form,
if the observer is at rest in the rotating frame (let’s remember

that we are in an inertial frame with a field A*): U, = ¢4,
such that

w = —eFPy,,

thus w'® = 0.
Now, from Eq. (18) the canonical 4-momentum is

= [( : ) ]
Do = =m||(1+ 5 |us, + Ay,
du” c?

whose space components are

p=m (1 4 %) YV +mA, (24)

the non-relativistic limit coincides with (15), the term ¢/c?
corresponding to increase of mass due to potential energy.
And from p* = E/c:

E = (m.r.‘2 +me) v,

with newtonian limit

. v?
E~(m+me) 1+ —
(1 me) ( 203)

2
muv-

~mc? + T + mo
as in (17) except by the rest mass.
Using (23), Egs. (19) and (20) take the form

N

gL
A, =Wz’ = —€pgagwU” —,
-

a 1 ¥ [
A A a@d, o TIBTT. V.
— TF afe wwe L [;5.1 T,.

¢

5. Rotation and Finsler’s spaces

According to Hamilton’s principle [3]

rSdeT:U,

we may write, according to (18),

0}
5/ [mc (I G —2—) vdz, dz¥ + mA, dz¥| dr =0,
=

and this equation may also be writen as a geodesic condi-

tion [1]:
6[(15 =0
with
ds = (1 + (3) Vi, drv + ATU(LFU (25)
or

A
dS = /9. dedz” + = dz",
€

with g, = (1 + ¢/¢?)? 10, Ny being the Lorentz metric.

We conclude that studying the motion of a particle in ro-
tating frames by using special relativity and without any as-
sistance of the ideas of general relativity, is equivalent to es-
tablishing a specific generalization of a Finsler’s space with
a line element given by (25).
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6. Formal developments

1. Equation (21) may also be expressed in the form

K% =m |¢°* + ! (@°pu* —FPpu’)| uy - :r_-.:‘j’ w’

—C-__)
= qu"'“ Uy — E} P u?, (26)
P
with
d
Kf = = (mu?), (27)
For = o1 4 = (0% gub — D pu”) (28)
(55

It is easy to prove that: K7u, = 0 as stated by special rela-
tivity.

Equation (26) shows that the analogy between inertial
forces and Lorentz forces is broken down in the relativistic
case, but maintains its validity in the newtonian limit where
according to (25), (26), (27):

]

K = m¢™ u, .
We may in the general case (26) define g and G as
3 = i,

(31'0 = =G

&

with

(‘;:VxAJr%waxv,

~ : ¢
g:—'quﬁ—A—'yvC—z

so that
o ~ m .
K:’yF:m’y[g—kva]—c—,quv

£ = m . v(v-v
:m"r[g+va] —c—2¢{v72+%’74

2. From (22) we get by derivation:
A" + "7 + 87 MY = 0,
in 3 + 1 notation:

V- G=0

7. Conclusions

The motion of a particle in a rotating frame can be de-
scribed as a geodesic motion in a Finsler space, with Giiw =
v (1 + ¢/c*)*. According to general relativity [1] the mo-
tion corresponds to a geodesic in a Riemannian space with
goo = 1 —w’r?/c?, go = —wr?/c, g11 = gss = —1.In
both approaches the Newtonian limits coincide.
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