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An analytical expression for the singularities developed by an aberrated wavefront
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Since the expressions of the components of the aberration represent a map from R* to R?, in this work we apply the theory of singularities
of differentiable maps to obtain an analytical expression of the caustic of the propagation of an aberrated wavefront.
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Puesto que las expresiones de las componentes de la aberracién representan un mapeo de R* a R, en este trabajo aplicamos la teoria de
singularidades de mapeos diferenciables para obtener una expresion analitica de la cdustica de la propagacién de un frente de onda aberrado.

Descriptores: Frentes de onda; caistica; singularidades de frentes de onda

PACS: 42.10.-s; 42.10.Dy; 42.30.Fk

1. Introduction

The computation of the singularities developed by the evo-
lution of a wavefront in a medium has many important and
interesting applications in physics. For example: in astro-
physics to perform some measurements and predictions it is
important to know the singularities of the past light cone (a
three-surface in the spacetime) of the observer [1] and in op-
tics the singularities are very closely related to the defects
of the optical systems. Actually, the caustic test [2] is based

in the knowledge of the caustic. To compute the circle of

least confusion of a rotationally symmetric mirror, when the
point source is located on the optical axis, it is necessary (o
compute the caustic of the evolution of an aberrated wave-
front [3].

Since the caustic set is interpreted as the location of fo-
cusing regions, where the cross-sectional area of the bundle
of the light rays collapses to zero, which leads to an increase
in intensity; then it is important to know the caustic because it
is the place where the geometric optics limit is not applicable.
From a mathematical point of view the study of the singular-
ities of the propagation of electromagnetic wavefronts, in the
high-frequency limit has importance because they have been
an illustration of Arnold’s theory of Lagrangian and Legen-
dre maps [4-6].

In the present paper, under certain approximations and by
using a simple procedure, we obtain an analytical expression
for the singularities developed by the evolution of a wave-
front which has passed throughout an optical system which
produces aberrations on it. Thus in Sec. 2 we first review the
concepts of aberration of a ray, wave aberration function and
the derivation of the expressions for the ray aberration com-
ponents. Furthermore, we give the definitions of critical and
caustic sets of a three-dimensional map and we apply it to
our problem. Although our result can be applied to any kind
of aberration, in Sec. 3, we apply it to compute the caustic
when the wavefront is affected by spherical aberration.

2. Computation of the caustic of an aberrated
wavefront

In optics one starts with the wave equation
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where 7 is the index of refraction and ¢ is the speed of light
in vacuum; whose solution can be written as

GlE. 2.t = f"‘(x‘y‘z)eik[’(“"y‘z)_“], 2)

where a(x,y, z) and s(x,y, z) are real functions. Substitut-
ing Eq. (2) into Eq. (1), one obtains that the real part of the
resulting equation is given by

(VS)? - n? = 25[V2a + (Va)?) 3)

In the limit of high-frequency, i.e., A — 0 one obtains the
basic cikonal equation of geometrical optics

(VS)? =nl. (4)

Therefore surfaces of constant S are surfaces of constant op-
tical phase, and thus they define the wavefronts. Furthermore,
the ray trayectories are normal to the wavefronts.

Consider an initial spherical wavefront of radius R, at
t = 0, given parametrically by 79 = Rgcosesinf, yo =
Rosingsinf, and zp = Rgcos#. To find the form of the
wavefront when it is contracting, in the empty space with
velocity ¢, after a period of time ¢, we define the following
function f(xo,y0,20) = 3+ y& + 2 — R% and we construct
the unit normal vector field to the surface f (o, 10, 20) = 0.
An easy computation shows that the cartesian components
of the unit normal vector field are given by n,, = z/Ro,
Ny, = Yo/ Ro and n., = z,/Ro. Therefore, the form of the
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FIGURE 1. Symbolic representation of the optical system by four
planes representing the objet plane, the pupil planes and the image
plane. The vector from P; to P is the aberration of the ray.

wavefront will be given by

z(t) = zg — ctng, = (Rg — ct) cospsin @,
y(t) = yo — ctny, = (Ry — ct) sinpsiné
and

z(t) = z9 — etn., = (Ro — ct) cosf

Observe that at t = Ry /c the wavefront collapses to a point.
And after that it reappears on the other side of the sphere.
So we get an eversion of the sphere. The collapsing point
is referred to as the singularity developed by the spherical
wavefront and is non-generic in the sense that under a small
deformation of the initial spherical wavefront it decomposes
into more complicated singularities, which have been locally
classified [4-6]. Since (z — 20)/n., = —ct then the wave-
front can be written as
N

r=z9+ (z — 20) = zcosptanf,
Nz,

Myo

y =yo+(z — 20) = zsinptan#,

Zo

z =z (5)

An interesting deformation of the initial spherical wave-
front is that obtained by performing the following transfor-
mation:

Ry = Ro + A6, ), (6)

where A(#, ¢) is a regular function on the (¢, ) variables.
Now we give the definitions of aberration of a ray, wave
aberration function and the derivation of the expressions for
the ray aberration components (for a detailed explanation see
Ref. 7). Consider a rotationally symmetric optical system, let
Py be an object point and let P;), P', and P be the points in
which a ray from Py intersects the plane of the entrance pupil,
the exit pupil and the Gaussian image plane respectively (see
Fig. 1). If P; is the Gaussian image of Py, then the vector
from P, to P is called the aberration of the ray, or simply the

FIGURE 2. The ideal wavefront of radius Rp and the real wave-
front. A(zo, yo) represents the deviation of the real wavefront from
the spherical one, which is measured along the normal to the refer-
ence sphere. (g, yo, 2) are the coordinates of the domain space and
(X, Y, Z) are the coordinates of the target space. The coordinates
of the points on the real wavefront are [ro, yo, zo(x0, yo)] and the
coordinates of the Gaussian image point of Py, i.e., the coordinates
of the point P, are (0,0, 0).

ray aberration. Let W be the wavefront through the centre O,
of the exit pupil, associated with the image-forming pencil
which reaches the image space from Py. In the absence of
aberrations, W coincides with a spherical wavefront which is
centered on Py and which passes through 0'1. The spherical
wavefront is called the Gaussian reference sphere or the ideal
wavefront, W is called the real wavefront or aberrated wave-
front and the deviation of the real wavefront from the spher-
ical one measured along the normal to the reference sphere
is the wave aberration function. If we choose the coordinate
system shown in Fig. 2 and we denote the wave aberration
function by A(xg, yo), then the real wavefront is given by

9(x0, Yo, 20) =22+ Y2 + 28 — [Ro+ A(xo, y0)]*=0; (1)

as in the spherical case, explained carlier, as the real wave-
front evolves after a period of time ¢ in vacuum space with
velocity ¢ it will be given by

z(t) = xp — ctng,,

y(t) = yo — ctny,,

z(t) = zp — ctng, (8)
where
dg 9dg Iy
8.(0’ Byo" 820
(”’.FQ! ”"t (1] nzo) = . (9)
! | Vg |
From Eqs. (7)—(9) we obtain that
r—2Xp _ Y — Yo
dA dA
Io—(H{)‘FA)a' yar— (e +A) 7
o Yo
zZ— 20

=I5 (10)
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where

20 = £y/(Ro + A2 — 23 — . (11

Therefore, the real wavefront parameterized by z is given by

z—7 OA(xg,1
:F~J'o+( 0){5'30*[30 +A(-Bo,yo)]~—w},
Z iy

Z0
:0){90—[Ro+-ACMhy“}§é%%§%Q}’

B 12y

Y=Y +(

[Observe that these equations are equivalent to those obtained
from the transformation (6)]. In the Gaussian image plane
(z = 0), Egs. (12) reduce to the important equations

9A
H(z = 0) = [Ro + Ao, vo)) =gt
y(z = 0) = [Ro + A(z0,%0)] GA(M‘)—)- (13)
Yo

These equations are the components of the transverse aber-
ration of the ray, ie., [2(z = 0),y(z = 0)] are the devi-
ations from the Gaussian image point located at (0,0,0). In
what follows we will refer to [z(zo, yo, 2), ¥(Zo, ¥o, 2)] as the
components of the transverse aberration for a fixed valued of
z. It is important to remark that Egs. (12) are exact; however,
in most applications it is assumed that

|Al < Rp, .20 & —Hp;
and
om L (14)
|zo]  Ro
Under these approximations Eqs. (12) reduce to
:  zg dA(zo, o)
X (moy U0, 2) = Ry————,
X (xo,y0,2) Ro + Ro Bt
ZYo 9A (o, o)
Y(zo,yn,2) = ——— + Rp——————,
(%0, Yo, 2) Ro + fig G
Z(x0,%0,2) = 2. (15)

Observe that from a mathematical point of view, these equa-
tions represent a map between two three-dimensional spaces,
(xg, Y0, 2) are the coordinates of the domain space and
(X.Y, Z) are the coordinates of the target space (see Fig. 2).
|

Equivalently, Egs. (15) can be seen as a one-parameter fam-
ily of two-dimensional maps, with parameter z, each member
of the family has the following interpretation: it maps points
on the real wavefront with coordinates (zq, Yo, 20(Zo, ¥0)) to
points to the plane Z = constant in the target space. To com-
pute the singularites developed by the evolution of the real
wavefront we need to introduce the definitions of critical and
caustic sets of a map between three-dimensional spaces.

If g : M — A is a map between two differentiable
manifolds, all the points in M such that g is not one-to-
one are referred to as its critical set and the image of the
critical set is referred to as the caustic set of g [4-6]. If M
and A are three-dimensional manifolds with local coordi-
nates (x1,x2,x3) and (y1,y2,y3) respectively, then locally
g is given by y; = gi(z;), where i, j = 1, 2, 3. Therefore, the
critical set is obtained from the following condition

6(29'1, J25y3)

J=—"—""—""7L=0. 16
B(Tl,fz,lg) ( )

Applying these definitions to the spherical case we find that
the critical set is given by

(Ro — ct)*sin@ = 0. (17

To obtain this equation from Eq. (16), we took

y1 = (Ro — ct) cos psinf,
2 = (Ro — ct) sinsin @,
y3 = (Ro — ct) cos b,
zy=ctizs =0
and

T3 =¥

The image of the critical set is given by the only point (0,
0, 0). This means that if initially we have an spherical wave-
front of radius Hy then as the time evolves the wavefront re-
mains spherical and collapses to one point at t = Ry/c. For
generic initial two-wavefronts (as those obtained from Egs.
(12) or (15)), locally they develop singularities of cusp ridge
and swallowtail types [4-6]. Now we will compute the criti-
cal and caustic sets of the map given by Egs. (15).

A straightforward computation shows that the critical set
of the map given by Egs. (15), is

E%_ 9*A & 9*A
) 89:3 Byg

5 (am_@ LAY
ox3 Ay dxodyo

(18)

The image of the critical set, that is, the caustic set which is obtained by substituting Eq. (18) into Egs. (15) is given by

1{82A  &%2A

Xe=—-Rp§ = : :
i fto 2 | g i s

\/ ( 2A
i e
Oxg

aza.)2+4( 92A ) A
Ay Axodyq = dxp
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19?°A %A A 82A\? A \? A
Yo =Rt 5 et 53 e s | bl | e Yo — 75—
2 | 0% Ay Oxf Ay dxoyo Ao
Alis 2A A PA\? 2a \?
A N LS - 2) +4( ) (19)
2 | 0x5  Oyg oz Oyg dxe0yo
This is the analytical expression of the singularities devel-
oped by the evolution of the aberrated wavefront given by ij he same way one finds that the image of z = z_ is given
Egs. (15). Observe that under the approximations (14) the by
computation of the caustic is very simple, but the result is
very general in the sense that it can be applied to any wave- X.- =0, Y_=0, Z._ =4CRi(z2 +43). 3)

front that suffers from any kind of aberration.

3. Example: spherical aberration

When the real wavefront suffers from Seidel’s spherical aber-
ration [8], the wavefront aberration function is given by
g 212
A(zo,y0) = C1(xd + 15)?, (20)
where (J; is a constant. For this case the critical set is given
by

2 = 4C1 R3(z§ + y5)(2 £ 1). @21)

The image of the critical points z = z, which is obtained

The part of the caustic given by Egs. (23) is a segment of
line (see Fig. 4). By contrast, the part of the caustic given
by Eqgs. (22) is a revolution surface (see Fig. 3), actually the
non-parametric form of this surface is given by

3
Lo

X .
27CL RS’

ST (24)

ot

which is a singularity of cusp type. If we take z,
Rosinflcosy and yg = Rgsinfcosyp, with 0 < p < 27
and 0 < 6 < 6y = arcsin(a/Ry), where a is the radius of
the exit pupil, then Eqs. (22) can be rewritten in the following
form

from Eqs. (19) using Eqs. (20) and (21), is given by Xcy = —8C\ Rysin® fcos p,
’ [ F_ v b 3 y
Xep = —8C Ro(a2 + y2)zo, Yot = —8C: Ry sin” O sin o,
Yoy = —8C Ro(23 + 3o, Ze = 120 Ry sin® 6, (25)
By = 100 B2(22 4 v3), (22)  and Egs. (23) can be written as
| X._ =0, Y. =0, Z._ =4C;R}sin?6. (26)
oo w o .
\ g e —
(a) (b)

FIGURE 3. The part of the caustic given by (a) Egs. (25) and (b) Egs. (26), when g = 0, 'y = 0.5 and a = 0.5.
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FIGURE 4. The caustic of the real wavefront when it suffers from
spherical aberration i.e., the superposition of Figures 3a and 3b.

In Figs. 3a and 3b we plot the surface of revolution given by
Egs. (25) and the segment of line given by Eqs. (26) respec-

tively, when C'1 = 0.1, Ry = 5 and a = 0.5. In Fig. 4 we
present the superposition of Figs. 3a and 3b (the caustic set).

4. Conclusions

In this work we have obtained an analytical expression for
the caustic (the singularities developed) of (by) the aberrated
wavefront. From Egs. (19) we see that the wave aberration
function, A(we, yo), encode all the information about the sin-
gularities developed by the wavefront. It is important to re-
mark that even though the exact expressions for the aberrated
wavefront, Eqs. (12), are not too complicated, the expression
of the critical and caustic sets cannot be written in a compact
form by using cartesian coordinates.
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