INVESTIGACION

REVISTA MEXICANA DE FISICA 46 (6) 530-535

DICIEMBRE 2000

Ermakov equation arising from electromagnetic fields propagating in 1D
inhomogeneous media

M. Ferndndez Guasti* and R. Diamant
Universidad Autonoma Metropolitana-Iztapalapa
Michoacdn y Purisima s/n, Col Vicentina, Apartado postal 55-534, 09340 México D.F., Mexico
Ye-mail: mfg @ xanum.uam.mx
A. Gil Villegas
Instituto de Fisica de la Universidad de Guanajuato
Lomas del Bosque 103, Fraccionamiento Lomas del Campestre, 37150 Ledn, Guanajuato, Mexico

Recibido el 13 de marzo de 2000; aceptado el 5 de junio de 2000

The Ermakov equation is derived from Maxwell’s equations for inhomogeneous transparent media in one dimension. The general properties
of this equation and its associated invariants are discussed. Numerical results are presented for refractive index changes, which take place in

the order of fractions of the wavelength.
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La ecuacion de Ermakov se obtiene de las ecuaciones de Maxwell para un medio inhomogéneo transparente en una dimension. Se discuten
las propicdades generales y los invariantes asociados de esta ecuacién. Se presentan resultados numéricos para cambios en el indice de

refraccion en el rango de la longitud de onda.
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1. Introduction

The propagation of plane electromagnetic waves in inhomo-
eeneous media has been successfully described either when
the permittivity variation takes place in a much larger or a
much shorter distance than the wavelength scale. In the for-
mer limit, the amplitude derivatives are neglected on a wave-
length scale leading to the Eikonal or ray equation [1]. In the
latter, the usual procedure at a discrete boundary is to solve
Maxwell’s equations in two homogeneous media with con-
stant permittivity say, £, and £,. The wave solutions for each
case are then joined at the interface by placing the appropriate
boundary and continuity conditions.

The purpose in this paper is to consider the intermedi-
ate case where the refractive index or the permittivity varia-
tions take place on the wavelength scale. In order to simplify
the problem, the description is restricted to one-dimensional
propagation in a transparent medium whose permittivity gra-
dient is orthogonal to the polarization. The artificial sup-
pression of reflection for perpendicular incidence on absorb-
ing media is a closely related problem, which has received
considerable interest in the past [2,3]. In the present treat-
ment for purely dispersive media, the resulting nonlinear
equation derived for the field amplitude is recognized as the
Ermakov-Pinney equation, which appears in various fields of
physics [4-6]. The general properties of this equation as well
as the invariants, which arise from it, are discussed in some
detail.

Numerical solutions are presented for a refractive index
that varies spatially as a hyperbolic tangent function. Recast-

ing these results in terms of two counter propagating waves
allow for a more useful description in terms of the reflectivity
as a function of the abruptness of the interface.

2. Derivation of the equation to be solved

The electric field equation arising from Maxwell’s equations
for non magnetic inhomogeneous media without free charges
is given by
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where the velocity of light in vacuum is ¢ = (pyg,) " and &
is the relative space dependent permittivity. If the permittivity
only varies in the z direction and the problem is restricted to
plane waves at normal incidence to the constant permittivity
planes, then E /Ay = 0 and AE /dx = 0. The electric field
equations for the a or y polarization in this case, are
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whereas the field in the z direction, obeys the equation
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From the first of Maxwell’s equations, 0FE./dz =
—E.(0Ine/dz) thus, the second time derivative of E. is
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equal to zero. The field in this direction is not a propagating
field and is therefore not involved in the transmission of the
electromagnetic wave. The equation for the 7 or j component
with a monochromatic dependence exp(—1wt) is then
O*E(z

) < (KB, @
where we have substituted the wave vector magnitude in vac-
uum kp = w/c. This equation for infinite wave trains is non-
autonomous due to the dependence of the permittivity on po-
sition. Allow for a solution of the form E = A exp(tq) where
the amplitude A and phase ¢ are real quantities. Equation (4)

yields
A dq ()4 E)q &*q
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Let the medium be transparent without absorption, the

permittivity is therefore a purely real quantity and we may
separate the real and imaginary parts of this equation:
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The latter equation may be rewritten as
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and thus, provided that A is not zero, there exists a constant
quantity given by
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() is an exact invariant even for an arbitrary permittivity space
dependence. Substitution of this result in Eq. (6) yields
A Q* 9
'é?-z_ - ::13 = *EJ\-D}L (10)
This equation is the Ermakov equation and has received con-
siderable interest [4]. In order to obtain a dimensionless equa-
tion, allow the invariant to be equal to @ = ko A§ without loss
of generality. The dimensionless Ermakov equation is then
1 9°A 1
ol A
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where A; = A/Aq is now a dimensionless amplitude. The
above results may also be derived in a rather compact way
by proposing a solution with the form of an exponential in-
tegral function E = Aexpli [(Q/A*)0z], where Q is a real
constant. The second derivative is then
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which upon substitution in Eq. (4) yields again Ermakov’s
equation and the permittivity & must then be a real quan-
tity. The use of a polar complex form gives a clear insight
about the role played by the amplitude and phase in the wave
equation. However, it is interesting to write the complex field
E in cartesian coordinates, £ = FEp + iF;. The additive
and multiplicative representations of complex numbers are
related by A exp(iq) = (E}+ E})'/? exp[arctan(E; / Eg)).
The derivative of the exponential argument is dq/dz =
darctan(E; /Eg)/0z = (E{Er — E{ER)/(E} + E}) and
the amplitude-phase relationship is then

o
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and thus, the invariant @) is identical to the Wronskian formed
by the real and imaginary parts of the field. From the theory
of differential equations, we know that a non-null Wronskian
implies that the functions Fr and E; must be linearly inde-
pendent. Therefore, if a solution ¥, (z) of a second-order lin-

ear differential equation d*y /dz* + P(z)dy/dz+Q(z)y =0
is known, then a linear independent solution y» (z) is obtained
from the following integral [7]:
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where a and b are arbitrary constants and W is the Wron-
skian. Allowing P(z) = 0 or by direct integration of
Eq. (13) using the identity Er(0E;/dz) — Ef(0Eg/0z) =
E%(8/02)(E;]ER) yields
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This equation is the cartesian version of the invariant () previ-
ously stated in polar coordinates. It is interesting to note the
similitude of this result with the Kramers-Kronig relations,
which couple the 1eal md imaginary parts of the permittiv-
ity in Fourier space.(” These relations are obtained by es-
tablishing a causal connection between the polarisation and
the electric field, which impose a relationship between the
absorption and dispersion of a material. In the present case,
since we are dealing with a purely transparent medium, the
real and imaginary parts of the field are not representing dis-
persive and absorptive processes but the in phase and out of
phase coherent components of the field. Substitution of a co-
sine dependence with constant amplitude for the real part of
the field in this equation yields the usual sine dependence for
the imaginary part. However, in an inhomogeneous transpar-
entregion, the field amplitude is space dependentand thus the
real and imaginary parts obey the above general relationship.
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3. Solutions of the Ermakov equation

The simplest solution of Ermakov’s equation is to consider a
constant amplitude so that the second derivative of the am-
plitude is zero and A4 = ¢~'/* = n~1/2, the phase is then
q = ko [(1/A%)8z = konz where n is the refractive in-
dex. These are the well-known results for a homogeneous
medium.

There is, however, a second case, which is not so obvious.

Namely that the amplitude is equal to
Ag =[(n"2 + CYHY2 4 C?cos (29 + Bo)]Y2,  (16)
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and thus this amplitude is also a solution to the non-linear
equation. In this case, the invariant of two counter propagat-
ing waves obtained from Eq. (9) and (17) is given, after some
tedious algebra, by

A, 0A»

Q= |ty ~ Ay
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+ (A7 - A3) (18)
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Notice that, in general, the invariant of two counter prop-
agating waves is not equal to the sum of the invariants of each
wave. This issue will be discussed in some detail in a forth-
coming communication. Let us return to the restriction where
the amplitudes are constant, say 4y = Ag and A, = By.

Comparing the Egs. (16) and (17), A2+ B3 = (n~2+C*1)V/2,
2A9By = C*? and eliminating C:
2 =Bi=nh (19)

Consider a region of the medium in the vicinity of the
plane zy where the initial conditions are defined. Allow this
region to be homogeneous. The invariant at this plane z;
is then Q(z0) = (A% — B2)kon(zo) which is consistent
with Eq. (18) provided that QX(z9) = ko. Thus, in the par-
ticular case of a homogeneous region, the invariant of the
sum is equal to the sum of the invariants of each wave.
The main conclusion from these results is that if the so-
lution of the Ermakov equation oscillates as [A3 + Bj +
240 By cos (2q — /3)]*/?, such amplitude may be thought
to stem {rom the propagation of two waves with amplitudes
Ag and By travelling in opposite directions.

The second order derivative of the amplitude in the di-
mensionless Ermakov equation is multiplied by the inverse
square of the wave vector magnitude, which may be recasted
as the square of the wavelength. If the relative permittivity
variation takes place in a range much larger than the wave-

where (' and /4, are integration constants. Several au-
thors have exploited this result in order to construct a gen-
eral solution of the non-linear equation from a particular
one [5,8]. The underlying justification stems from the fact
that Ermakov’s non-linear equation arises from a linear non-
autonomous wave equation. Consider a particular solution of
Eq. (4) in an inhomogeneous medium of the form E, =
Ay exp (iq;). where the amplitude and phase may both be
spatially dependent. It is clear that the general solution, due to
the linearity of the equation, is given by E = A, exp (iq1) +
Ay exp [—i(q1 — )] where A; is proportional to A;. Let us
now translate this theorem to the non-linear equation. To this
end, we recast the general solution as a single exponential

jg) sin g
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length the second derivative may be neglected. This ap-
proximation is equivalent to the slowly varying envelope
approximation (SVA) often invoked in non-linear or quan-
tum optics derivations. It is also used in order to obtain the
Eikonal equation and it limits its validity. Neglecting the
second derivative in Ermakov’s equation yields an ampli-
tude Ay4(z) = [n(z)]7'/? and the phase is thus g(z) =
ko | n(z) dz. The reflected wave is always zero under these
approximations since the transmittivity is given by [9], T =
(na/n)(|A2*/|A1)) =1, and R+ T = 1.

3.1. Numerical solutions

Propagation of electromagnetic waves may be tackled analyt-
ically for refractive index changes either in the slowly vary-
ing permittivity approximation or in the other extreme for
abrupt interfaces. However, the case where the refractive in-
dex varies in the range of fractions of the wavelength cannot
be dealt with either of these two mathematical approaches.
It is then necessary to attempt solving the nonlinear equation
without approximations. To this end, consider a hyperbolic
tangent refractive index variation with an arbitrary slope. Al-
low for the refractive index to be written as

(Mmax — “min)
B

n(z) = Nmin + [1+ tanh(az)], (20)
where 1y,ax and 1n,,;, are the maximum and minimum refrac-
tive indices obtained in the limit where the refractive index is
constant. The maximum slope of this function is exhibited at
» = 0. A plot parameter D = (2/a)arctanh[9/10] corre-
sponds to the thickness over which the refractive index varies
within 90% of its initial and final values as shown in Fig. 1.

The Ermakov differential equation to be numerically
solved is then
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FIGURE 1. Refractive index change versus distance depicting the
90% variation criterion described by D.

The important issue here is to establish the appropriate con-
ditions in order to solve this equation. The obvious choice
would be to consider the incident field amplitude and its
derivative at a given plane. However, such a proposal is in-
adequate since at any plane where the incident wave exists
there is also a contribution from the reflected wave, which is
so far unknown. This assertion is true even far away from the
region where the refractive index varies considerably since
we are dealing with infinite wave (rains.

An alternative is to establish the conditions for the re-
fracted wave, which in this one-dimensional case, is simply
the transmitted wave. The assumption then required is that far
from the interface region the transmitted wave is constant and
that in this region there is no reflected wave. Thus the prob-
lem is like working backwards in time and obtaining the inci-
dent and reflected waves from the transmitted wave. Consider
that the incident wave travels towards the positive z direction
and the refractive index change takes place around =z = ().
The initial conditions for the above nonlinear second order
differential equation are then

Ay
dz F=xy

Aa(z1) = Ar = ("hnax)il/._).

=0,

Z1 2 0, (22)

where A, is the dimensionless transmitted wave amplitude
far from the interface. Various solutions of Eq. (21), together
with the conditions imposed by (22) are plotted in Fig. 2.
In these graphs, oscillations reveal the existence of counter
propagating waves according to the results obtained in the
previous section. The larger the oscillation, the larger is the
reflected wave amplitude. It may be seen that if the refractive
index change takes place in the order of one or more wave-
lengths, the reflectivity is almost null. When this transition
occurs in less than a wavelength there is a considerable in-
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FIGURE 2. Numerical results showing the dimensionless amplitude
of the electric field A, as a function of distance for different refrac-
tive index thickness™ D). Pairs of curves are presented depicting the
field amplitude solutions with their corresponding refractive index
variation. Notice that this amplitude does not distinguish between
incident, reflected and transmitted waves but represents the actual
overall field amplitude at any point.

crease in the reflectivity. Finally, when the transition thick-
ness D, reaches a fiftieth of a wavelength or so, the reflectiv-
ity approaches a maximum, which barely increases for more
abrupt index changes.

3.1.1. Reflectivity

The conservation Eq. (19) may be rewritten in more famil-
iar terms recalling that the transmitted amplitude is defined
by the initial conditions Eq. (22). The usual form of the en-
ergy conservation equation A2 — B2 = (Nmax/Mmin) A7, is
thus obtained. Since the fields are transverse at normal in-
cidence, the continuity equation imposes that the tangential
electric field must be continuous at the interface plane p, i.e.,
A(p) — B(p) = A;(p). In order to depict this result, the nu-
merical evaluation of the differential equation is plotted in
Fig. 3 for a very steep refractive index change taking place in
one thousand of a wavelength and another softer one taking
place in one third of a wavelength. It may be seen that for the
steep function, the above condition is fulfilled whereas for
the softer interface, the minimum Ag — By is no longer equal
to the transmitted amplitude. Nonetheless, in both cases, the
amplitude function is continuous consistent with the continu-
ity equations.
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FIGURE 3. Dimensionless amplitude versus distance for a very
steep refractive index change taking place in a thousand of a wave-
length and a softer one taking place in one third. The minimum am-
plitude in the oscillating region for z < 0 is equal to the constant
amplitude at = > 0 in the steep case whereas in the softer interface

these quantities are not equal. In either case, the amplitude curve is
continuous.
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FIGURE 4. Reflectivity coefficient versus the thickness Dy =

D/X in wavelength units over which the refractive index changes
through 90% for a variation from n = 1ton = 1.5.

The amplitudes of the incident and reflected waves A
and By may be calculated from the numerical results of the
maxima and minima in the oscillating region, far away from
the interface, due to interference between them, since

.45(1111“,( + -"Limiﬁ Admax - Admin
Ldmax + Adwin - g, o Tdmax _ Zdoin,

ha 2 ’ 2
The amplitude reflection coefficient r, defined as the ratio of
the reflected amplitude over the incident amplitude, has been
obtained from the numerical solutions for various refractive
indices with different spatial variations. The reflectivity R is
defined as the square of the amplitude reflection coefficient.
Figure 4 depicts a plot of the reflectivity versus the 90% re-
fractive index variation thickness D, with data taken from
100 different solutions. The abrupt interface is obtained as
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FIGURE 5. Reflectivity coefficient versus thickness D, for differ-
ent refractive index steps.

TABLE 1. Intensity reflectivity in percentage for various refractive
index steps when their 90% variation takes place in a thickness D),
from zero to one wavelength.

Reflectivity R in %

'H\D

A/1000  A/4 A2 3M/4 A
(abrupt)
1.3 1.70 057 0049 00027 1.3x107°
13 4.01 117 0085 0.0039 1.6x1077
24 16.9 317 0.16 0.0062 2.3 x107°
10 66.9 576 022 0.0079 28x107?

D, tends to zero, R then tends to the expected value of
(max — Mmin)>/(tmax + Mmin)” obtained for normal inci-
dence from the Fresnel equations. The reflectivity remains
almost constant for thicknesses smaller than 0.05. For larger
thickness D, it decreases monotonically and the reflectivity
becomes negligible for refractive index variation thicknesses
over one wavelength. These results suggest that highly effi-
cient, broadband anti reflection coatings at normal incidence
may be obtained with these profiles.

In order to evaluate the dependence of the reflectivity with
the overall index change, plots of the reflectivity R versus Dy
are shown for different refractive indices in Fig. 5. It is clear
that even for an enormously high refractive index as 10, the
reflectivity becomes vanishingly small if the variation takes
place in larger distances than the wavelength range. Table I
shows the reflectivity for different refractive index steps with
thickness variations taking place in fractions of wavelengths.
In all cases, the reflectivity is of the order of a thousandth per
cent when the refractive index 90% variation takes place in
one wavelength.
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4. Conclusions

The Ermakov equation governs the amplitude spatial evolu-
tion of a monochromatic electromagnetic wave propagating
in a one-dimensional inhomogeneous transparent medium.
The invariant of two counter-propagating waves that arises
from this equation is, in a highly inhomogeneous region, dif-
ferent from the sum of the invariants of the two waves. Fur-
thermore, in such a region, the invariant is not only propor-
tional to the square of the wave amplitudes but also a function
of the wave amplitude derivatives. The numerical solutions of
the Ermakov equation allow for the description of propaga-
tion at normal incidence in a medium where the refractive in-
dex variation takes place in the order of a small fraction of the

wavelength. This situation is often encountered in thin film
growth if there is adsorption between layers. The numerical
solutions have been interpreted in terms of counter propagat-
ing waves in order to calculate the reflection coefficient di-
rectly from the non-linear equation. A potentially interesting
arca of application is the fabrication of (non-interferometric)
anti reflection coatings.
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() K-K relations do not apply in this case since we are dealing
with a monochromatic wave and the permittivity is only speci-
fied as purely real at that single frequency.
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