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[t is shown that for a given conservative system in classical mechanics, there is an infinite number of Hamiltonians, functions that determine
the evolution of the system, which may correspond to different parametrizations of the evolution curves in phase space. Furthermore, for a
given reparametrization of the time evolution of the system, an infinite number of alternative Hamiltonians can be found. It is also shown that
analogous results hold in the case of the geometrical optics of isotropic media.
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Se muestra que para un sistema conservativo en mecdanica cldsica dado existe un nimero infinito de hamiltonianas, funciones que determinan

la evolucion del sistema, las cuales pueden corresponder a diferentes parametrizaciones de las curvas de evolucidn en el espacio fase. Ademas,
para una reparametrizacién dada de la evolucién temporal del sistema, puede hallarse un nimero infinito de hamiltonianas alternativas. Se

muestra también que en la Gptica geométrica de medios isétropos se cumplen resultados andlogos.

Descriptores: Mecdnica hamiltoniana; éptica geométrica

PACS: 42.15.-i; 45.20.]j

1. Introduction

In the framework of Hamiltonian mechanics, the time evo-
lution of a conservative system is determined by a sin-
gle function H, the Hamiltonian of the system, defined

on the corresponding phase space in such a way that, if

(s GnyP1s--- P 18 @ set of canonical coordinates, the
evolution curves are given by the solution of the differential
equations
dq; OH dp;  OH
dt — Opi’ dt — dg;

(n

The function H is conserved, in the sense that the point with
coordinates g;(t), p;(t), representing the state of the system
at time ¢, remains on a hypersurface given by H = E, where
F' is a constant.

In many cases, the Hamiltonian can be taken as the to-
tal energy; however, as we shall show, for any given value
of I, the Hamiltonian function H can be replaced by any
other (well behaved) function i with the only condition that
the hypersurface H = FE coincides with the hypersurface
I = &, for some appropriate vaduc of the constant . The
curves determined by an alternative Hamiltonian, A, may not
be parametrized by the time. In other words, the curves lying
on the hypersurface H = FE given by Egs. (1) coincide with
the curves on h = ¢ defined by

dqgi  Oh dp; _ Oh

= i e 2
dr ap;’ dT dq;’ 2)

where the parameter 7 may be different from ¢. Furthermore,
for any reparametrization of the curves defined by Egs. (1)
on the hypersurface H = E, one can give an infinite number
of alternative Hamiltonians, & (which may depend paramet-
rically on E), such that the solutions of Egs. (1) on H = E
coincide with the solutions on i = ¢ of Eqgs. (2). The pos-
sibility of using different Hamiltonians for a given problem
allows us to relate it with other problems, while in some cases
it is useful to employ parameters different from the time.

The Hamiltonian formalism is also applicable to the geo-
metrical optics, but in this latter case all possible states lie on
just one hypersurface of phase space, i.e., only one value of
E is admissible (an analogous situation is encountered in the
covariant Hamiltonian formulation for a particle in relativis-
tic mechanics).

In Sec. 2 we establish the main results and give several
examples. In Sec. 3 we show that in the case of geometri-
cal optics and of relativistic mechanics, where all possible
states lie on a single hypersurface of phase space, alternative
Hamiltonians can be found in a phase space with two of the
original coordinates suppressed.

2. Alternative Hamiltonians and parametriza-
tions

Let us consider a curve q; = ¢;(t), p; = p;(t) on the hyper-
surface H = E. that satisfies Eqs. (1). If this curve is also
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given by Egs. (2), in terms of a possibly different parameter
7, then, using the chain rule,

dg;  dg; dt  OH dt dp;  dp; dt aH dt
dr  dt dr 3p,d‘r E;:—(i_tE:_a—(ﬁ(_i;'
and comparing with Egs. (2) we find that
oh _oHdt  on_oHd
dp;  Oppdr’ dq;  Oq; dr’
on the hypersurface H = E or, equivalently,
dh = d—de 4

on H = E. Equations (3) 1mp]y that the gradient of H is pro-
portional to the gradient of h and therefore the hypcrsurface
H = FE coincides, at least locally, with a hypersurface h =
Conversely, if the hypersurface H = FE coincides wuh
the hypersurface i = ¢, the gradients of H and I must be
proportional to each other on that hypersurface, thus,

on H = E (or h = &), for some function f, which implies
that the solutions of Egs. (1) and (2), with the same initial
conditions on H = E, are related by a change of parameter
with

= fdm (6)

Thus, we have the following result:

Proposition 1. Let H be the Hamiltonian of a conservative
system and let E be an admissible value of H. The function
/i is an alternative Hamiltonian for the system [in the sense
that the curves given by Egs. (2) coincide with those given
by Egs. (1)] if and only if the hypersurface H = E coincides
with a hypersurface h =

2.1. Examples

Two of the mechanical systems in two dimensions that admit
a solution by separation of variables in more than one coor-
dinate system (called superintegrable systems) examined in
Ref. | correspond to the potentials

v,:‘“;( +H)+Af;2l/4+k5 ;,_,1/4 (7)
and
B e k=1
Var+y? 22 + y2(/2? + y? + 2)
ki —1/4

+ (8)

Va2 + (V72 +y? - x)
(which reduce to those of the isotropic harmonic oscillator
and the Kepler problem in Cartesian coordinates, respec-
tively, when kj = k3 = 1/4). Letting

2 v -
—(z* +1?)

2
k?—1/4 k2-1/4
A 1 2/ + 2 ‘)/? (9)
& y?

H = zw(p +p3) +

the condition H = E can be rewritten as

1 pﬁ—b—pi E

2M 22 + 92 4 y?
K-1/4 | K -1/4 W
222 +y?) et +y?) 2

which is of the form i = constant, with

1 25 +p; E
oM 22 + 42

hi=

(10)

Hence, according to Proposition 1, the function h given by
Eq. (10) is an alternative Hamiltonian for the system de-
scribed by the Hamiltonian (9).

The coordinate transformation given by
I

' =32 —y%), ' =ay,

o=

b= gl A0 By P — W, (1)

is canonical. Noting that 2’ +iy' = .—( ~+iy)? and p, +ip, =
(x —iy)(p', +1p',), one finds that Eq. (10) is equivalent to

E
' 4 y'?
) K —1/4
22 + y2(Va? +y* + ')
I.) —1/4
V't +y? —z')

T g e = .

v (12)

2\/ 12 +y

which is the Hamiltonian for a particle in a potential of the
form (8). Thus, the Hamiltonian (10), which reproduces the
evolution determined by the Hamiltonian (9), is essentially
the Hamiltonian corresponding to the potential (8) [note that
the coordinate transformation (11) is not bijective].

From Egs. (9) and (10) we find that

H E’)w—2

h = (a?
i = (3 5

+y°)” (13)

hence, dh = (22 + y?)"'dH + (H — E) d(z*> + y*)™!
and, on the hypersurface H = E, dh = (2 + y?)"! dH,;
comparing with Eq. (4) we see that the parameter, 7, asso-
ciated with the new Hamiltonian / is related to the time by
dt = (2 + y*)~ ' dr. (In the case of the Kepler problem, the
parameter 7 is related to the eccentric anomaly [2].)
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Considering now the two-dimensional Kepler problem
with Hamiltonian

1 k
——— 14
the condition H = 0 can be written as
(=* +v*) (P} +p3)° = (2ME)?, (15)

which is of the form h = constant, with

v*)(p3 +1p3)*, (16)

therefore, /i is an alternative Hamiltonian for the two-di-
mensional Kepler problem with zero energy.
The coordinate transformation given by

1
V2M (p, — ipy)’

P, +iPy = V2M (z — iy)(ps +ipy)?, (17)

Hi= (.122 +

Uy + s =

is canonical and is such that

P+ P2 = (2M)(z* + y2) (02 + p2)2,

hence,

h= w(pl +P2), (18)

which is the Hamiltonian for a free particle in two dimen-
sS10Ns.
From Eqgs. (14) and (16) it follows that

2
k
v/t + yz)
= (2M)? [(;{:2 + ) H? 4+ 2k/22 +y2 H + k?] . (19)

therefore, on H = 0, dh = 8M?k+/22 + y2 dH, which im-
plies that the parameters ¢ and 7, associated with H and 1,
respectively, are related by [see Eq. (6)]

dt = 8M?k+/x2 + y2 dr. (20

On the other hand, making use of Eqs. (17) one finds that
T+ iy = V2M (P, — iPs)(uy + iug)?, 1)

h=(2M)%(z* +y?) (H -

hence, from Egs. (18) and (20) we obtain
dt = 32M*E* (u} +u3) dr. (22)

Since the Hamiltonian (18) corresponds to a free parti-
cle with energy (2Mk)? [see Egs. (15) and (16)], by means
of a rotation if necessary, we can assume that u, (7) = ar,
u2(7) = b, where b is an arbitrary constant and a® = 8M k.
Then P, = Ma, P, = 0 and from Eq. (21) it follows that
.?:Jr'iy:mJ'\J(J.((:.T+ib)2, ie., :I::\/mMa(ag‘rszz),
y = (2M)*/2a?br, which are parametric equations of a

parabola. According to Eq. (22), the parameter 7 is related
totbyt=32M% ( ME273 + b27) (cf Ref. 3, Secs. 3-8).

2.2. Choice of parametrization

It we want to replace the time, ¢, by another parameter,
7, with dt = fdr, where f is a given function, one can
give an alternative Hamiltonian h whose integral curves are
parametrized by 7. In fact, if we let

h=f(H-E)+e, 23)

where E and ¢ are constants, then H = FE if and only if
h =¢ and dh = fdH + (H — E)df; hence, on the hy-
persurface H = E, dh = fdH, which leads to Eq. (6) as
desired.

The alternative Hamiltonian (23) is by no means unique,
for instance,

W =g(H—-E¢+f(H-E)+e, (24)

where ¢ is an arbitrary function and % is an integer greater
than 1, is such that 4’ = £ if and only if H = E and
dh' = fdH on H = E. Hence, we have:
Proposition 2. Let H be the Hamiltonian of a conservative
system and let f be an arbitrary function. For each admissi-
ble value E of H there exists an infinite number of alternative
Hamiltonians for the system corresponding to a parameter
such that dt = f dr for the evolution curves on H = E.
Note that Egs. (13) and (19) are of the form (23) and
(24), respectively, and that by comparing the corresponding
expressions one can identify the function f.

3. Geometrical optics and reduced phase space

In the geometrical optics approximation, the propagation of
light in an isotropic medium can be described by the Hamil-
ton equations (1), with

27 >1' Prpp (25)

where 7 is the refractive index of the medium, ¢ is the speed
of light in vacuum, (g") is the inverse of the matrix (gi;)
formed by the components of the metric tensor in the coordi-
nate system employed and there is summation over repeated
indices (see, e.g., Ref. 4 and the references cited therein).
The spt,ed of llght in the medium is equal to ¢/n provided
that g p;p; = n?, i.e., H = ¢/2; thus, in the present case
only one value of H is admissible and all the possible states
lie on a single hypersurface of phase space. If F is any (dif-
ferentiable, real-valued) function of one variable such that
F'(c/2) # 0, then h = F(H), with H given by Eq. (25), is
an alternative Hamiltonian to H for the light rays. Then, on
H =ief2,

dh = F'(c/2)dH,

hence, owing to Eqs. (5) and (6), the parameter T associated
with h is determined by dt = F'(c/2) dr.

The evolution of the light rays can be parametrized, say,
by the Cartesian coordinate z; then, from Eqgs. (1) and (25)
we have dz/dt = OH/Op. = (c/n?)p., therefore, taking
f = n*/(cp-) [see Eq. (6)], from Eqgs. (23) and (25), with
E = ¢/2 and ¢ = 0, we obtain the Hamiltonian
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(26)

= .‘/‘n'z—p%—p;f,) (;};+\/112—P%—P§.)7

which gives the evolution of the light rays, parametrized by z. Since on the hypersurface H = ¢/2, the relation p2 +p2+p? = n?

holds, assuming p, > 0, i.e., p.

i =\ a3 R ;
+(pz +4/n% —p? —pj) e (p_. —y/n? —p2 —pﬁ)]
z

dr 1 ( \/ﬁ)
dz _ T | a 2]); Pz Pz py
p:=y/n*—pi—p
J : . -
= g (b= —pi -}
9
B o =

and, similarly,

p==y/n*—pi-p;

dp..

dz

P

Thus, in the reduced phase space with canonical coordinates
T, Y, Pa» Py the function —, /n? — p2 — p? is a Hamiltonian
that gives the evolution of the light rays parametrized by z
(alternative derivations are given in Refs. 5-7).

Another parametrization of the light rays, already consid-
ered in Ref. 7, corresponds to the use of the arc length, s. In
this case we have

ds
—1 __ &5
f Todt
- ﬂri '.»+ dy 2+ i{ 2
- dt dt dt

9+ +pls

and from Eqgs. (23) and (25), taking ¢ = 0,

2
n? € i ; ; e
O S XYYV Ty
2 4 2 2'”2 ¥ 2
Cy/Pz + Py + P2
n pz -+ ])2 =+ pg n
- (=0, (29)
A5 0t 4 B 2n =
Apart from the factor n/,/p? + pj + p?, which is equal

to I on the hypersurface H /2, the Hamiltonian (29)
coincides with one of the Hamiltonians found in Ref. 7
[Eq. (3.7)].

= o )
:=y/n*—pi-p;

\/n? — p% — p2, from Egs. (2) and (26) we obtain, e.g.,

J : ? p
B (p +4 /1% —pl —p;)

p:=y/n?—p—pl

27

(28)

Finally, in the case of a free particle in flat space-time,
a (Lorentz-covariant) Hamiltonian that gives the evolution of
the particle parametrized by its proper time, 7, is given by

1 2
h = mn“’j Palsd

1

=z (30)

[(P0)® = (11)? = (p2)* — (ps)*],
where M is the rest mass of the particle and (n“a) =
diag (1,—1,—1,—1). In order for 7 to be the proper time of
the particle, the four-momentum p, must satisfy the condi-
tion n°%p,ps = M?>c* and, therefore, the only admissible
value of his ¢ = M¢? /2. If F is any real-valued function of
one variable such that F'(Mc?/2) # 0, H = F(h), with h
given by Eq. (30), is an alternative Hamiltonian to h.

If ¢ denotes the time measured in an inertial frame, mak-
ing use of Egs. (2), (6) and (30) we have

dt  1dx® 10h _ po

f= = e Mo

T dr T cdr
hence, from Eq. (23), taking E = 0, we find that

H=fYh-¢)

25 U

sy (0= VITTIER) (po+ VT I03), 1)

*Bpaps — M*c?)
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where p = (p',p*,p®) = —(p1,p2,p3), is an alternative
Hamiltonian for a free particle [cf Eq. (26)]. Thus brocced-
ing as in the previous example, assuming p, > 0, from
Egs. (1) it follows that in the reduced phase space with

canonical coordinates !, 22, x*, p1, p2, ps, the function

—cy/p? + M?c? is a Hamiltonian for a free particle. The
sign of this Hamiltonian must be reversed if one employs
(p'.p*.p*) = —(p1,p2,p3) as the canonical coordinates
conjugate to (z', 22, 2%).

4. Conclusions ‘ , o

As we have shown, in the case of a conservative system in
classical mechanics or of an isotropic medium in geometri-
cal optics, the evolution is essentially determined by a family
of hypersurfaces in phase space, and each of these hypersur-
faces can be seen as a level surface of an infinite number of
functions which act as Hamiltonians. Among other things,
the results presented here provide a general framework that
allows us to obtain the Hamiltonians found in Refs. 6-8 by
means of other procedures.
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