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Hydrodynamic stability of the strip casting process
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A thin slice of melt travels through a long zone which is cooled from below. Disturbances of this process are characterized by three disparate
lengths: the solidification length L, the wave length A” and the depth of the slab 4. . Experimental observations show small-amplitude long
waves with lengths ratios 8% /L < A*/L* < 1. This means that the waves are too long to “perceive” the vertical variations in the melt.
Thus we use a linear approach to study the stability of long one-dimensional shallow water waves. We found one mode that grows slightly
under the influence of the decreasing depth of the melt. Its wavelength is about one order less than the cooling length. These theoretical
predictions are in qualitative agreement with experimental observations.

Keywords: Hydrodynamic stability; two-phase flow; solidification

Una banda delgada de material fundido se mueve en una zona larga refrigerada en su parte inferior. Las perturbaciones de este proceso son
caracterizadas por tres longitudes diferentes: 1a de la solidificacion (L"), la longitud de onda A” y el ancho de la banda 65, . Los experimentos
indican ondas largas con amplitudes pequefias y proporciones 8%, /L* < A" /L <« 1. Esto significa que las ondas son demasiado largas
para “percibir” las variaciones verticales en el material fundido. Por esto usamos una teoria lineal para estudiar la estabilidad de ondas largas
en aguas poco profundas. Encontramos un modo que crece débilmente bajo la influencia de la profundidad decreciente del material fundido.
Esta onda tiene una longitud de onda cerca de L*/10. Estas prediciones tedricas estan cualitativamente en acuerdo con onservaciones
experimentales.

Descriptores: Estabilidad hidrodinamica; flujo de dos fases; solidificacion

PACS: 47.20.-k: 47.20.Hw

1. Introduction

The evolution of disturbances in films on horizontal and on
inclined walls was subject of intensive investigation during
the last decades. Horizontal films, open channel flow, falling
films, the effect of moving boundaries in coastal waters were
investigated [1-6]. Our study concerns a different class of
flows where the variation of the boundaries is brought about
by phase changes. We consider in particular the evolution of
hydrodynamic disturbances in continuous solidification. The
latter is of extraordinary importance in modern metallurgi-
cal engineering (see Schneider [7]). To simplily the prob-
lem we assume that there exists a solidification front instead
of a “mushy” two-phase region. As the solidification layer
erows the disturbances become influenced by the decreasing
depth of the melt. This study is strongly motivated by results
found in experimental work performed by the Voest Alpine
Industrianlagenbau (VAI), which is the industrial partner of
the Christian Doppler Laboratory (see also the acknowledge-

FIGURE 1. A sketch of the flow in the strip casting process.

The following analysis is based on the study of the linear
stability of exact solutions to the Navier-Stokes equations. A

ment). In Fig. | we give a sketch of the pilot plant installed
in the laboratories of the VAL Preliminary tests indicated
long low-amplitude waves which form harmonically varying
crooves in the solidified steal and thereby reduce the quality
of the strip (Digruber et al. [8]). It should be kept in mind,
however, that the experimental investigation of the strip cast-
ing process associated with temperatures of about 1000°K is
extremely difticult and theoretical predictions are particularly
valuable to understand and control the strip casting process.

particular feature of these solutions is that the mean flow is
uniform. Thus we expect that the stability of the disturbances
is mainly governed by geometrical effects like the growth of
the solidified layer.

The investigation of Johnson [9] concentrates on the
propagation of surface waves in irrotational flows over vari-
able depth. By contrast, we have to consider here in addition
to the variations of the depth the effects of the viscosity and
of the convection of the material by the uniform speed.
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2. Analysis

This study concerns the investigation of a horizontal strip
casting process which takes place between a cooling table
(length L*) and a free surface. The melt is brought to the
table via a conveyor roll (see Fig. 1). The roll is mounted
such that its top defines the beginning of the cooling table
and its velocity gives the uniform casting speed U*. To pro-
duce a completely solidified melt the latter is cooled on the
table from below. It is assumed that the constitution of the
material excludes the formation of “mushy zones™ and that
segregation effects are negligibly. The solidification process
takes place in the regime 0 < z* < L* and 0 < y* < 6%,.
We use variables with ( without) an asterix to denote dimen-
sional (non-dimensional) quantities. A slab of material moves
at uniform speed (I/*). The melt flows in the uppermost layer
and it and solidifies along the interface y* = §*(x*,t*) and
the solid is located in the lower regime 0 < y* < §*(z*,t*).
We base the analysis on the assumption

855 X e L7 (n

Note that (1) represents a geometry which is typical for
strip casting processes. The maximal thickness of the strip
0% is assumed to be small relative to the wave length A*. This
means that the waves are too long to “feel” the transverse
structure of the layer. Hence we can apply one-dimensional
(1D) flow equations. Note that 1D flow equations were also
employed in [8]. The outer part of the inequality (1) implies
that we may use a shallow water approach. Furthermore, we
assume that the density of the material remains unchanged
during the solidification process (p* = constant).

The following basic equations are derived in the study of
Kluwick and Scheichl [10]. They consist of 1D flow equa-
tions and 2D heat conduction equations
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T =—; =—; t=U"—;
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d=—; h=—; e=—; 2
o T e Ly’ @
u* I~y ) m*L*
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where u, #;, [the subscripts 1 (2) label upper (lower) layer]

and 1 denote the velocity, temperatures and rate of solidifi-
cation, respectively. T, T, represent the temperatures of the
solid and the of the wall. The hydrostatic pressure is given by
(g~ is the gravity constant)

P =potpigt(h*+6" —y7). (3)

Thus we obtain the 1D flow equations for the melt (mo-
mentum, continuity equation):

1()Jr i 10{!14—5) iﬁz_ (4a)
e "9z ) " T T 8z T Redm™ ‘
10h  d(hu) B
35 J—z +m = 0. (4b)

Note that the viscous term on the right-hand side of (4a)
is made up exclusively by normal stress terms. There are by
definition no shear stresses in 1D flows. The energy equation
has the form

10 (7] a*
( ot ”8.1) i=ggrs teEsL im

Note that in our 1D approach there is no convective
vd/dy term in the energy equation. Pe; » labels the Péclet
numbers, F', Re are Froude and Reynolds number, respec-
tively. They are defined by

i U*L*

CEo T

(5)

The equations governing the dynamics of the solidified
material are given by

194 06
=1 rat+-a—*ﬂ?—0 (6a)
and
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Pftj (ga-{-a—l) 92—- ayzgg. (6b)

The rate of solidification m is defined by (A; » are the
characteristic constants of mass transfer)

06, _ 39-)
m= A, . s—(z,y = 0);
m By = (z, y=10) - ay (z,y=9)
Ay » = const. (7

The six equations (4) and (6) and (7) govern the six variables
w, h, 8,61 5, m. According to [8] and to Morwald and Schnei-
der [11], the exact steady solutions have the form (we refrain
from listing the temperature profiles)

Jdo=+vx and hg=1-—/z. (8)

Equation (8) means that the steady flow velocity is uniform
and equal to the casting speed. There arise problems from
the particular form of hg in (8). The height becomes small
as the end of the cooling table is reached. This causes non-
uniformitics and the expansions break down (see second part
of (11) and note that this non-uniformity is not present in the
expansion (14)). This is related to the fact that hy does not
reach its limits for x — 0 and @ — 1 asymptotically. Hence
we restrict the variation of the horizontal evolution to the in-
terval 0.1 < z < 0.9.

In the following we will focus on disturbances of the
steady state. First we note that in the absence of temperature
fluctuations we have

ug = 1;

&; =const. 3=1,2;
) = do(x) =
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Now we see that the two remaining quantities u and h are
governed by (4a) and (4b) with mn given by the last part of (9).

It we wish to include the case of temperature fluctuations
we can use, however, a set of similar equations. We eliminate
m from (4b) and (6a) and we obtain

13(h+48) 90+ hu)
a  ox
Equations (4a) and (10) contain now the three quantities w, /i
and d. There seems to be a lack of one additional equation.
We will see. however, in a moment that we can derive with
the use of an asymptotic expansion a hierarchy of coupled
equations where only u and z = h + 4 are involved.
We introduce now an asymptotic expansion

= {. (10)

m |

u(z,t) = 1+ Auy + Acus + O(A?, Ae?),
hiz,t) = ho + Ahy + Aehs + O(A2, Ag?), (11)
8(x,t) = do + Ay + Acds + O(A%, Ae?), A<Ke.

A is a formal parameter and the reason for using a double
limit expansion will become clear in a moment. We use the
coefficients

Uj = 'H",(.I"] 5. L2, f)
and
;= :J(.?'l s L3, f)

= hj(xy,2a;t) + 8;(21, 22,1);

i=1,3,... (12)

and introduce two scaled variables (& is a reference position)

Ty = ——, To=2. (13)

The expansion (11)—(13) is chosen such the slow vari-
ations in the fluids depth enter the problem in the shallow
waler equations before the nonlinearities come in. Note that
because of /ig(1) = 0 the domain of validity of the expan-
sion (13) is limited to 0 < x < 1. Note also that the variables
h and & enter (4a) and (10) only in form of the combinations
~ = I 46 and uh + 4. Thus we see obtain with the use of (11)

=14+ Az +Aezz+ ...,
uh+5=1+ A(:l -+ h{)ll‘,l) + Ae(zs + h(]’[f,g) + ... (14)

Equation (14) shows that only the pair of quantities u; and z;
enters the equations. The set of the two original Eqs. (4a) and
(10) is therefore sufficient to describe the problem up to order
A=, Thus we see that the flow equations decouple from the
energy equations also in the case of temperature fluctuations.

In the study of inviscid wave propagation [10] expan-
sions corresponding to (7) failed because near » = 1 [where
hg(1) = 0 holds], leading order and correction terms are
equal of magnitude hy = ehy for x = 1 — O(g). Equa-
tion (14) indicates, however, that in our problem no such fail-
ure of the expansions arises because near » = 1 we have
uh+6 =14+ A(zy +uy) +Acs(zz +uz)+....

We substitute (11)—=(14) into (4a) and (10) and we have
also to scale the Reynolds number. A consistent scaling,
which allows for viscous effects in the leading order is (R
is the scaled Reynolds number)

2R
Re = —,

R=0(1). (15)

The factor “2” in (15) was introduced for convenience.
We derive now an hierarchy of equations and we obtain in
leading order

F"_’
Lz + ho(x2)Duy = 0;

1 1 _5
Luy + —=Dz — —R—D“ul =il

a d
D=—, L= —_— 16

Note that the variable = is in (16) only a parameter. Thus
we can eliminate z; and this yields
ho(zs) o 1_.,
D* — =D*L. 17
F? R (n

The first correction is governed by

Lu; =0; £=L°-

1 | [P
L'u.;; + }r;_;DZ:J, = EDBUg = RHS]

Lzs + ho(xs)Dusz = RHS, (18)

with the inhomogenities

g [2 |
RSH; = 5;—* [ﬁDul - (U] + Ezl)] ;

RSH, = —55;)— [51 + ]?.0(.’1’?2)?1-;] . (19)

If we anticipate the wave forms (22) and (23) we see that

RHS, , represent secular terms. To avoid resonance we set
RSH; = RSH, = 0. (20)

Note that (20) is the 1D-leftover of the Fredholm’s alter-
native. A simple integration yields the two equations

2 1
ﬁDul — (uy + ﬁzl) = g1(xy. t);
21 + ho(xz)u; = g2(x1,t), (21)

where the functions g, » are undetermined for the moment.
To solve (17) we use the forms

A(xy) exp[i®(xy, t)];
B(xs) expli®(zy.t)]. (22)

1

The functions A and B in (22) represent amplitudes
which are yet unknown. The complex phase function, how-

ever, is given by
i I+=sry
Py, t) =& — wt; £ —] k(s)ds, (23)
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where w labels a frequency (or Strouhal number) and £ de-
notes the wave number. Note that forms of the type (22) and
(23) have been used frequently in recent studies of spatial
stability of weakly non-parallel flows (¢f. Plaschko [12]). Be-
cause of the appearance of the fast variable £ in (23) we may
also consider (22) with (23) to be the leading order term of a
WEKB-expansion (see, e.g,, Bender and Orszag [13]).

The introduction of (22) into (17) yields now the eigen-
value equation

9

i(k — w)F? [i(’i*w‘)+§] +kZho(z2) =0. (29)

Note that the PDE (17) is of second order w. r. t. the time-
variable and of third order w. . t. the spatial variable x, (24) is
hence an equation quadratic in the frequecy w and cubic in the
wave number. Because of the r-dependence of the solutions
to (24) we may consider this equation as the one of locally
parallel disturbances. The disturbances grow (or decay) in
the horizontal direction and we consider in the following only
spatially excited (or damped) waves with k = k, +ik;;w € R
Because of the cubic nature of (24) we expect three different
modes as solution of (24). We can also conclude from (24)
that the F-dependence of the eigenvalues decrease gradually
as @ increases. In the appendix we will juxtapose the solu-
tions of (24) with the ones of a 2D characteristic value equa-
tion derived in a forthcoming g paper.

To study the inviscid limit of the characteristic values we
use the expansion

k=m+%+om*y (25)

The substitution of (25) into (24) leads to
w
h.(‘)/z
1+ —
F

}'\"U =

and
iF3?

g o
"2 (R anlP)y

(26)

Note that h(l,/!/F = hgg*/U* = 1/F,. where Fj, is
the local Froude number. Note also one solution of the cu-
bic equation (24) is lost because of the singular nature of the
expansion (25). The solution with the minus sign in (26) rep-
resents a solution with a hydraulic jump at F = h(',/2 which
occurs for F' < 1. We will compare the solution with the plus
sign with one of the numerical solutions in Fig. 4.

We define the phase speed of parallel modes by

(p _ 1 dx* ldx

G T Ocar T edt

(27

and we obtain with (23) ® = const., ¢\t = w/k,.

To complete the analysis we have to determine the ampli-
tudes A and B in (22). To accomplish this we substitute (22)

into (21) and solve the corresponding system by consistently
using the forms

gi(xy,t) = Cexpli®(zy,1)],
g2(x1,t) = Eexpli®(z1,1)]; C,E = const. (28)
This leads to

Alz) = .4(;&):}3;

2ik(x)
R

a(x) = ho(z) + [ - 1} F2.

o(T)

ol{x)

B(x) = B(&) + ho(2)A(Z) — ho(z)A(Z) (29)

Note that we have now reached the final phase of the cal-
culations and we use the physical coordinate = again. We de-
fine the gain (or loss) (7, for the velocity fluctuations. This
is given by the fluctuating amplitude referred to the initial

point
Gl 5] = ZE:; exp [—é / k,»(s)dsJ.
G (3.7) = 1 | F<r<1
Ol 1) = Sal B (30)

Gun(L,3)

The second part of (30) is useful if we want to change the
reference point. The phase speed is given by

; w
Canl(x) = = 7
i, i
T w2 42
. 1 d
u+ i = —; e (31)
a dx

3. Numerical results and discussion

In technical realizations of the strip casting process R and F'
are order-one parameters. Our numerical evaluation was done
for

025<R<8 05<F<4 w=0(10"1). @32

As mentioned earlier, we found three different modes.
Two of the disturbances travel downstream, one runs up-
stream and all three modes are damped. Figures 2a and 2b
reveal a graph of the eigenvalues of these three modes. The
downstream traveling mode number one is the least damped
(or almost neutral) disturbance, its parallel growth rate is
multiplied by a factor 100 in Fig. 2b. This shows clearly that
the two other modes (number two runs downstream, mode
number three travels upstream) are very strongly damped and
they are not observable in experiments. Hence we concentrate
in the following exclusively on the evolution of mode number
one.

Rev. Mex. Fis. 46 (6) (2000) 560-565
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o't R=1 , F=0.75 i
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FIGURE 2. a) Parallel phase velocities of the three modes (mode
one and two travel downstream, mode three runs upstream). F' =
0.75,w = 0.1, R = 1; b) Like Fig. 2a) but parallel growth rates of
the three modes. The growth rate of mode number one is multiplied
by a factor 100.

The imaginary parts of the eigenvalues (or the parallel
arowth rates) of mode number one are revealed in Figs. 3
and 4. This quantity increases slightly during its horizon-
tal evolution and becomes gradually F-independent as x in-
creases. Figure 4 indicates the asymptotic tendency towards
R-independence given by (25) and (26). The asympototic
growth rates [caslculated with (26)] agree well at high values
of the Reynolds number parametr & with growth rates cal-
culated with (24). An increase of the Strouhal number (not
shown in these figures) leads to an enhanced damping of the
disturbances.

In Fig. 5 we present the numerical predictions of the gain
and the local wave length \j of the disturbances. The latter
quantity is with (29) and (31) given by

Ay _ 2mecy,,

7
with ¢, given by (31). Thus we see that the disturbances are
predicted to grow slightly in a first phase of the horizontal
evolution and to decay later. The local wave length exhibits
a maximum near the location of maximal gain and tends
10 a constant value for further downstream positions. These
behavior—and the strong damping of the upstream travel-
ing modes—can be ubderstood in terms of the wave energy.
Downstream (upstream) ‘“aveling waves run into a layer of

(33)

0.0008

0.0004

0.4 0.8

FIGURE 3. Parallel growth rates of mode one. Upper curve F' = 3,
middle curve F' = 1.5, lower curve. F = 0.75,w = 0.1, R = 5.

0.001 : -

" F= 0.75

0.0005 i P

FIGURE 4. Like Fig. 3, but upper curve: & = 3, middle curve:

asymptotic growth rate (26); lower curve: R = 7.5 w = 0.1,
F=1D.75.
15 | .

R = 0.5, Fr = 0.75

0.5

FIGURE 5. Gain (upper curve) and local wave length (lower curve)
of mode numberone. R = 1, w = 0.1, F = 0.75, ¢ = 0.004.

decreasing (increasing) depth and the conservation of wave
energy leads thus to growth (decay). The final decay of the
further is due to vicous damping.
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These predictions are in agreement with observations of
harmonically varying small-amplitude grooves in the solidi-
fied material. The observed wave length has, however, a value
of about 0.2 < A\§/L* < 0.3. In contrast to the prediction of
about A§/L* = 0.075. The latter small value is nevertheless
consistent with the assumption (1).
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Appendix

In a forthcoming paper [14] we will be publish a 2D approach
to tackle the study of instabilities of the strip casting process.
The corresponding eigenvalue equation is given by

exp(Ado)[A(A* — 1) + rAdg — 7] + exp[A(2 — &g)]
X [AMA2 =1) +7rA6p +1] =0, (A.])

0.006 : =
R=5 , F= 0.75
0.004 —acoent
L% i
k. 0.002 Y
0k : s I
: : i 5 1
-0.002 ! i S
0 02 04 08 08 1

X

FIGURE 6. A comparison of 1D (continuous line) and 2D (dotted
line) parallel growth rates, R = 5, w = 0.1, F = 0.75.

with

r = ﬂ, A = iR(w — k);

(%)

The corresponding eigenvalues are found to depend only
rather weakly on the Weber number, the influence of which
is not included in (A.1) and (A.2). In Fig. 6 we give now a
comparison of the horizontal evolution of 1D (mode number
one, governed by (24)) and 2D (governed by (A.1)) parallel
growth rates. We obtain clearly the best agreement between
the results of 1D and 2D approaches in an advanced regime
of the horizontal development of the disturbances. There the
slab is sufficiently thin to guarantee that the wave is much
longer than the thickness of the molten material.

do=+vz. (A2)
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