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A note on Newtonian and non-Newtonian oscillatory pipe flows
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In this note a simplified analysis is presented in which the flow of Newtonian and non-Newtonian liquids under a constant pressure gradient
with an oscillatory motion of the boundaries is examined theoretically. The departure of the velocity function from the steady value due to the
superimposed oscillations is analyzed for a linear viscoelastic constitutive equation in the case of rectilinear pipe flow and for flow between
parallel planes. Since the viscosity function is not shear dependent, no increase in flow rate is possible; nevertheless, elastic effects modify
the velocity profiles and need to be considered in order to fully explain the experimental increases in flow rate reported by other authors.

Keywords: Oscillatory flow; viscoelastic fluids

Examinamos teéricamente el flujo de liquidos newtonianos y no-newtonianos sometidos a un gradiente de presion constante y con movimiento
oscilante en la frontera, Analizamos la desviacién de la funcién velocidad, debida a la superposicién de oscilaciones con respecto al flujo en
estado permanente, para los casos de flujo en conductos de secci6n transversal circular y entre placas paralelas, para un fluido linealmente
viscoeldstico.Como la viscosidad no depende de la rapidez de deformacién, no puede existir aumento en el gasto; sin embargo, los efectos
eldsticos modifican el perfil de velocidades y deben ser considerados en la explicacién del aumento de gasto reportado por otros autores.

Descriptores: Flujo oscilante; fluidos viscoeldsticos

PACS: 47.50.+d; 47.60.+i

1. Introduction

For several decades, attention has been drawn to the flow
of viscoelastic liquids under a constant pressure gradient
in pipes which are oscillating longitudinally about a mean
value [1-7]. This type of flow gives rise to substantial differ-
ences with respect to the flow of purely viscous liquids under
similar circumstances, such as considerable increases in the
flow rate when compared to purely rectilinear flow [4-10].

Theoretical studies of the superposition of longitudinal
or transverse oscillations on steady flow in a circular uni-
form pipe have been carried out by Kazakia and Rivlin [4]
for a third order fluid, by Mena er al. [5] for a general lin-
ear viscoelastic fluid as well as for a power law inelastic
fluid and by Phan-Thien [7] for a more comprehensive series
of constitutive equations both viscoelastic and inelastic. The
extensive experimental results presented by Mena et al. [5]
show beyond doubt that the substantial increases in flow rate
which are possible for viscoelastic fluids are mainly due to
the shear-rate dependency of the viscosity with a minor in-
fluence of the purely elastic effects. This was further corrob-
orated by Phan-Thien [7] and applied to the case of polymer
extrusion in oscillatory dies by Casulli et al. [8,9] and later
by other authors [10-12].

In this note a simplified analysis is presented in which the
influence of elasticity upon the flow is examined. The anal-
ysis is concentrated on the cases of oscillating pipe flow and
flow between parallel oscillating planes and for a linear vis-

coelastic constitutive equation. Since the viscosity function
is not shear dependent, no increase in flow rate is possible;
nevertheless, elastic effects modify the velocity profiles and
need to be considered in order to fully explain the experimen-
tal increases in flow rate.

2. Mathematical formulation and equation of
state. Flow between oscillating parallel plates

We consider the flow between two infinite parallel planes sep-
arated a distance +a from the z axis of a Cartesian frame of
reference whose origin is midway between the planes. The
pressure gradient is in the z direction and the oscillations are
imposed on the boundaries y = +a with a frequency of os-
cillation n. The physical components of the velocity vector
are u; = 0, u, = 0 and u. = u(y, t) which satisfy the equa-
tion of continuity identically. The relevant stress equation of
motion is in the z direction and for an incompressible, homo-
geneous liquid is given by

du B L
[)E—G+8y2(Ty:) (N
Here p is the density of the liquid, G is the generating con-
stant pressure gradient and T, is the relevant component of
the extra stress tensor. Equation (1) is to be solved subject to
the boundary conditions u = ae™™ at y = +a, du/dy = 0 at
y = 0 forall £.
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We characterize the viscoelastic liquid by equations of
state of the form

Tik = —pgir + T}y, (2)

where the extra stress tensor T7, is given as a function of the
relaxation or memory function ¥ as

T}, = 2[‘1:(15 — t"el (z, 1) dt!, 3)
where

U(t—t) = /y%e”(“")/cdc (4)

Following the usual notation Ty is the stress tensor, p
an arbitrary isotropic pressure, g;; is the metric tensor of a
fixed coordinate system x;, egi is the rate of strain tensor
and N () is the relaxation spectrum.

The liquid represented by Eqs. (2)—~(4) falls within the
framework of linear viscoelasticity theory and is know as
Walters B’ liquid [13]. It contains as a special case Oldroyd’s
B liquid [14] by setting

\
N(¢) = ’?oi—if"((:) & 710/\1/\1 —
where 7 is the zero shear rate viscosity, A\ and X, are the
relaxation and retardation times respectively and & represents
a Dirac delta function. Of course if Ay = 0, the Maxwell type
constitutive equation is recovered, and if A; = )5 the purely
viscous case is represented.

For the problem in question, it is easily shown that the re-
lation between T}, and the velocity component in the direc-
tion of flow u , subject to the oscillatory boundary condition
at the wall, reduces to

T.. = BU/'I'(;L')e""m’ dx. (6)

yz—a_y

It may be shown that the velocity gradually becomes a
periodic function of time with the same frequency as the ve-
locity of the boundary. We shall consider only this steady pe-
riodic state and disregard any transient phenomena.

Equation (1) can be made homogeneous using as depen-
dent variable the departure of the velocity from the steady
state value Ga? /2no [1 — (y/a)?], ie., :

e - ©] o

(0 — A}, (5)

w(y,t) = u(y,t)

a
which yields
dw 1y 0%w
— =2 ®)
ot p Oy?

with boundary conditions w(a,t) = ae!™, dw/dy = 0 at
y = 0. Here, a is the product of the amplitude times the fre-
quency of the oscillations.
The solution to Eq. (8) is readily found as
cos kY e

w(r,t) = a——— .
w(r, t) ncos P (9)

For the general viscoelastic case k is given by

)2 = "“”’[np(A) e lionV] k. (10)

‘!]0

For the Oldroyd B liquid k reduces to

fs —inp 1p2 1+ inA Y2 a1
o 10 1+ ink; :
and for the Maxwell fluid:
—inp\ /2 ;
ke = ( 'p) [1+inA]"/2. (12)
o

Finally, the Newtonian case is obtained when

—in 12
. ( i ) . (13)
Mo

3. Oscillating pipe flow

We refer all physical quantities to cylindrical polar coordi-
nates (r, #, z), where the z direction is along the axis of the
pipe. The pipe has a circular cross section of radius a. The
flow is generated by a constant pressure gradient G in the
z direction; in addition an oscillatory motion is imposed on
the wall r = a. This motion is of the form u = aexp(e™)
where 7 is the frequency of oscillation, the real part is obvi-
ously implied and a represents the product of the amplitude
and frequency of the oscillations. Again, it may be shown
that the velocity gradually becomes a periodic function of
time with the same frequency as the velocity of the boundary.
We shall consider only this steady periodic state and disre-
gard any transient phenomena. The physical components of
the velocity vector under such situation are u, = 0, ug = 0
and u. = wu(r,t) which satisfy the equation of continuity
identically. The relevant stress equation of motion is in the z
direction and for an incompressible, homogeneous liquid is
given by
u 149 ,

Following the same procedure as in the previous section,
we use as dependent variable the departure of the velocity
from the steady state value:

w(r,t) = u(r,t) — i(;“ [1 = (?—)2J 3 (15)
o

so that Eq. (14) becomes

dw Mo (c’)zw

10w
at — p \or? ¥ ) ’ (16)

v 5

with associated boundary conditions w(a,t) = e,

(3/0r)w(0,t) = 0.
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FIGURE 1. Parallel planes: (a) velocity departure from the steady state value vs. distance and (b) phase angle of velocity departure vs.
distance between the planes for an Oldroyd fluid with nA; = 4, nA2 = 1. The Maxwell model with nA; = 0 and the Newtonian fluid are

shown for comparison.

The solution to Eq. (16) is the found as
Jg(k'i") PinL

Jo(ka) -
where .J, is Bessel’s function of order zero of the first kind.

With the use of Eq. (15) one readily obtains

J()(kf'} : G'a2 2

u(r,t) = a=———=e"™ + —(1 — R*),

0= ke )

where B = r/a. The various values of k being the same as
in the preceeding section.

(17)

w(r,t) = a

(18)

4. Results and conclusions

Before computing any results from the above solutions, it is
useful to examine the behavior of the functions in Egs. (9)
and (17). For the sake of simplicity we choose to examine
the solution for flow between parallel plates; the solution
for pipe flow is expected to have the same general form al-
though slightly more complicated in nature. If one examines
the quantity of interest in Eq. (9), i.e.,

cos kay*

W = (19)

coska ’
where we have set y* = y/a and y* varies between 0 and 1,
the product ka is complex and may be expressed as

ka = —iv. (20)

Restrictions are imposed on 3 and v since n, p, 70 and
A are all real and positive; then 3 and v are both real and
positive; therefore, it follows that:

(i) since 5 > 0 the modulus W is never zero or infinite;

(i) if 4 < v, W increases monotonically to the value unity
as y* goes from 0 to 1. Note that 3 = + is the Newto-
nian case.

The limiting cases may also be examined in the context of
linear viscoelasticity theory; for example the complex modu-
lus n* is

nt  14+inks
— =, 21
o 1+ ?,n)q ( )
therefore Eq. (20) may then be expressed as
_i\1/2
ka = (aznp)”! ( *) : (22)
n

while Eq. (21) can be written as n* = 7' — in’" where
it =0,

If the material is an elastic solid we have "' = 0 and thus
v = 0. Hence W becomes infinite as expected except for
certain nodes. The results are shown in Figs. 1 and 2, where
comparison is made between the oscillating velocity profiles
for a Newtonian, Maxwell and Oldroyd fluids. The velocity
departure and the corresponding phase angle has been plotted
for different values of nA; and n\. for the Oldroyd fluid with
the Maxwell and Newtonian fluids as special cases. It may
be observed that as the relaxation time or as the frequency
is increased, the Maxwell model shows unrealistic behavior,
such as resonance effects that have misled some authors [15]
into assuming that an increase in flow rate is possible. It is
interesting to point out that the apparent resonance behav-
ior appearing in solutions to unsteady flow problems when
a Maxwell type constitutive equation is used [15], is a well
known problem inherent to the nature of the approximation of
that particular equation (see for example, Tanner [16]). This
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FIGURE 2. Parallel planes: velocity departure from the steady state value vs. distance and (b) phase angle of velocity departure vs. distance
between the planes for an Oldroyd fluid with nA1 = 20, nA2 = 2. The Maxwell model with nA: = 0 and the Newtonian fluid are shown for

comparison.
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FIGURE 3. Pipe flow: velocity departure from the steady state Poiseuille value vs. radial distance and (b) phase angle of velocity departure
vs. radial distance for an Oldroyd fluid with nA\; = 4, nA; = 1. The Maxwell model with nA2 = 0 and the Newtonian fluid are shown for

comparison.

“resonance effect” disappears as soon as the relaxation spec-
trum of the fluid is represented by more than one relaxation
time (as is the case for any real viscoelastic fluid); this is
clearly demonstrated by the simple analysis of the oscillating
flow between parallel plates presented above.

On the other hand, it is readily observed that the inte-
gration of this velocity departure from the steady Poiseuille
flow over the cross sectional area is zero since the function is
periodic. Therefore, the contribution to the total flow rate is
non-existent.

Figures 3 and 4 show similar results for the case of os-
cillating pipe flow. Finally, Figs. 5 and 6 show the velocity

profiles during a period of oscillation. It may be observed that
for the same parameters, the influence of clasticity upon the
velocity is more noticeable in the case of flow between paral-
lel plates than in the case of oscillatory pipe flow.

5. Final remarks

It should be made clear that regardless of whether the flow
is pulsatile (oscillatory pressure gradient) or in the case of
oscillating walls, in the frame of linear viscoelasticity the re-
sulting flow rate must remain unchanged from its Newtonian
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distance for an Oldroyd fluid with nA; = 20,nM2 = 2. The Maxwell model with nA2 = 0 and the Newtonian fluid are shown for
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<

axis is located at the center of the pipe. Oldroyd fluid with nA; =
20, 11Aa = 2 — — — ——; Maxwell model _________. ; Newtonian

value. The only stresses that are relevant are the viscous
stresses at the walls. If the fluid is linear (as in the case of
the Maxwell model) the effects of elasticity cannot alter the
viscous stress and therefore the flow rate must remain un-
changed from the purely viscous case. For the flow rate to be
altered, the viscosity of the fluid must be a allowed to change
as a function of the shear rate; this was demonstrated experi-
mentally in Ref. 5 and discussed at length by Phan-Thien in

FIGURE 6. Parallel planes: velocity profiles at various times. The

= axis is located midway between the planes. Oldroyd fluid with
nA; = 20,nA; = 2 — — — ——; Maxwell model ___________; New-
tonian ------- :

Ref. 7 who solved the problem for a number of constitutive
equations with variable viscosity. If the flow rate is caused by
a pressure gradient whether constant or pulsating over a mean
value, the main flow is a steady Poiseuille flow; if oscillations
are superposed and the fluid is within the frame of linear vis-
coelasticity, the oscillations may alter the instantaneos veloc-

ity profile due to elastic effects but they cannot change the
mean flow rate.
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