INVESTIGACION REVISTA MEXICANA DE FISICA 46 (6) 586-592 DICIEMBRE 2000

z-scan like results produced by linear optical approximation of a nonlinear
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A gcometric optics procedure is developed to understand the nonlinear optical effects of materials, and to obtain z-scan like results. The
change in the refractive index due to the optical nonlinearity is represented as a spherical lens. Thin and thick sample cases relative to the
confocal length, defined by an external lens are modeled. Linear and nonlinear absorption is included in material with instantaneous nonlinear
response, slow response mechanisms like thermal effect can be included. With this procedure an explanation for the distortion in the z-scan
is obtained with the increase in the aperture, the nonlinear refractive index and the sample thickness as well as with the presence of nonlinear

absorption.

Kevwords: =-scan; nonlinear refractive index; nonlinear absorption

Se emplea dptica geométrica para entender el efecto 6ptico no lineal en materiales y obtener resultados que se asemejan al barrido en z.
El cambio en el indice de refraccion debido a la no linealidad éptica se representa como una lente esférica. Se discute el caso de muestras
delgadas y gruesas (el espesor de la muestra se mide respecto a la distancia confocal definida por la lente externa). La absorcién lineal y no
lincal s incluyen en materiales con respuesta no lineal instantdnea, de la misma manera se pueden considerar mecanismos de respuesta lenta
como los térmicos. Esta interpretacion da cuenta de la deformacién de los resultados del barrido en z al aumentar la apertura, los efectos no

lineales. el espesor y la absorcion.

Descriptores: Barrido en z; indice de refraccién no lineal; absorcion no lineal

PACS: 78.20.Ci; 42.65.-k; 42.70.-a

1. Introduction

Nonlinear optics is becoming one of the most important
branches of modern optics due to its tremendous impact in
the electronics technology. Some examples of applications
where nonlinear optical phenomenon is playing a mayor role
are frequency conversion, optical modulation, optical switch-
ing, optical gates and optical memories, among others.
Nonlinear optical phenomenon is shown basically in all
materials. Non linearity is a property of the medium rather
than a property of light. Optical effects are overdriven into
nonlinear effects when light of high intensity is present in
an optical medium. The intensity needed to observe these ef-
fects depends on the nature of the material. When ordinary
light propagates through an optical material, the electric field
E associated with the light beam exerts a polarizing force on
the electrons of the material allowing mainly outer electrons

to respond. The optical medium is polarized and this polar-
jzation is proportional to the applied electric field E.

If the radiated field becomes large enough, to be com-
parable with the atomic fields, then proportionality begins to
fail and the superposition principle does not apply any longer.
Non linear phenomena are due to the inability of the dipoles
to respond in a linear way when light of very large ampli-
tude interacts with matter. It is customary to express the po-
larization P in a power series of E, where £ represents the
susceptibility:

P=ctW . E4+¢? . EE+ 3 EEE+... (1)

The search of new and more efficient materials and de-
vices Lo be used in electronic systems shows continuous
growth. The quest for experimental techniques to determine
properties, where simplicity and usefulness was sought, per-
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FIGURE 1. z-scan experimental arrangement, the lens defines the
focus and the sample is scanned through z near the focus.

mitted the development of the so called z-scan technique [1],
used to measure nonlinear refractive index and nonlinear ab-
sorption. In this technique, a thin sample is scanned through
the focus of a gaussian laser beam, where light can pass from
side to side of the sample with small distortion of the wave
front. A sensor is placed behind a finite aperture in the far
field to monitor the output of the sample (Fig. 1). The exper-
imental arrangement is set in a way that a single beam and
a single path of light is used to determine the nonlinear re-
fractive index and the nonlinear absorption. It is possible to
achieve temporal resolution if a Michelson interferometer is
used before the z-scan arrangement to produce one path-two
beams [2] experiment, using the delay arm in the interferom-
eter 1o produce autocorrelation, constant average power and
variable peak power.

Starting the scan near the lens (far from focus), the inten-
sity is low and the transmittance through the aperture is con-
stant. As the sample comes nearer to the focus, the intensity
becomes larger and a self-focusing effect is observed (case
of positive nonlinear refractive index). It makes the beam to
collimate resulting in an increase in the transmittance. When
the sample goes beyond the focal plane, a self-defocusing oc-
curs leading a beam broadening at the aperture and the trans-
mittance decreases (the opposite is obtained when material
used has a negative nonlinear refractive index). Similar con-
clusions have been reached for the z-scan signature, when
different considerations were taken (3, 4].

2. z-scan results

In this section, we present the results obtained with the z-
scan technique and it is compared with results obtained when
the geometric optics technique is used. In the original z-
scan work, a simplification of the normalized on-axis z-
scan transmittance is derived considering small nonlineari-
ties, |A®| <« 1, where the phase change for the wave after
the material (A® = 2wnalyt/A) is defined by the nonlinear
refraction index n», the intensity [y, the thickness ¢ and the
wavelength used A. A far field condition was used, with the
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FIGURE 2. Geometrical definition, the focal plane is defined by the
external lens, zy is the confocal length and ¢ is the sample thick-
ness.

aperture positioned at several times the confocal length z
apart from the focus, where the confocal length (zp =
mwi /M) is defined with as the minimum spot radius produced
by the focusing lens. And measuring the transmission only
when the sample is close to the focal point, |z| = zp. A small
aperture is used (s — 0), s indicates the percentage of light
that passed the aperture, producing the next set of equations,
where T stands for transmission as a function of the z po-
sition and the phase change A® due to the material, z is the
normalized position. AZ,,_,, is the distance between the peak
and the valley in the z-scan signature. AT,,_,, is the transmis-
sion difference between the peak and the valley in the z-scan:

1APx
T(z.A®) =1+ ——7—5——, 2
( ) (22 + 9 (22 +1) 2)
r= =, (3)

Zn

AZI}—!I o ]..7:(], (4)
AT,_, ~ 0.406A. (5)
The variables used in this work are defined in Fig. 2,
where the sample position from the focal plane is = = d; —
W D and the distance from the focal plane to the aperture is
B = z + dy + t. The far field condition is represented by

B > zj, the inclusion of a thick sample changes de focal
plane significantly and the need of an absolute fix position is
solved with the use of the lens working distance W D.

3. Geometric optics approximation

Two general cases are considered in this work; in the first
case, a thin sample of nonlinear optical material is modeled
as a linear optical element with properties dependent on the
intensity and in the second case, thick samples are modeled
as a set of slices, each one with a fraction of the effect. In
both cases, transparent or absorbing materials are assumed.
In this section we describe the steps of the procedure that are
common to both cases.
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In the derivation of the geometrical optics technique, the
complex beam radius [5, 6] g(=z) is used to study the propaga-
tion of the gaussian beam through a nonlinear medium. This
radius is represented by the known expression

1 - 1A ©)

Tw?(z)n’

a(z)  R(z)

where R(z) is the wavefront radius of curvature and w(z) is
the beam radius.

The basic question to solve is: how does the gaussian
beam ¢(z) change as it passes through a nonlinear plate?
In other words, how does the transmission through an aper-
ture at far field change when the sample moves near the focal
plane?

The geometric optics approximation technique is based
on the assumption that a change in the refractive index takes
place (n + An) when a laser beam (source of high-intensity
coherent light) impinges on a nonlinear material. This change
due to the light intensity is directly related to the electronic
interaction or indirectly related to thermal eftects and follows
the intensity distribution of the light, in this case a gaussian
shape or the temperature distribution. Considering the trajec-
tory of the light, it is equivalent to consider a parallel plate
with a refractive index function of the position z and r, or
a material with a uniform refractive index n with a non par-
allel plate, rather a geometrical shape resembling the plate
plus a gaussian deformation. Ideally, a gaussian lens should
be added or subtracted to the sample, however the simplicity
of this approximation consists in the use of a spherical lens
instead.

The intensity distribution for the Gaussian beam at radius
r and position z, I(r, z) is represented in the next equation,
where the intensity at focus, r = 0 and z = 0 is Ip:

I(r, z) = Luxis exp { - j;(i)] (7
Lais = 1:?% = 10[1 4 (330)2]_1. (8)

Subsequently, finding an equation for the focal length of
the spherical lens as a function of the nonlinear properties
in the material and the intensity distribution w(z), is possi-
ble. Following Fig. 3, lets assume that at » = w the sphere
touches the sample and also the radius of the sphere is bigger
than the thickness of the sample R > tAn/n, meaning that
the nonlinear effect is small. From that it is easy to reach an
expression for R:

w?(z)n
Rist —————. 9
2tnal(r, z) ©)
The focal length of a lens is defined as the radius of the
lens divided by the change in the refractive index produced
by the lens:

t F R=a+ FAn
nt+An ; "
R=d+ ()
t+At tAn
n n

FIGURE 3. Contrasting a gaussian and a spherical function, to re-
late w and R.
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In order to determine the change in the complex beam ra-
dius ¢(z) at any point as a function of any optical element in
the path, the use of an ABC'D matrix or transfer matrix will
be used:

where

AP = (1)

y Bl .
output = ‘(‘, D input, (12)
A
— qillput " (]3)
(!uulpul

At (QB)

where the matrix elements A, B, C', and D have information
of all optical elements between the input and the output.

Next equation is a general expression for the change in
the laser spot size with the information of Fig. 2:

, ¢(B—AWD

[_4- p (EATE
P 2
wout - ‘."‘"ﬂ

2
.
AD — BC } ()
The linear transmission through an aperture of radius a,
T, is defined as the ratio of the power carried within the cir-
cle of radius a in the transverse plane at position z, P(a),
to the total power P(r — o). In the linear case, it is the
constant s:

L P %W 1
TL(M)—m ‘——} =-8. (15)

=1-exp [— -
wi(z)
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FIGURE 4. Typical z-scan transmission through different apertures
s. Here the origin of the asymmetry in the z-scan is explicable.

Finally, T defines the transmission as the ratio between
the power through the aperture due to a nonlinear system de-
fined by an ABC'D matrix and a linear system defined by
other ABC'D matrix, (T, /T,, this consideration will make
the transmission equal to one when a linear material is used).

wi (2)

o T
T_TNL(G) - [1—(1—s) wnL Jj! ' (16
B T.(a) B g ) )
2(.
be ‘M%’T - »jjr‘{,((”j) (17)

Figure 4 shows the aperture effect [Eq. (16)], and indi-
cates that when s — 1 (large aperture) the z-scan transmis-
sion greater than one goes faster to 1 than the z-scan trans-
mission smaller than one; that is, the aperture will affect the
symmetry in z-scan, shrinking the positive hump faster than
the negative one. This information is useful because many
solids are not perfectly homogeneous and a larger aperture is
needed to produce a meaningful result.

4. Thin transparent sample analysis, thickness
smaller than the confocal length, t < -,

A set of equations for typical z-scan conditions where a, thin
sample with ¢ < z; and intensity small enough such that
A® < 1, can be obtained if the ABC D matrix for the lin-
car system and for the nonlinear system are defined and from
them the w,,, is determined.

The ABCD matrix that characterizes a linear system
propagating through air with

input | <= d; =+ dy — |output,

is expressed

(18)

A B _ 1 d1+rl-3
C D|— '

0 1

where only two propagations d, and d» are needed.

The expression of the A BC' D matrix for a nonlinear Sys-
tem is

%y +ay - B2
o ol eflly e
A B: f i ' (19)
colT| 1 a4
f f

in this case
input |+~ d; =+ O « dy — |output,

indicates the need to use two propagations d, d» and the non-
linear effect represented by only one ideal variable thin lens
(0O).

To obtain the transmission equation, we substitute the last
two ABC'D equations in Eq. (14) in order to obtain the laser
spot size for a linear and a nonlinear system respectively, and
then substituting in Eq. (17) to end up with:

T* =

=2 = s 2
” iy iz +dy . (0)

REET)

Simplifying this equation with the far field condition,
dy > zp and the expression for the focal length [Eq. (10)],
will produce the set of expected equations:

n—1 2APzx
n (z2 +1)2°

T*(2,Ad) ~ 1 +

== Q1)
~0
AZ, =2 22
p—v = ﬁ”(la ( )
,— 1
ATy, > 2 (=1 Ag ~ 07500, (23)
p 8 n

5. Thick samples analysis, thickness larger than
the confocal length (t > z,), with linear and
nonlinear absorption

This case is a generalization of the thin sample case where
t > zg and or A® > 0. In this procedure, multiple nonlin-
ear lenses replace the single nonlinear lens to keep the local
situation inside the scope of the previous case. The amount
of lenses is defined by the thickness and the intensity. Now
a new situation is taken into account, the power inside the
sample decreases due to linear and nonlinear absorption, this
absorption is intensity-dependent.

For this case the intensity is not a good number because
of the variation in the spot area, therefore a better one is the
power () and the general equation to find the power is a
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function of the linear absorption v and the nonlinear absorp-
tion /3, where 3I(u) is the change in absorption due to the
intensity (Aa):

dP )
e —[ + BI(u)]P. (24)
Where the power inside the sample as a function of inter-
nal length [ is

1 d:
W = TR exp(au) — exp(au)
x [exp(—au — kle + u|) — exp(=k[c|)], (25)
2
= nwd’

= 1ln (1 + —é—,) ; (26)
2 20

where n, Ty, Py represent refractive index, incident surface
transmission and incident power respectively. To end up with
an elemental function, it was needed to change the variation

|
and
1
A8 @l = 1
(C’ 91_10 T S |
fi finl| fim

in the radius with an exponential variation as follows:

a
m ~ mexp(—Fk|c+ ul). 27
When the area is uniform (k = 0), the result for absorp-
tion in a waveguide is recovered [7]:

1
m = exp(au) {g[l — exp(—au)] + T}IE} . (28)

For the thick film, the nonlinear material is substituted by
a set of slices of the same material, where each one can be
modeled as a “nonlinear lens”. The explicit ABC D matrix
elements defining a linear thick system

input | « d; — |t| ¢ d2 — |output,

(29)

A B_l (!1+d2+:—l
¢ D| |0 1

where |¢| represents the sample thickness.
The nonlinear system over the same path is schematically
represented with

input | « d; = [JO[]O...[]O ¢ d2 — |output,

) 1 4
= - 1 d
n n 1
ficin h fin

all optical elements are included. [] represents a slice of linear material and O represents an ideal nonlinear lens associated

with that slice.

The ABC D elements for the nonlinear part are obtained from multiplication of all matrices. The explicit forms for each
A, B, C and D for m elements are shown in Eq. (31) where i goes from 1 to m.

A=Ay
6 er—i+1
“'15 = Anl—' 1= + 5
o ( ‘”‘fﬂl*t"f'l) fm—1+1
iy S5
5 = ."i,d] o i B],

)
B; = Am—ina (;) + Bm—i+1,
BD == ([21

To implement those expansions is simple, and a sequence
is outlined next:

e From the original conditions define the amount of
elements to use. If ¢ > wp the number of ele-
ments is t/wp and the slice thickness § = (sample
thickness)/(number of elements).

C =G,

g 0 Dm—it1
Cl = ("m——i (1 - ——__) + .

e N fm—ida Fr=ida

CU = U!
{3 = C,‘d[ -+ DIw

‘ 1)
Dt :CHL—J+1 (?_1) +Dm*f+l‘
Do = 1. (3D

e Calculate P at each element using Eq. (25) as a func-
tion of dy. d; is now a better reference than z = 0
because it is absolute. The change in z = 0 relative to
the physical equipment is due to a focal plane change
as the sample moves around it. However this shift can
be calculated at any particular situation.
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TABLE 1. Parameters used in the simulation of Figs. 5 and 6.

A 1.064 pm a 0.6 cm™!
dy 100 zo i} 0.05 cm/MW
n 1.86 Py 5W

o -1 x 107°% cm*/MW s 0.5

Zo 47.24 pm wo 4 pm

e Calculate f for each element Eq. (10).
e Calculate ABCD using Eq. (31).
» Calculate w’s using Eq. (14).

» Calculate T4 [Eq. (17)], it is identified with the A
subindex because now the absorption effect is included
in the focal length calculation. Calculate the total
power transmitted by the sample (Tp), that measures
the transmission without the aperture (s — 1), and it
is the ratio between total output power (P, ., ... ) and in-
put power (Fy). The normalized transmission through
the sample in a z-scan experiment is the multiplica-
tion of T 4 and T p; and this is called the real transmis-
sion (Trear). (Trean) represents the output signal in
an actual z-scan experiment with an aperture (used to
measure nonlinear refractive index); Tp represents the
output signal in an actual z-scan experiment with no
aperture (used to measure nonlinear absorption).

Trear = Ta PD}:;IM = T,sz- (32)
0

e Finish the scan, changing d, .

Table I includes the parameters(8) used to obtain Figs. 5
and 6. Figure 5 show T*(s — 0), the ideal z-scan transmis-
sion removing the aperture effect and the linear and nonlin-
ear effect; T(s = 0.5), the z-scan transmission modified by
the aperture effect; Trean(s = 0.5, @ # 0, 3 # 0) repre-
sents an expected actual experimental z-scan results to see
the refractive index and Tp(s — oo, @ # 0, B # 0) rep-
resents an expected actual experimental z-scan results to see
the nonlinear absorption. All these variables were calculated
in samples with a thickness of 10 gzm, 100 gam and 600 z4m re-
spectively. From them it is possible to see the thickness effect
(because zy ~ 50 um), the effect due to absorption and the
consequence of the aperture size. T* and T are equal to one
when the sample is far from the high intensity zone. The lin-
ear absorption in the material decreases Tyg ., values and the
overall effect, as was expected. The magnitude of the nonlin-
earities measured by peak to valley transmission is smaller in
the thin sample. Figure 5c¢ shows that a thick sample (¢ > zg)
will have the distance between peak and valley position re-
lated to the thickness (AZ,,_, ~ t/n) rather than to the con-
focal length.
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FIGURE 5. a) z-scan transmission for a sample with a thickness of
(a) 10 gm, (b) 100 pgm and (c) 600 pum, and a confocal length of
47.24 pom.
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100

1z

FIGURE 6. Three plots for the change in transmission as a function
of the thickness, ideal (T*), aperture s = 0.5 (T), and absorption
different from cero (Trear). One plot for the change in the dis-
tance between peal and valley, the result is approximately the same
for the three cases.

Figure 6 shows four plots as a function of sample
thickness, from 10 times smaller than the confocal length
to 100 times the confocal length. AT,_, measures the
maximum transmission T,.,,, minus minimum transmission
T..n, (s — 0). Similar definitions stand for T*(s = 0.5),
and for Trear(s = 0.5, # 0,8 # 0). Here it is possible
to see linear increase of the phase change as the thickness
increases and saturates for thickness larger than the confo-

cal length. For Tyg .. the confocal length decreases when the
thickness increases due to the absorption or if the incident
power is high enough. In the right Y -axis the change in z dis-
tance between peak and valley is shown as a function of sam-
ple thickness. For thickness larger than the confocal length a
linear increase can be seen, for thin samples this is a constant
value and proportional to the confocal length. The difference
between standard (t < zp) and extended (¢ > zp) z-scan is
clear.

6. Summary

A simple review of classical optics is useful to describe a
powerful technique with widespread use to characterize non-
linear materials. The well known results are reproduced and
generalizations toward less common conditions were pro-
vided; they are useful mainly in solids where the sample
conditions or the laser characteristics are not always under
control. An added gain is the insight in the experimental ar-
rangement than can be obtained by analyzing the geometry
effects. This work is illustrated with simulated results from
a nonlinear material to discuss the interrelation between the
technique arrangements, the experimental results and the ma-
terial properties.
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