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We study the solution of the inverse spectral problem of a potential well (PW). This problem constitutes a good exercise for the understand-
ing of the Schrédinger equation, especially if we take into account that often this topic is not undertaken in regular courses of Quantum
Mechanics. This exercise also propitiates the training of the students in the solution of this kind of problems, which frequently appears in
research experimental work. We think that the exercises that are demonstrated in this paper could-be included in Quantum Mechanics regular
courses. The inverse problem presented here consists in the reconstruction of a PW, ie., find the height of the barrier and the width of the
well, provided the values of the discrete energy levels or the transition energies between them are known. We show three different cases of
this problem referred to rectangular PWs. In all cases, the equations are deduced and the developed method is illustrated graphically.
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En el presente trabajo se estudia la solucién del problema inverso espectral de un pozo potencial (PP). Este problema es un buen ejercicio
para la comprensién de la ecuacion de Schrodinger, sobre todo si se tiene en cuenta que por lo general no es abordado en los cursos regulares
de mecdnica cudntica. Asimismo, este ejercicio propicia el entrenamiento de los estudiantes en este tipo de problemas, que aparecen con
frecuencia en la investigacién experimental. Nosotros somos de la idea que los ejercicios que se desarrollan en este trabajo podrfan ser
incluidos en los cursos regulares de mecdnica cudntica. El problema inverso consiste en hallar la forma de un PP, o sea encontrar la altura
de la barrera y el ancho del pozo, partiendo del conocimiento de los valores de los niveles discretos de energia o los valores de las energias
de las transiciones entre estos niveles. Se estudian tres casos diferentes de este problema aplicado a los PP rectangulares. En todos los casos

estudiados se deducen las ecuaciones y el método seguido se ilustra graficamente con ejemplos concretos.

Descriptores: Estados electrénicos en pozos cudnticos

PACS: 01.40; 03.65; 03.65.G; 73.20.Dx

1. Introduction

The study of potential wells (PWs) is an essential topic in the
undergraduate course of quantum mechanics, and it consti-
tutes an indispensable exercise to understand the Schrodinger
equation related to the stationary states of the particle motion.
Although this is an idealized problem, it permits the compre-
hension of the methods of quantum mechanics. This topic ap-
pears in all textbooks; see for example Refs. 1-4. The prob-
lems presented there are guided to obtain the discrete, con-
fined energy spectrum (E,,) and the particle wave function
(1),,), provided the potential well (V) is known {V' — E,,
i, (r)}. This is refereed to as the direct problem. However,
when performing experiments one observes the energy spec-
trum {E,} or the scattered particles by a PWs. The for-
mer situation appears, for example in layered semiconductor
structures. The widely used type 1 heterostructure quantum
well (QW) are formed with a narrow bandgap semiconduc-
tor sandwiched by a wider bandgap semiconductor. In this
case, the band discontinuities are such that both band edges of

the smaller gap material lie below those of the wide-bandgap
material. As a result, we obtain two PWs, the conduction
band PW and the valence band PW. Optical spectroscopy ex-
periments on this semiconductor PWs manifest the electron-
photon interaction, which leads to transitions of electrons be-
tween the discrete energy levels of the two wells accompa-
nied by the absorption or emission of photons [5-8]. Another
example is the “photonic potential well” or dielectric waveg-
uide. This is a structure where the photons are confined in a
dielectric slab of higher refractive index sandwiched by lower
refractive index materials, the profile of the whole structure
forms the refractive index potential n(x). Here, we mea-
sure the effective index of refraction {V,, } of the waveguide
modes which constitute the discrete confined levels [9].

Sometimes, it is required to restore the form of the well.
This is referred to as the inverse spectral problem (ISP), i.e.,
(E, = V(2)}, {N,, = n(z)} [9,10].

The “inverse spectral problem™ is not considered in reg-
ular courses of quantum mechanics' although very often the
experimental research work leads to it. For these reason we
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consider that the ISP must be included in regular courses of
quantum mechanics, within the practice of the Schridinger
equation.

It is important to mention the inverse scattering prob-
lem (ISP) commonly treated, in regular courses of quantum
mechanics. Here, the potential is obtained from the data of
the amplitude (S) of the scattered particles by the potential,
{S — V}. We want to stress that these two inverse problems
are very related to each other. The relation is so closed that
Borg [11] demonstrated that in general, the knowledge of the
single spectrum E, is not sufficient to determine V' (z) [12].
This means, that in the traditional formulation of the inverse
problem, for a purely discrete spectrum of bound states it
is required to know two sets of parameters; besides the en-
ergy eigenvalues £, , one must also know the normaliza-
tion amplitudes of the wavefunction {c,} [13]. However,
for symmetric potentials V' (z) = V(—xz) the knowledge of
E,, is sufficient and no additional data is required [12, 14].
Based on this statement the authors in Ref. 15 have devel-
oped and tested an algebraic technique for one-dimensional
reflectionless PWs. Tt was found that the reconstruction of an
infinite parabolic PW becomes better with increasing num-
ber of bound states N. On the other hand, the reconstruc-
tion of an infinite rectangular PW turned out to be signifi-
cantly worse than for the parabolic and linear ones. Using
the formalisms of Kay and Moses [16] and that of Thacker et
al. [15], P. Asthana and A.N. Kamal [17] have studied the ap-
proximate reconstruction of different types of symmetric re-
flectionless PWs from their bound-state energies. They found
that even if the reflection coefficient is not identically zero but
arapidly diminishing function of the particle wavenumber k,
the procedure will lead to a reconstructed potential which will
be reasonably close to the actual potential. The finite rectan-
gular and the secant square PWs have reflection coefficients
decaying extremely slowly with & and hence, the agreement
between the actual potential and the reflectionless reconstruc-
tion is poor.

Another nice and interesting treatment of the ISP is re-
ported in Ref. 10 for the case, when the potential V (z) is a
gradual varying function for which the semi-classical WKB
approximation can be applied. In that work the author shows
the inversion of the WKB formula for the Bohr-Sommerfeld
quantisation rule to determine V (x). Unfortunately, this ap-
proach has exact analytical solution for a very reduce class of
PWs. Obviously, this technique can not be applied to rectan-
gular PWs.

As we can see, there is not a suitable formalism for
the reconstruction of rectangular PWs. However, in the
field of semiconductor and photonic PWs the techniques of
preparation of these systems are very sophisticated and the
QW/barrier interface are very abrupt. The extension of the
interface can be less than the lattice parameters or few of
them. Thus, one can treat these abrupt heterostructures as
rectangular PWs whose thickness and the barrier height are
not known. This fact leads to a tremendous simplification of
the problem. Indeed, as will be demonstrated bellow, the
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FIGURE 1. Scheme of an asymmetric potential well.

{E, — V} problem in this case is reduced to the solution of
a system of transcendental equations.

This paper discusses a method to find the shape of a rect-
angular PW; V(z) using the energy spectrum {E, } as the
input. The approach differs from the traditional direct prob-
lem method, where we seek for the values of the discrete en-
ergy levels varying the parameters of the PW, i.e., the width
and the barrier height, until one finds a well whose discrete
energy levels match with the experimentally measured.

We present the solution of the ISP for three different situ-
ations. In the first two exercises, we reconstruct a symmetric
and an asymmetric PWs. The third exercise is the reconstruc-
tion of a symmetric PWs starting from the transition ener-
gies between the discrete levels. In all cases, we illustrate the
method with a particular example.

2. Theory

We begin with a conventional problem in quantum mechan-
ics, namely to find the energy levels and the wave function
of a particle in an asymmetric PW (see Fig. 1) and investi-
gate the case V| = V,, [1]. The dispersion law of the discrete
energy levels in the well is given by

v/ 2uE E
VP Tn e — arcsin 2 — arcsin E, (N
h 7 v,

where a and V), V; stand for the thickness and the barrier
heights of the PW respectively, E,, is the energy of the n dis-
crete level, n is the quantum number of the level, ;& denotes
the mass of the particle, and h(h = h/27) is the Planck’s
constant.

2.1. Symmetric potential well

First, we show the method in the simplest case of a symmet-
ric potential well, (V; = V, = V). For a symmetric PW, it is
enough to know the energy of two levels. Let us consider that
we have “measured” the first and the second levels, denoted
by E| and E, , respectively, then from (1) one gets

i T — 2 arcsi \/El (2)
= —— = I'CS1I1 ety 2
V2uE, v
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This equation defines the width a as a function of the barrier
height V', given the energy of the first level E, as a parameter,
in other words a = fg (V). Thus, all the wells with widths
a and barrier heights V' that verify the relation (2) will have
the first energy level equal to F;.

In a similar way, the dependence of the width a on the
barrier height V" of all the wells that have the second energy

level equal to E, is
ﬁ Er)
= —— |27 — 2arcsiny/ — (3)
v 20uE, 14

This functional dependence has the form a = fg (V'), where
E, is a parameter. It is evident that for the PW with the two
first level equals to E, and F,, the equation

fe,(V) = fE,(V) “4)

for the barrier height 1 is satisfied. Let us denote the root of
this transcendental equation by V. The solution of the ISP
is completed when the width of the PW is calculated; it is
obtained from aso1 = fE, (Vso1) Or asol = fe,(Vsar).

Next, we illustrate lhc method with the following ex-
ample:  Suppose it is given an hypothetical PW with
a=15 nm, V=0.31 eV and 1 =0.0665mg (mo denotes
the mass of the free electron). This is the conduction band
PW at the [' point of a Al,Ga;_,As/GaAs/Al,Ga;_,As
(x = 0.345) heterostructure. Such a PW contains four energy
levels with energies: E, =0.01796 eV, E, =0.071105 eV,
E,=0.15665 eV and F;=0.26517 eV. Suppose that we
only know the values of the first two energy levels E,;
and E,. Figure 2 shows the dependencies of the width
a on the barrier height V for all the PWs containing
E, =0.01796 eV and E, = 0.071105 eV. The crossover point
of these curves, corresponds to the well that has the energy
levels £, =0.01796 eV and E, =0.071105 eV simullane-
ously. The abscissa of this point is the root Vo =0.31 eV
of the transcendental equation fg (V)= fg,(V), and its
ordinate fho =15 nm is determined by aso1 = fE, (V) or
asol = fE, (V). See that the well has been ru.onstructed ex-
actly.

2.2. Asymmetric potential well

Now, we consider an asymmetric rectangular PW. This situ-
ation is more complicated than the previous one, but the idea
for the solution remains the same; it consists in expressing
the width a of the well as a function of the barrier heights V;
and V,, taking the discrete energy levels as parameters. The
problem has three unknown variables (V;, V, and the well
width, a), so we need to know three discrete energy levels.
If we substitute the values of the first three discrete en-
ergy levels E,, where n = 1, 2 or 3 in Eq. (1) the width of
the well as a function of the barrier heights can be written as:

L csi By csin En (5)
= —F/— T — arcsin — R ;
V2uE, Vi Vs

16 v T T T

a [nm]
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V [eV]

FIGURE 2. Graphic solution of Eq. (4). The curves fg (V) and
fe, (V) represent all the wells with energies F; and E, respec-
tively. The intersection point fr, = fg, (V') corresponds to a well
with the barrier height V' = 0.35 eV and width @ = 15 nm.

We can eliminate the width a in Egs. (5) and get the following
system of equations:

. E, . E,
27 — aresin v arcsin A
£ £ E
=[2G
, E E, 1
m — arcsin — — arcsing | —
Vi V,
) By E3
3r —aresiny [ — — arcsiny [ —
1 1 2 E':;
= /== (5b)
3 E, E, E,
T — arcsin — — arcsing [ —
Vi v,

Equation (5a) represents all the wells that have the first and
second discrete energy levels equal to F, and F, respectively
with the same well width. On the other hand, equation (5b)
represents the same situation, but for the first and third dis-
crete energy levels (E,, E;), i.e., Egs. (5a) and (5b) estab-
lish the dependencies for the barrier heights V; and V, of the
wells that contain the levels F, and E,, as well as E, and
E,, respectively. In other words, Eq. (5a) defines V; as an
implicit function of V,: i.e.. V; = fg, g,(V,) so that E, and
E., are in the well. In a similar way, Eq. (5b) defines V) as
an implicit function of V,,; V, = fp;l ‘Eﬂ{Vz), so that F/; and
E, are in the well. The solution of the system (5a)—(5b) is
reduced to the solution of the transcendental equation

fe, B, (V2)- (6)

(sol)

fe, B, (Va) =

Let the root of Eq. (6) be V,7, we Lomplete the solution
of the system evaluaung the value 1/ A in one of the func-
tions V; = fg g, (Vo) or Vi = fE g, (V3); ie, et =
fe, B, (V) or V“"' fe,.B,(V3?).

The solution of the inverse problem is completed when
we substitute the barrier heights V¢! and V3! in one of the
Egs. (5) to find the well width ag).
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FIGURE 3. Graphic solution of Eq. (6). The intersection point

fe,.e,(Va) = fr, B, (V2) gives the heights of the barriers V; and
Vi, Knowing already V; and V;, the well width is found from any
of Eq. (5).

We illustrate the method with a particular example. Let us
consider an asymmetric PW (see Fig. 1) with a = 13.5 nm,
Vi = 0353eV, V, = 0.235 eV and 1 = 0.0665 m,. This
PW has the following energy levels: E, = 0.0211027 eV,
E, =0.0830912eV and E; = 0.1799534 eV.

Figure 3 illustrates the intersection of the curves which
represents the dependence between V, and V| for all wells
that have the same width and the energy levels (E, =
0.0211027 eV, E, = 0.0830912 eV) and (E, = 0.02872 ¢V,
E; = 0.1799534 eV), respectively. The abscissa of this point
is thc root V3ol = 0.235 eV of fe B, (V) = fE,.E,(V)),
and their ordmate is 198 {1.953 eV determined by L sol —
fr, B, (V3 or Vol = fp g (V3°). The final step in the
1eumslruc(t0n is to determme the well width. From any of
the Egs. (4) we obtain @ = 13.5 nm. Then, the well has been
reconstructed exactly.

2.3. Symmetric potential well with known transition
energies

To reconstruct a PW knowing the transition energies between
the discrete energy levels is very important from the prac-
tical point of view because these transition energies are the
ones experimentally measured [18, 19]. We show the case of
asymmetric well, since this is the situation often met in prac-
tice. Let us consider the transition energies AE, 10 =Ey,—FE,
and AE, 3 = E; — E,. Note that the energy E3 — E, can
be written as: E; — E, = (E; — E|) — (E, — E,). This
permits to write the transition E, > E, in terms of the tran-
sition energies E, <+ E, and E, + E,. We express the well
width as a function of the barrier height and take the transi-
tion energy between two discrete levels as a parameter, for
two different transitions. After, we seek for the well that has
simultaneously the two transition energies. For E,, E, and
£, from (1) one gets

a\/2uk,

h

By pssas E?l
= nr — 2arcsin v (7)

with n = 1, 2 or 3. The energy levels E, and E, can be ex-
pressed as a function of the energy level E| and the transition
energies AE| , and AE,| 4, by

By= B, +AE, 4
Ey; =E| + AE, 4 (8)

Substituting (8) into Eq. (7) and after some algebra we obtain:

i fE +AE1 k
AE[ & v 7 —-dl(‘S[l’l (L))
T — 741(:51{11}—‘7

where /: = 2 or 3. The first equation in (7) can be written as

h
Vv 2uE,

The transcendental Egs. (9) can be expressed in the form

a =

(w — 2 arcsin % ) (10)

¢l.k(“r1El«AEl.k) —1 (1)

In these equations the transition energies AE) ; enter as pa-
rameters. This means that solving Eqgs. (11) with V' as the
independent variable one gets all the energy levels E; cou-
pled with the energy levels E, or E, through AE; ;. Next,
we put into Eq. (10) the values of E, that satisfy Egs. (11)
for the corresponding V. By doing this, one finds all the PWs
that contain the transition energy AE, ., and all the PWs con-
taining the transition AE| ,. Obviously, these PWs would be
different. This can be expressed as:

U fm-:,‘._,(vs E,)
and

= fm;l_ﬂ(V, E,). (11a)
The solution of the inverse problem will be completed when

both Egs. (11a) equal,
fag, ,(V,Ey) = fap, (V. Ey). (12)

The root Vg, of Eq. (12) is the barrier height of the PW,
the well width a is obtained by evaluating any of the func-
tions (1 la).

Finally we show the method with a numerical example:
Let us consider a PW with the transitions AF, 12=0.053 eV
and AFE, ;=0.139 eV corresponding to a PW with
a=15nmand V" =0.31 eV, and suppose that we only know
the values of the transitions AE| , and AE, 3~ Figure 4 il-
lustrates the situation. There, the transition energy AE, , as
a function of the well width a for different V' are plotted.
The value of AE, , is also shown, see the horizontal line.
The inset shows the graphic of Eq. (11a): a= fag, ,(V,E,).
This curve represents the intersection of the famlly curves
AFE| ,(a) with the experimental value of the transition en-
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FIGURE 4. Dependence of the transition energy between AE, 5
versus well width a for different values of the barrier height V. The
inset represents the locus of all the wells containing the transition
energy AFE, , =0.056 eV.

ergy AE, ,=0.053eV. A similar family curves can be ob-
tained for the transition energy AE; 5 =0.139 ¢V and the
corresponding curve a = fAEl.a(V’ E,). The graphical solu-
tion of the inverse problem is demonstrated in Fig. 5 where
Viet = 0.31 ¢V and aso =15 nm represent the intersection
point of Eq. (12).

3. Conclusions

In this paper, we have developed a method for the reconstruc-
tion of rectangular PW (symmetric and asymmetric) provided
the values of the energy levels are known. We also have
shown how to restore a symmetric PW when the transition
energies hetween the discrete energy levels are known from
the experiment. This constitutes the case of major practical
interest.

. F. GARCIA REINA. AND A. GOMEZ ARGUELLES
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FIGURE 5. Graphic solution of Eq. (12). The intersection point
fAE]_z(VEl):fA,.;I ,(VE,) gives the well width a =15 nm
and barrier height V" = (.45 eV.

The method deduced in this article consists in expressing
the well width a as a function of the barrier height V' of the
PW, using the values of the discrete energy levels or the tran-
sition energy between the discrete levels as parameters. After
this, we found the PW for which all the conditions are ful-
filled simultaneously. In the case of a symmetric PW it is suf-
ficient to know two energy levels, while for the asymmetric
PW three energy levels are needed. In this case the method of
solution is more complicated but it is based on the same idea.

We think that the exercises shown in this paper can be in-
cluded in the undergraduate courses of quantum mechanics,
taking into account that nowadays the massive use of the pPC
in the university facilitates the tedious calculation character-
istic to these methods.
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