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We study the quantization of effective Yang-Mills theories within the path integral formalism. In particular, the equivalence of the Hamiltonian
and Lagrangian path integral quantization (Matthews’ theorem) is probed for an effective Yang-Mills Lagrangian without matter fields, which
includes all the invariant terms up to dimension six. This theorem is probed from point of views of both the gauge and BRST symmetries. The
importance of the BRST symmetry in probing this theorem is stressed. We found that the functional integration on the generalized momenta
are of Gaussian type and that they do not contribute to physical quantities as a consequence of the symmetries of the effective Lagrangiar
which leads to a Lorentz and BRST invariant Lagrangian path integral.
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Se estudia la cuantizani de teoias efectivas de Yang-Mills en el contexto del formalismo de integral de trayectoria. En particular, se prueba

la equivalencia de la cuantizaci por las integrales de trayectoria hamiltoniana y lagrangiana (teorema de Matthews) para un lagrangiano
efectivo de Yang-Mills sin campos de materia, el cual incluye todo€losihos invariantes de hasta dimémsseis. Este teorema es probado

desde los puntos de vista de la sirfeette norma y de la simé&r BRST. Se enfatiza la importancia de la sifeeBRST en la prueba de este
teorema. Se encuentra que las integrales funcionales en los momentos generalizados son de tipo gaussiano y que no contribuyen a cantida
fisicas como consecuencia de las sifiastdel lagrangiano efectivo, lo cual conduce a una integral de trayectoria Lagrangiana invariante de
Lorentz y BRST.

Descriptores:Lagrangianos efectivos; constricciones

PACS: 11.10.Ef; 11.30.Cp; 11.30.Ly

1. Introduction ing functional defined on the configuration space coordinates
[Lagrangian path integral (LPI)], because in most of cases
Effective field theories is a well-motivated framework to is manifestly covariant, does not depends on the generalized
parametrize in a model-independent manner the virtual efmomenta, and directly implies the Feynman rules. The tech-
fects of heavy particles lying beyond a given low-energynical procedure of deriving the LPI from the HPI, when it is
theory [1], which has been successfully used both in hadropossible, is known in the literature as Matthews’ theorem [6].
physics [2] and in the electroweak theory [3]. An effective The proof of this theorem may be impossible for a HPI de-
Lagrangian is nonrenormalizable under the Dyson prescrippending arbitrarily on the generalized momenta, but this is
tion of power counting since it contain all terms of dimen- not the case for renormalizable Yang-Mills theories in virtue
sion greater than four, constructed out only with the fields otthat the involved functional integrals are of Gaussian type.
the dimension-four theory, which respect the symmetries ofhis is another key aspect in effective Yang-Mills theories
this theory. This scheme has extensively been used to makkat must be treated with care because the corresponding HPI
predictions within perturbation theory not only at tree level,could depends arbitrarily on the momenta. Even in the case
but also at one-loop level [4]. Due to the presence of termsf Gaussian integrals, their solutions could give contributions
of arbitrary dimension in the Lagrangian, it is important to with nontrivial physical consequences if the coefficients of
investigate their guantum properties, mainly those aspects réhe quadratical part of the momenta depend on the involved
lated with the constraints associated with the gauge freedonfields, since then the contributions would modify the action of
In particular, it is important to know what is the correct struc-the theory and thus the corresponding Feynman rules. More-
ture of the Feynman rules and if they arise from a generatingver, this class of terms could lead to a quantum action with-
functional possessing the Lorentz and BRST [5] symmetriesput explicit Lorentz and BRST invariance.
like in renormalizable Yang-Mills theories. Gauge theories possesses interesting properties at classi-
Canonical quantization leads to a generating functionatal level because of the presence of first-class constraints [7],
defined on the phase space coordinates [Hamiltonian path ithat have nontrivial implications at the quantum domain. In
tegral (HPI)]. Though it is the fundamental quantity, it has theparticular, to have a well-behaved unitafymatrix, it is ne-
inconvenient that the symmetries involved are not manifestcessary to introduce new unphysical degree of freedom, the
Hence it is very important to have our deposition a generatFaddeev-Popov ghosts fields. Therefore, it is important to
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study the implications of these type of constraints in quandifficulties encountered in quantizing this type of theories.
tizing effective Yang-Mills theories. We will extend on this The study of the most general c&sgill be presented else-
later on, for the moment, let us argue that the structure, awhere [11].

well as the number, of first-class constraints in the effec- Our paper is organized as follows. The proof of Mat-
tive theory must be the same as those appearing in the cothews’ theorem from the point of view of the gauge symme-
ventional theory, since the effective Lagrangian is, by constry is presented in Sec. 2, following the conventional scheme
truction, gauge invariant and does not involve more degreegsed in renormalizable theories. We will discuss with certain
of freedom that those already present in the dimension-foudetail the structure of the first-class constraints arising from
theory. On the other hand, as we will see below, in general thehe effective theory, as well as the properties on the consis-
consistence requirements to be satisfied by the gauge-fixingncy requirements of the gauge-fixing procedure. The same
procedure will depend on the specific structure of the effectheorem is probed from the BRST symmetry point of view in
tive Lagrangian. Though interesting, it is an intricate problemSec. 3. Finally, the conclusions are presented in Sec. 4.

to put the gauge theory in the Hamiltonian form to quan-

tize it, mainly because it is not possible to introduce covari- . . . .

ant gauge-fixing functions, but only canonical ones, such thg' Gauge invariant effective Lagrangian and
Coulomb or axial gauges, which in turn implies the use of Matthews’ theorem

the Faddeev-Popov trick to recover manifest Lorentz covari-

ance in the LPI [8]. One would expect that the situation be-2-1- The effective Lagrangian

comes more complicated for an effective theory, althoughlt is convenient to start with a brief discussion of the renor-

as we will see below, the new aspects in probing Matthews’_ . . .
: ) . malizable theory, which allows us to present our notation and
theorem arise not from the constraints of the effective theory, . . . : X
tonventions. A dimension-four Yang-Mills theory without

but from the dependence of the effective Hamiltonian on the : . : . .
. matter fields is characterized by the following Lagrangian:
generalized momenta.

Due to the complications that arise from the first-class 1 "
constraints, it is convenient to lift the degeneration of the Ly= _§Tr[FwF B @)
gauge invariant effective Lagrangian not on the phase space, _ _
but on the configuration one because one can introduce a cyNerer,, = t“Fy,, with I, andt® being the strength ten-

variant gauge-fixing procedure. To carry out this it is necesSO" @nd the generators associated wittti€N) group, res-

sary to extend the configuration space by introducing new deR€ctively. The equations of motion are given by
grees of freedom, the Faddeev-Popov anticommuting fields,
and auxiliary bosonic scalar fields. In this framework, the
thgory is charactganzesj by a larger Lagrangian, which CONs herepab — saby gfabe A° is the covariant derivative in
tains the gauge invariant part and two new terms (gauge- K ® : p be
. o the adjoint representation of the groufs,’ are the respec-
fixing and Faddeev-Popov) whose structure is dictated b¥ive structure constants. and ;
. ; : , agds the coupling constant.

the so-called BRST symmetry [5]. Unlike the gauge-invariant Th | struct f the effective L S
Lagrangian, the BRST-invariant one represents a system sup- € general structure ot the eflective Lagrangian is given
ject to second-class constraints only [7] and no gauge-fixing
procedure is necessary in the phase space because the cor-
responding Hamiltonian is uniquiee., these systems are not Lo = Lo+ Z €nLn; (3)
degenerate. One of the main goals of this work is to show =0
that the proof of Matthews’ theorem is very transparent fromwhere£,, are Lorentz andU(N) invariant structures of di-
the point of view of this symmetry. In particular, it makes mension greater than four which are constructed with the
evident that any possible modification to the BRST-invarianffields of the dimension-four theory. Heeg = «,, /A" 4,
action only arises from the functional integrals on the genewhere A is the new physics scale and the are unknown
ralized momenta and not from the nature of the constraints gfarameters which depend on the details of the underlying
the theory. physics, typically< O(1) in a weakly coupled fundamen-

In order to show the advantages of probing the Mat-tal theory. To have a predictive theory, it is fundamental
thews’ theorem within the BRST-symmetry framework, wethate,, < 1, since then we would haematrix elements de-
will probe it also in the context of the gauge symmetry. Pre-pending on a finite number of unknown parameters. In prac-
vious studies of this theorem have already been presented ftice, it is assumed that the effective Lagrangian technique is
a scalar effective theory in [9] and more recently for a gaugevalid only to describe physical processes at energieg A,
theory, using the gauge-invariant point of view [10]. To our so thee,, parameters are small in this sense and they decrease
knowledge the proof from the point of view of BRST symme- when the dimensiom of the invariant structure£,, is in-
try has never been studied before. We will restrict our studycreased. The building blocks necessary to construct the ef-
to aSU(XV) invariant Lagrangian containing all the terms up fective Lagrangian are, in this theory, the gauge and Lorentz
to dimension six, since it is sufficient to discuss the maincovariant objectst;, and their covariant derivatives.e.,

DI F =0, )
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Lo = Lg(FS, DIFY, .. .). This means that effective La- where we have found convenient to define the antisymmetric
grangians contain an arbitrarily high number of time deriva-tensorF** as

tives,i.e., they are higher-order Lagrangians, which have quit R

unsatisfactory properties [12]. For instance, the solutions of F = FI + ef  F P 9)

the equations of motion are not uniquely determined by the . o

initial values of the coordinates and their first time deriva-2-2- The effective Hamiltonian

tives. In this respect, it has been show in [13] that an eﬂecin this section we will study the structure of the constraints

tive higher-order Lagrangian can be reduced always to af|rst-rising from the effective Lagrangian of Eq. (7). To put the

order one by using a certain type of transformations, withou : L L )
. ) . heory in the Hamiltonian form it is necessary to introduce
affecting theS-matrix elements. These transformations are

valid only at first order in the,, parameters and it is an essen- the generalized momenta given by

tial consistency re_quirement as any effective Lagrangian _is - :% _ 0y of b Ao (10)
assumed to describe the effects of well-behaved new physics @7 9Aa a abe™ X :

just in that approximation. Since any invariant higher-order "

term has a structure that resembles the covariant form of thBue to the antisymmetry of both the strength tensor and the
equations of motion, the procedure is indeed equivalent tstructure constants, the above expression leads to the primary
use the equations of motion arising from the dimension-fourconstraints

theory (at first order in the,, parameters). Consequently, af-

ter performing the required transformation, the equations of ) =7y ~ 0, (11)

motion can be used to eliminate any higher-order structure hich hat the® velocit b di
and, in this way, to transfer its coefficient to other first-orderVMich means that thelf; velocities can not be expressed in

invariant terms, already present in the effective Lagrangianic/™s of coordinates and momenta. Notice that these cons-

In the following, we will make use of this procedure. traints do not depend on tligparameter, so the effective term

We now proceed to construct the effective Lagrangiandoes not modifies the structure of the primary constraints
up to dimension six. The effective Lagrangian would Con_arising from the Qimension—fourtheory. This result is true not
tain only invariant terms of even dimension, so there are nanly for this particular theory, but also in the general case,

dimension-five terms. There is only one first-order invariant>"c€ all invariant terms are constructed with the strength ten-
dimension-six term given by sor only, which does not depends on thg velocities and

, thus L4 /0Ag = 0 always. On the other hand, the mo-
A abe i . . !
Lo=— jTr[F#VFVAFAL] _ f Far ptypeX (4 mentg associated with the spatial components of the fields
! F 3! K are given by
In the electroweak theory, the analogous of this term
has interesting phenomenological implications, since it in-
duce anomalous electromagnetic and weak effects on the ., following, we will use the letters, j, &, ... to de-

i . .
chargedW= gauge boson, which have extensively beennote spatial indices. It is difficult to solve these equations for

studied in the literature. ‘4 " : .
On the other hand, using the covariant derivative, it is;::gt%ra’:rl?rcl';{t'e:\/;o;;giirb'trary parameterbut working at
possible to construct the following two second-order struc- '

tures given by A;z _ (5a65ij + EfachiL;),]Tj; + alAg, o gfabcAgAf. (13)
Ly =Dy F" Dy F5,, (5)

7]';1 = (6‘16(51']' + efabCFil})F()Cj' (12)

This approximation is equivalent to make the substitution
L2 — [ padbpr pe 6 F* — 7% anywhere, valid in the general case because a
6 a pn bt Av ( ) 07 % yw g
] ) structure of arbitrary dimension would be made of combina-
However, these structures are not independent since they afigns of the strength tensor only. We will use this result later
related through a surface term. The remaining one can bghen we demand consistency conditions on the constraints.
eliminated using the equations of motion given in EQ. (2). | order to classify all constraints of the theory, we intro-
So, we will probe the Matthews’ theorem for an effective La- 4 ,ce the primary Hamiltonian, defined as [7]

grangian which includes all first-order invariant terms of up

to dimension-six, namely HY — /d%Hé}g _ /dgl_ (Hog + A“00),  (14)
1 fabc b -\
Log = —=F FI'" + e——=F" F""\ F* | 7 . . o
i 4 e 30 v A % where H g is the canonical Hamiltonian, constructed out

wheree = «,/A2. Taking into account that this is a first- With the expressible velocities given by Eq. (13), and
order Lagrangian, the corresponding equations of motion cafiré arbitrary Lagrange multipliers. The canonical Hamilto-
be calculated in the usual form. We obtain nianH.g can be conveniently expressed as

D E =0, (8) Hop =H+H, (15)
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beingH and{ the Hamiltonians arising from the dimension- sult is valid in the general case. By noting the structure of the
four theory and from the dimension-six term, respectively,secondary constraints in Eq. (19), we can rewrite the dimen-

expressed by sion four canonical Hamiltonian in the suggestive form
H = 1o a_ AeDabrb 4 1 pa pa (16) L oo jam@ . L para
- 9 01 7 44 177 H= 5’/Ti ™ — AO(I)a + ZFijFij’ (20)
N 1
H= efabc(w;‘w?Ffj + gF;}kaF,@). (17)  which reflect the role played for thdg fields as Lagrange

_ _ _ _ _ multipliers. Taking into account that thg* multipliers are
A basic consistency requirement is the preservation of thghdeed thed? velocities [7], it is clear that botbt and Ag
constraints in time. Since the constraints do not depend eXelds play the role of Lagrange multipliers.
plicitly on time, this requirement means that The secondary constraints must also satisfy consistency
HO_ (o0, HY condi'gions, similar to the primary ones. As .th.e PB between
@ a o eff the primary and secondary constraints are trivially zero, those
- - P N (1) = conditions are given b
= @y {82@). @) + R@) + X@)20 @) gven’by

= [y far @)} o (19) ¥ = [ L@ 1)+ HO)

where{-} denotes Poisson brackets (PB). The last expression = / Cy{e(F), ()} ~ 0, (21)
comes from the fact that neith@t> nor 7 depend on thel?
fields, as it is clear from Egs. (11) and (17). The consistencyvhere the last expression arises after using the well-known
condition in Eq. (18) does not determines the Lagrange mulresult of the dimension-four theory. The remaining PB can
tipliers but leads to secondary contraints given by be calculated as follows. Using the following relations:

&) = Ditel ~

) (19)  {DE7(@), 75 )} = —9fapemi6°(F = 7), (22)

whose structure is completely determined by the dimension- {r¢(z), F}}(5)} = (6,;;D" — 6, D§)8°(Z — i), (23)

four theory, as in the primary constraints case. From com-

ments presented after Eq. (13), we can conclude that this rend the Jacobi identity satisfied by the structure constants of
| the group, we arrive at

(@2, H} =cfyeal9foealy— (DID§ = DD [ mim§

+§fbcd [(DeDs? DD Yy Fe, + (DEeDS —DIDP) FLFG, + (DieDie — Dy D) FLFY ] (24)

K2

This expression vanishes after using again the Jacobi identity

together with the identit>? Epfd - D3 D" = =g fadcF, i In order to specify a representative set of variables it is ne-
This show that there are no more constraints. It can be Showébssary to introduce supplementary conditions, known in the
that the same result is obtained in the general case [11]. S@serature as gauge fixing-conditions, which lift the degene-
the primary and secondary constraints of the effective theoryation of the system. For this aim, the number of gauge-fixing
are the same to those appearing in the dimension-four theorjnctions must be equal to the number of the first-class cons-
as it was anticipated in the introduction. As it is well-known, raints. These functions can not be arbitrary at all, they must
these contraints are first-class ones, since all their PB vanisfgye nonvanishing Poisson brackets with the first-class cons-
implying that the Lagrange multipliers remain undeterminedraints, which implies that first-class constraints and gauge-
The primary Hamiltonian describes a degenerate system ifiing functions together form a set of second-class cons-
the sense that given a state at an initial time, it evolves folyzints. Since we can lift the degeneration in many diffe-
lowing many histories. These histories must be recognized agnt ways, it is clear that there exist many physically equi-
physically equivalent because they are consequence of arljyjent classical theories, each one of them determined once a
trary Lagrange multipliers in the Hamiltonian. At a later time, specific gauge fixing procedure has been chosen. According
the corresponding physically equivalent states on the histag canonical quantization, there is a quantum theory corres-
ries form an orbit. The states on the orbit are related one Bonding to each classical Hamiltonian and since all of them
another through a gauge transformation, the generators beinge physically equivalent, one may believe that the quantum
the first-class constraints. It is clear that only one set of cooryersions of these classical theories must also be physically
dinates, corresponding to a representative point of the orbiquivalent. It is, therefore, reasonable to quantize only one of
is necessary to specify the state of the system at a given timgye physically equivalent classical theories.

Rev. Mex. 5. 48 (1) (2002) 23-31



MATTHEWS THEOREM IN EFFECTIVE YANG-MILL STHEORIES 27

We will define a specific classical theory using thetheory, given by
Coulomb gauge to lift the degeneration. This supplemen- ) e b
tary condition is defined by XP) = 0irf + DP9, Af ~ 0, (27)
which constitutes a new constraint. It is not difficult to con-
vince ourselves that consistency conditions imposed on these
We demand that these constraints be also preserved in timgsonstraints does not leads to new constraints, but to the
determination of the Lagrange multipliers. The first-class

(W= [ 3 D(F), H(i FH(T )+ (7)) (7 constraints [Egs. (11) and (19)] together with the supple-

/ Y {X (@), 1(7) @) @) @)} mentary conditions [Egs. (25) and (26] represent indeed a

Xa = 0;Af = 0. (25)

set of second-class constraints, because the matrix formed

:/d3y [{0@), @)+ (@), 1) with all PB among the constraints is nonsingular for a confi-
guration of small field€. The determinant of this matrix is
~ 0. (26)  given by

A direct calculation shows that the second PB in the last ex-  Det[[{®,, x,}| = det’[9,D§°6°(# — §)] #0,  (28)
pression vanishes. However, as it was pointed out in the ingr smajl fields, which is sufficient for perturbation theory.
troduction, in the general case this PB would give a nonva-

nishing result on the constraint surface and thus the consi$r 3 Matthews’ theorem

tency requirements on the gauge-fixing procedure could be

affected for the higher-dimension termd]. The first PBin  We now proceed to probe Matthews’ theorem. The funda-
this expression is a well-known result of the dimension-fourmental HPI for a system subject to first-class constraints only
| is[15]

219) = [ DADrDet {2, ), 0 }o(ay — 00)]8(8)6(22)0 ()5 ()

X exp [z / d'z (7l AL — Heg + J - A)|, (29)

where J - A = J3 AL, with J representing the sources as-

sociated with the gauge fields. The determinant appear- the delta functi Wi t onl
ing in this expression can be directly calculated using thé0 remove the defta functions. Ve present only some com-

Egs. (11), (19), (25), and (27). The result is ments on the relgv_ant steps. The integration on the genera-
lized momentar§ is immediate due to the simple structure of
Det [{®, (%), x5 (7 )}6(zg — yo)| = the primary constraints. Next, we integrate on tgfields

to remove the delta function on the constraiptd. For this
2 ab 4 L]
Det*[0;Df"3"(x —y)]. (30) |y e the following relation:

For subsequent development, it is convenient to rewrite the

effective Hamiltonian as follows: a u 5(AL — Ab
. ) 00, + D0 AG) = t[D(abOa 5 (0>_ 7 (32)
Mo = 5 K yymimt + S FSFL ETGOE Y
e 2 abij 1 4 (%)
f whereA} is the solution of the differential equation
—AGOY + HEFG P, (31)
! oime + D9 AY = 0. (33)

whereK .. = 6,,0;; + €f,,.I;. Before carrying out the

momenta integrations, the following remarks are in orderTne resulting integral is modified by using the exponential

The structure of the effective Hamiltonian leads to f“nCtiO”alrepresentation for the delta function corresponding to the se-

integrals of the Gaussian type, though the coefficients of th%ondary constraint, as follows:

guadratic parts depend on the gauge fields, which may con-

tribute to the action of the theory. Besides, these terms are ubb ) 4 wbb

not covariant. In the general case, more complicate Hamilto- o(Di"mi) = /DVa exp {_ Z/d z VoD; Wi]’ (34)

nians with arbitrary dependence on the generalized momenta

would appear and use of dimensional regularization would bevhereV,, are auxiliary scalar fields, which allow us to rein-

necessary in order to eliminate non-covariant terms [9]-[11]corporate into the measure of integration thg fields by
Since the structure of the constraints are the same as imeans of the change of variabld§ = V* + A¢. After these

the renormalizable theory, we follow the standard procedureonsiderations, we obtain
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/DA“DW“Det 8'Dab(54($ — )]5(81‘14?)

. 1 At ab oAb 1 a a fabc
XeXp{Z/|:—2Kab”7T 7T + mf (AL + D A)_ZF”F”_ 3l F“ijFm—f—J.A . (35)

The determinant and the delta function appearing in this expression can be treated following the standard procedure by using
the Faddeev-Popov trick to express them in covariant form. In particular, one can use their four-dimensional covariant version,
which is equivalent to make the following change in the generating functional:

Det [0,D§*6* (x — y)]6(9;A¢) — Det[0,D5"6" (x — y)]6(9, A% — B*), (36)

where we have introduced the real functions on the spacedifrie), which do not alter the previous results. As a field-
independent term multiplying the generating functional does not contributes to physical quantities, we can introduce the fol-
lowing constant term into the generating functional:

/ DB, exp{ — é / d4mBaBa}, (37)

where¢ is a positive real parameter. We can then solve for the delta function. On the other hand, the determinant can be
expressed as a Gaussian functional integration on anticommuitiawgde ¢ fields. So we finally obtain

= /DAZDE *Dc* D

fabc
3

1 1
X exp {z/ {QKabij 171’ + 7 (AurpabAb)fngFg F:;FJ Ff — (a A2 —c“@”Dbecb—&—J'A]}- (38)

2¢

So far, none of the manipulations made in the HPI were related directly with the effective theory, but only with the renor-
malizable one. Hence, any possible change introduced by the effective theory to the LPI would arise from the Gaussian integrals
on therr momenta in Eq.(38), as a consequence of the dependence on the gauge fields of the co&ffigier@slving these
integrals, we obtain

am=a a _1 ( Kapij . ~a ab b
:/DA#DC DcDet ™ 2 (27rj> exp {z/ {Ecﬁ» 5(8 AM? ¢ oMDc +J~A]}, (39)

where Eg. (12) was used to determine the “stationary” point of the Gaussians. The determinant appearing in this expression is
the sole effect arising from the dimension-six term, which can not be removed from the integral since it depends on the gauge
fields. This term can be added explicitly to the action of the theory by using the well-known fabei{ld) = exp{Tr(In(A)},

valid for any nonsingularl matrix. After calculating the continuous trace and ignoring a constant factor, we arrive at

. 1 _apma 1
= /DAZ exp [z/d4x {ﬁeﬁ - i(aMAg)2 -z a“D,j’cb — §<54(0)Tr[1n (0u0ij — €fapeFi;)] +J - AH, (40)

where herélr indicates the trace on the discrete indices and

the divergent terni*(0) = §*(x — =) comes from the space-
. : LN o : scheme is used, since in this case the divergent term vanishes:
time trace. The logarithm in this expression is determined by_,

0*(0) = 0. Though in our case it is unnecessary to recurs to

its Taylor seriesin(dup — Uap) = Uap + UncUep + . - . Atfirst

this regularization scheme to remove the non-covariant terms,
order in thee parameter, its contrlbutlon vanlshes due to the

in the general case, it plays a fundamental role, not only in
antisymmetry of the ternf,,.F¢.

eliminating non-covariant terms arising from Gaussian inte-

Tr[In (8,40 — €funcFsj)] ~ fo(fabc ) =0. (41) grals, as in the present work, but, more importantly, in deal-

|ng with a HPI depending arbitrarily on the generalized mo-
enta [9-11].

Thus, the non-covariant terms arising from the dimension- SI
term disappear from the LPI. Then, Matthews’ theorem says
for this theory, that the correct Feynman rules are the naive
onesj.e, those obtained directly from the gauge invariantef-3. BRST invariant effective Lagrangian and
fective Lagrangian together with the usual gauge-fixing and  Matthews’ theorem
Faddeev-Popov terms.

To conclude this section, we would like to mention thatIn this section, we will probe the Matthews’ theorem for
the same result is obtained if the dimensional regularizatiothe effective Lagrangian given in Eq. (7), focusing from
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the BRST symmetry point of view. The corresponding ef-In this gauge, the BRST invariant effective Lagrangian can
fective Lagrangian would be defined in a configuration spacée written as

extended by the ghostg?) and anti-ghostsc(®) fields, as BRST . . ¢ - X

well as the auxiliaryB®-fields, which allow to lift the dege- Ler = Let + B0, A" + 5B B* —¢*0,Dyc’, (52)

neration of th invariant Lagrangian in variant an . . . . . .
e'ato ofthe gauge invariant Lagrangia acovariant a gvhereﬁ « 1S the gauge invariant effective Lagrangian given
quite general way. e

by Eq. (7). The corresponding equations of motion can be

3.1. The BRST invariant effective Lagrangian written as

ab brp v pa __ —bav c
Under the BRST symmetry [5], the gauge fields (and also DT F™H 4 0"B" =g fapec "0" ¢, (53)
the matter ones) are transformed according the infinitesimal (B =— 9" AY, (54)
form of the gauge symmetry. The ghost fields are related to b b
the gauge group parametere'] throughc® = na®, wherey o*Dye” =0, (55)
is an anticommuting constant. These fields are subject to the DbGLEd —0 (56)
requirement®’ = ¢* andé *f = —¢ ¢, which guarantees a p ’

Hermitian action. The corresponding BRST transformationsyhere the tenstﬁ[}u was already presented in Eq. (9).
are given by

@ a a .2. The effective Hamiltonian
6BRSTAM ZUSAuanubcb7 (42) 3 e effective Hamiltonial

. . g b e The structure of the configuration space in which the BRST
dprgrc” =nsc = 77( — Sfavec’c >, (43)  symmetry is defined implies the existence of a correspond-
ing phase space extended by tftec ¢, B® fields and their
dprsrC€ “ =nsc “ =nB*, (44)  generalized momenta. The momenta associated with this new
SnsrBY =nsBY = 0, (45) phase space are given by
. . 9 BRST
where s is the BRST operator. These transformations are 78 ===l _ po (57)
nilpotent in the sense that = 0, leading to the existence 0AG
of an unitaryS-matrix [16]. §IBRST
The BRST invariant action associated with the effective a4 =—__ —, (58)
gauge theory in consideration can be written as follows: OB
eff eff a‘CBf?ST b b
Sgrst = Sar + s, (46) T = aeAa = (0% + ef " F}) F, (59)
whereS¢l is the gauge invariant action for the effective theo- '
i ied | i i QLBRST
ry, which was studied in the previous section, and the so go —9=eft _ za (60)
called gauge-fermion functiond@ has the form € oce ’
5 &CBRST
U = / d*x ( e+ 23“)5% (47) e = 5;@ =Dabcb. (61)

where ¢ are the covariant gauge-fixing functions ahig a  The Egs. (59-61) can be solved for the corresponding veloci-
real positive number. Taking into account the BRST transforties (at first order irx) as follows:

mations given by Egs.(42-45), the actiof takes the form ja — (55, + ¢ fabe b )¢+ 9, A8 — gftteAb A4S (62)
T 19 3) "] 1420 044>
_ 4 a ra § a pa a\=a
= fa I[B [ BBt sfe ] (48) o =t 4 g funec A, (63)
which define the usual gauge-fixing and Faddeev-Popov- =72, (64)
ghost terms, given by

¢ whereas the remaining ones lead to the following primary
Lop =B*f* + §B“B", (49) constraints:
Lrpc =(sf*)c". (50) ®f =m5 — B* ~ 0, (65)
In a dimension-four theory, the gauge-fixing functigitsare ¢y =75 ~ 0. (66)

restricted to satisfy, besides Lorentz covariance, the Dysop, . . . . .
y Y We immediately see that these constraints, besides their alge-

prescription of renormalizability. In our case, we are res-, ~. . """,

. . braic simplicity, are of the second-class type. In fact, after a
tricted to use only a covariant gauge, though for our purpose. ! :
. - X Simple calculation one obtains
it is sufficient to use the simplest gauge, namely, the Lorenz

one, given by Det|[{®7, (%), ®),(7)}| = 6°6*(F —5),  (67)
[ =0,A". Gl wherem,n = 1,2.
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The primary effective Hamiltonian can be written as
Hegt = Hprst + A ®hys (68)

where

gB“B“ + 727 + 9,2 DIt + gfapem® AL (69)

HBRST == Heff - BaaZA? —
HereH, g is the effective Hamiltonian given by Egs. (15)—(17). From Eq. (67), we can see that the consistency conditions on
the constraints determine the Lagrange multipliers.
It should be emphasized the fact that these second-class constraints arise directly from the gauge-fixing precédsire,
the structure of the¥ action which determine their nature and structure, which have nothing to do with the nonrenormalizable
terms.

3.3. Matthews’ theorem

The fundamental HPI for a system subject to second-class constrainst only is given by [17]

J = /DA“DC aDc“DB“Dﬂ'“Dﬂ'“DW“Dﬂ'B

xDet? [{ @0 (%), () }6(zg — y)] 0(D])5(PF) exp { /d4 aA” + 7w + T3 + 14 B — Hpper + J¢| } (70)

Since the determinant appearing in this expression does not depends on the fields, it can be neglected in the HPI. On the other
hand, the integrations on thg, momenta are trivial, while those on th§ momenta restore the covariant form of the gauge-

fixing functions. Besides, the integrals on the ghost and anti-ghost fields momenta are of Gaussian type and can be solved
immediately. Since the coefficients of the quadratical parts do not depend on the fields and using Egs. (63) and 64) for the
“stationary point” of the Gaussians, we arrive at

1 ..
ZlJ) = / DA(De “Dc*DB*Dr exp {z / { 3 Koyt T+ 7w (AL + D AR)

gB“B“ +J- A} } (71)

a a fab’ a g ab b a a
—fF”F” €28 I — 2 "Dyt + B AL +

Noting that the integrations on the auxiliaBf'-fields are also of Gaussian type and taking into account that the coefficients of
the quadratics parts do not depend on the fields, we obtain

1 .
:/DAZDE“DC‘IDﬂ'feXp {z/ {— 2Kab”7r w5+ mi (AL + DI AR)

1 a a fabc a
SR T

PN FG — e oD — ?(a AR +J-A]}, (72)
where, as before, constant factors arising from field-independent determinants have been neglected. This expression coincides
with those given in Eq.(38) of Sec. 2 which contain the non-covariant contributions arising from the dimension-six term.
Hence, the conclusions concerning Matthews’ theorem are the same of Sec. 2. It should be stressed that BRST-symmetry
greatly simplifies its probe, making evident that any non-covariant contribution to the LPI only can arises from the structure of
the HPI on the generalized momenta associated with the gauge fields and not from the constraints of the theory.

4. Conclusions

In this paper we have presented a study of Matthews’ theorem for an effective Yang-Mills theory without matter fields, whose
Lagrangian includes all invariant terms up to dimension six. This theorem was probed from both the gauge and BRST symme-
tries point of views. The nature and structure of the constraints arising from the effective Lagrangian were studied with certain
detail. It was shown that the presence of nonrenormalizable invariant terms can not modify, neither in their structure nor in their
number, the constraints arising from the dimension-four theory. It was found that any possible source of non-covariant effects
to the LPI can arises only from the specific dependence of the HPI on the generalized momenta. It was stressed that these facts
are more transparent from the BRST-symmetry point of view. In the special effective Lagrangian considered in this work, it
was found that the HPI has a dependence of the Gaussian type on the generalized momenta and can explicitly be solved. Their
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non-covariant implications on the LPI can be eliminated usdLagragian. This conclusion would be valid in the general case
ing the dimensional regularization scheme, though in ouif the effective theory is regularized using the dimensional
case it was unnecessary, since this term vanish at first ordescheme.

in the unknownre parameter as a consequence of the symme-

tries of the effective Lagrangian. This regularization scheme
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