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Using the momentum projection technique of Peierls and Yoccoz in the non-scalingcolor dielectric model(CDM), the decuplet baryons
magnetic moments are calculated and compared with the available experimental and theoretical results. The calculated values of the magnetic
moments of∆++ andΩ− in CDM are close to the observed values.
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Usando la t́ecnica de proyección del momento de Peierls y Yoccoz en el modelo dieléctrico de color sin escala (CDM), calculamos los
momentos magńeticos del decuplete de bariones y comparamos los resultados teóricos y experimentales disponibles. Los valores calculados
de los momentos magnéticos de∆++ y Ω− en CDM est́an cerca de los valores observados.
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1. Introduction

Baryon magnetic moments provide very significant informa-
tion concerning the structure of the hadrons. The magnetic
moments of the baryon octet have already been precisely
measured. More recently the magnetic moments of∆++

andΩ− have been measured. The∆++ magnetic moment [1]
is measured precisely through pion bremsstrahlung analy-
sis. The E756 Collaboration measured theΩ− magnetic mo-
ment [2], where theΩ− was produced by a polarised neutral
transfer reaction. The theoretical predictions of the magnetic
moments of decuplet baryons have also been given by many
models [3–7]. The simple additive quark models give the ra-
tio µ∆++/µp = 2 or more, whereas the analysis of the ex-
perimental data gives the ratio1.62 ± 0.18. In this work we
have calculated the decuplet baryon magnetic moments in the
color dielectric model (CDM) and compare with the available
experimental and theoretical results. Our calculation shows
that, for certain sets of parameter, the CDM result is compa-
rable with the lattice result. The CDM also predicts correctly
the ratioµΩ−/µp.

The CDM [8–15] has the features of confining absolutely
the quarks and gluons simultaneously. The absolute confine-

ment is generated dynamically through the vanishing of the
dielectric (scalar) field in the non-parturbative vacuum. So
this model does not need any artificial boundary like the bag
model for confinement. Thus, this model has the advantage
of extending to many nucleon systems and hence to nuclear
matter calculation. The CDM has been extensively used to
study the baryonic properties, both in the free state [8–14],
as well as in the medium [15]. In ref [16] Bae and McGo-
vern have calculated the octet andΩ magnetic moments in
the CDM by taking into account the pion and kaon contrib-
utons perturbatively and obtained good agreement with the
experimental values.

The paper is organised as follows. In Sec. 2 we discuss
briefly about the CDM and momentum projection technique.
Section 3 contains the calculation for decuplet baryon mag-
netic moments. Numerical calculations and a brief conclusion
is given in the Sec. 4.

2. CDM and the momentum projection

The Lagrangian density for the non-scaling CDM is given
as [8–10]

L =
∑

f

{
ψ̄f (x)

[
γµi∂µ−

(
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mu

χ

)
−gsγ

µ λa

2
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µ(x)
]
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}
− 1

4
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2(∂µχ)2−U(χ), (1)

whereψ, χ andAµ are the quark, scalar and the gluon fields.mu is theu(d) quark mass andmsu is the mass parameter which is
non-zero for non-strange baryons and zero for nucleon and delta. The effective strange quark mass is given bymsu+mu/χ(0).
The sum is over all flavor andκ(χ) = χ4 is the dielectric functional through which the scalar field couples to the gluon field.
The strong coupling constantαs = g2

s /4π andσv is the parameter related to the dielectric field mass (glueball mass). The
scalar fields interact among themselves non-linearly through the scalar potential,

U(χ) = B
[
αχ2 − 2(α− 2)χ3 + (α− 3)χ4

]
, (2)
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whereU(χ) has two minima, one atχ = 0, the absolute
minimum and the other atχ = 1, the local minimum. The
energy density difference between these two minima is the
bag constantB, the parameterα determines the height of
the potential and its variation does not change the result very
much [8]. So we choose it to be36 here. The glueball mass is
given asmGB = ∂2U(χ)/∂χ2|χ=0. The behaviour of the di-
electric field is such that it confines the quark and the dielec-
tric field simultaneously in the region whereχ > 0. As in this
model the dielectric field takes care of the long range order
effect of the QCD vacuum, the gluon contribution is treated
parturbative. Also we consider only one gluon exchange to
avoid double counting, which is already included through the
scalar fieldχ.

The mean-field (MF) solutions to the CDM are loca-
lized and do not correspond to the momentum eigen-
states [8, 9, 14]. The localized states contain spurious center-
of-mass energy and center-of-mass fluctuational motion. The
center-of-mass energy adds to the total energy of the soli-
ton. So we use Peierls-Yoccoz momentum projection tech-
nique [18] to project onto good momentum eigenstate and
the finite momentum eigen state is used for the calculation
of baryon magnetic moments. This technique has been used
in MIT bag model [19], Friedberg-Lee soliton model [20] and
also in CDM [11, 13].

In order to construct states of good momentum we need
a quantum description of the dielectric field, which is related
to MF solution. The simplest wave function which maintains
many features of the MFA is a “coherent state.” The coherent
state is defined as

|σ〉 = exp
[ ∫

d3k

√
ωk

2
fka†k

]
|0〉. (3)

We choose the expectation value of the dielectric field to co-
incide with the MF valuei.e.

〈χ〉 =
〈σ|χ̂|σ〉
〈σ|σ〉

=
1

(2π)3/2

∫
d3k eik·rfk

= χ(r). (4)

Using PY projection a baryon state with finite momentumP
is given as

|P〉 =
∫

d3 XeiP·X|X〉, (5)

where|X〉 is a localized baryon state centered atX and it has
the form

|X〉 = exp

[ ∫
d3k

√
ωk

2
fk(X)a†k

]

×b†1(X)b†2(X)b†3(X)|0〉. (6)

The creation operator for scalar field(a+
k ) and the quark

fields(b+
i ) are centered onX. The exponential part in Eq. (6)

is the coherent state for the dielectric field. Then the expecta-
tion value of an operator̂O in finite momentum state is

〈O〉 =
〈P|Ô|P〉
〈P|P〉 , (7)

providedO is translational invariant.

3. Magnetic moment

The baryon electromagnetic current in terms of the quark cur-
rent is given as

Jµ(x) =
∑

i

Qiψ̄iγµψi
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2
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i
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By using the Eq. (7), the magnetic moment is given as

〈
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whereµ is the magnetic moment operator. Here we work in
the Breit frame (brick wall) so that the magnetic moment is
free of longitudinal current. Expanding the L.H.S. of Eq. (9),
keeping only the first order inP and comparing with the
R.H.S., thez component of the magnetic moment will be
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With further simplification this will give
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where

Gi(r+, r−) =
gi(r+)fi(r−)

|r−|
+

gi(r−)fi(r+)
|r+|

, (12)
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TABLE I. The decuplet baryon magnetic moments for the three parameter sets are shown here. The NRQM and CBM results are from
the Ref, 5. For CBM we have considered only the result forR = 1 fm. The lattice result is from Ref. 7. The experimental value
of µ∆++ = 4.52± 0.50 andµΩ− = −1.94± 0.17. All the magnetic moments are in units of nuclear magneton.

µ∆++ µ∆+ µ∆0 µ∆− µΣ∗+ µΣ∗0 µΣ∗− µΞ∗0 µΞ∗− µΩ−

A 4.63 2.32 0.0 −2.32 2.54 0.23 −2.08 0.46 −1.84 −1.61

B 4.54 2.27 0.0 −2.27 2.47 0.22 −2.04 0.43 −1.82 −1.60

C 3.44 1.72 0.0 −1.72 1.84 0.13 −1.59 0.25 −1.45 −1.32

NRQM 5.58 2.79 0.0 −2.79 3.11 0.32 −2.47 0.64 −2.15 1.83

CBM 3.78 1.65 −0.49 −2.63 2.78 −0.11 −2.52 0.60 −2.26 −1.57

Skyrme 4.53 2.09 −0.36 −2.80 2.55 −0.02 −2.60 0.40 −2.31 −1.98

Lattice 4.91 2.46 0.0 −2.46 2.55 0.27 −2.02 0.46 −1.68 −1.40

and

Fi(r+, r−) =
gi(r+)fi(r−)

|r−|
− gi(r−)fi(r)

|r+|
; (13)

with

r+ = r +
Z

2
, (14)

and

r− = r − Z

2
(15)

For Z = 0, the Eq. (11) reduces to the MF result. Using the
spin-flavor wave functions of the SU(3) baryon octet and de-
cuplet the magnetic moments can be calculated. We use the
Variation Before Projection (VBP) method [9] to calculate
the baryon properties. In this method we use the mean field
solutions of the quark and dielectric fields to calculate the
static properties. But in principle the energy of the system
should be minimized with respect to these solutions. How-
ever a better approach is the Variation After Projection (VAP)
method [11, 13], where variation of the quark and the dielec-
tric field solutions are needed to minimize the energy. But
in VAP method we need to solve a set of equations which are
complicated and time consuming. Apart from that extending
this procedure to SU(3) baryonic sector is too complicated.
So we choose VBP method to treat the momentum projec-
tion in our calculation. Earlier he wave used VBP method to
calculate the baryon masses and charge radii in color dielec-
tric model [9]. Of course it is important to take the mesonic
correction into account to have a complete calculation and we
have left this for a future work.

4. Results

The parameters in the model aremu, msu, B1/4, αs

andmGB and the numerical procedure is as follows. We solve
the equations of motion for quark and dielectric field self-
consistently with a parameter setmu, B1/4 andmGB. The
color-magnetic energy is included perturbatively. The strong
coupling constant is adjusted to fit the nucleon-delta masses,

as in this case the nucleon- delta splitting comes from the glu-
onic contribution. After that we fit the strange baryon masses
for different values ofmsu. We calculate the baryon masses
for different parameter sets to get the average fit [8]. So once
the masses are calculated, the parameters in the model are
fixed. Thus for magnetic moment or any other static pro-
perties calculation we need the solutions of the quark and
dielectric fields as is shown in the calculation of the magnetic
moments from the Eq. (11).

By using the same momentum projection technique for
calculating the baryonic static properties, we have shown
that the mass spectrum of the octet and decuplet baryons are
in good agreement with the observed values [9]. Our pre-
vious works on this model for baryon static properties cal-
culation also had put constraints on the parameters in the
model [8, 9, 13]. So in this work we consider the parameters
for which we obtain resonablely good fit for the mass as well
as other static properties. To study the decuplet magnetic mo-
ments we have considered the following parameter sets:

Set A:

mu = 70.0 MeV, B1/4 = 88.0 MeV,

mGB = 875.0 MeV, ms = 323.0 MeV.

Set B:

mu = 87.0 MeV, B1/4 = 87.0 MeV,

mGB = 970.0 MeV, ms = 327.0 MeV.

Set C:

mu = 125.0 MeV, B1/4 = 125.0 MeV,

mGB = 2788.0 MeV, ms = 358.0 MeV.

The numerical results of our calculation for the above three
parameter sets are shown in Table I. Also we have calculated
the magnetic moments of the decuplet baryons for a wide
range variation of parameters. It has been observed that, in
this model the magnetic moments of the octet baryons are
less than the observed values [20].
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Our calculation shows that, the decuplet magnetic mo-
ments are in good agreement with the lattice calculation [7]
for up(down) quark mass andB1/4 about100 MeV and glue-
ball mass of about1000 MeV as shown in the table for sets A
and B. Better fitting of the baryon masses also prefer the
same range of the above parameters. On the other hand it
is clear from the Table I (set C) that for large quark mass,
bag constant and the glueball mass, the comparison with lat-
tice result is not good. Also the mass fitting for this param-
eter is bad. Similar results are obtained for very small quark
mass. For the sets A and B, the magnetic moment of∆++

is in better agreement with the observed value. On the other
hand in CDM we obtain the ratioµ∆++/µp = 2, which is

much larger than the observed value. This is because in this
case we haveµ∆++ = 2µp same like non-relativistic quark

model (NRQM) [5]. We consider the SU(2) isospin symmet-
ric case so the∆0 magnetic moment is zero. TheΩ− mag-
netic moment calculation for sets A and B shows that the ra-
tio µΩ−/µp = 0.70, is in good agreement with the observed

value. Also theΩ− magnetic moment for sets A and B are
close to the observed value. The comparison of CDM pre-
diction with NRQM and cloudy bag model (CBM) [5] shows
that, the NRQM predictions are much higher than CDM and
the CBM prediction is below CDM . We also show the result
of the Skyrme model [6]. TheΣ∗0 magnetic moment in CBM
and Skyrme model is negative, whereas we find a posttive
contribution which is consistent with the NRQM and lattice
prediction [7]. We hope that inclusion of mesonic correction
will improve the result.

5. Conclusions

We have extended the CDM to calculate the decuplet baryon
magnetic moments. It shows that for certain class of parame-
ters our result is comparable with the lattice calculation. Also
the∆++ andΩ− magnetic moments are close to the observed
values. It predict correctly the ratio of theΩ to proton mag-
netic moments.
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19. E.G. Lübeck, M.C. Birse, E.M. Henley, and L. Wilets,Phys.
Rev. D 33 (1986) 234; E.G. L̈ubeck, E.M. Henley, and L.
Wilets,Phys. Rev. D35 (1987) 2809; E.G. L̈ubeck, Ph.D. The-
sis, University of Washington, (1986).

20. S. Sahu, Ph.D. Thesis, Utkal University (1993), (unpublished).

Rev. Mex. F́ıs. 48 (1) (2002) 48–51


	001: 


