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Recibido el 20 de junio de 2001; aceptado el 30 de noviembre de 2001

The kinetics of ultra-fast processes which leads to the thermalization condition of a photo-excited plasma in semiconductor systems is studied
theoretically. We analyze the time evolution of a carrier population generated by a finite optical pulse, from the beginning of the pulse until
the time in which the carrier population reaches a quasi-equilibrium condition. We calculate the energy fluxes caused by the main interaction
mechanisms along the different stages the system passes through. Our analysis is done by using a set of non-linear rate equations which
govern the time evolution of the carrier population in the energy space. We consider the main interaction mechanisms, including dynamic
screening and phonon population effects.
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Se estudia la cińetica de los procesos ultrarrápidos que llevan a la condición de termalización de un plasma fotoexcitado en sistemas semi-
conductores. Analizamos la evolución temporal de una población generada por un pulsoóptico finito, desde el comienzo del pulso hasta el
tiempo en el que la población alcanza una condición de cuasi equilibrio. Calculamos los flujos de energı́a causados por los mecanismos prin-
cipales de interacción a lo largo de las diferentes etapas por las que pasa el sistema. Hacemos nuestro análisis usando un conjunto no lineal de
ecuaciones de razón de cambio que gobiernan la evolución temporal de la población de portadores en el espacio de energı́as. Consideramos
los mecanismos principales de interacción, incluyendo el apantallamiento dinámico y los efectos de población de fonones.

Descriptores:Plasma fotoexcitado; termalización; procesos ultrarrápidos en semiconductores
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1. Introduction

The relaxation processes of photo-generated plasma sys-
tems in semiconductors exhibit two characteristic stages. The
first of them, commonly called the thermalization process,
is mainly governed by the rapid interactions, namely, the
electron-electron (e-e) and the electron-optical phonon inter-
actions. In this stage the carrier distribution function (CDF) is
far from equilibrium and theoretical approximations for this,
based on small displacements from the equilibrium are poor
approaches to describe the kinetics of these processes. This
stage ends when the interaction mechanisms randomize the
energy and momentum in the carrier population. This allows
the CDF to reach a condition in which it is possible to define
an effective temperature for the carrier system,i.e., the CDF
acquires a shape similar to that of an equilibrium one. The
second stage of the relaxation is the so called, cooling pro-
cess, and is mainly ruled by the slow interactions in the sys-
tem, namely, electron-phonon (e-ph) scattering and recombi-
nation. This process has been extensively studied since the
pioneering works of the late60’s and70’s decades [1, 2]. In
this stage, the time evolution of the quasi-equilibrium CDF
can be described by means of simplified evolution equations
for time dependent effective temperature and chemical poten-
tial [3].

There have been in the literature reported theoretical and
experimental studies on the thermalization process, however

it is still not well understood [2, 4–7]. This is because the
thermalization process is a stage dominated by transient ef-
fects in a far from equilibrium system. The understanding of
the transient processes occurring in photo-generated carrier
populations is of great relevance because it would allow a
deeper physical insight on the dynamical effects of interac-
tion mechanisms upon observable properties of the system. In
addition, it could provide information, as well as a theoretical
framework, to investigate some particular ultra-fast pheno-
mena like the kinetics of thermo-transport and the kinetics of
the coherent control of quantum states in mesoscopic semi-
conductor systems [8–10].

Thermalization depends mainly on the efficiency of
thee-e scattering to redistribute the excess energy given to the
system by the external sources. Once thermalized, the elec-
tronic system relaxes by dissipating the energy in excess into
the lattice and by emitting radiation. Associated to each one
of the stages of the relaxation process, there is a characteris-
tic time. The first one, the thermalization time, is an effective
time determined by the intrinsic characteristic times of the
rapid interaction mechanisms within the system and the sec-
ond one is a characteristic time determined by the interaction
mechanisms of the system with the surroundings. Therma-
lization and cooling processes also depend on other features
of the excitation, for instance the excitation time,i.e., the time
along which the carrier generation is produced or the time
the perturbation remains switched on. The thermalization and
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cooling times notoriously change if the external perturbation
remains switched on over times longer than thee-e collision
time, or if the perturbation switching on occurs adiabatically.

We present in this paper a detailed study on the ultra-
fast processes which lead to the thermalization condition
in a photo-excited electron gas in polar semiconductors.
We assume the semiconductor is excited by a pulsed laser.
We define two quantities on which our discussion is based,
namely, the thermalization time and the thermalization tem-
perature [5]. We analyze how these quantities depend on
some external variables such as the time duration of the laser
pulse, the energy of excitation, the carrier concentration, and
the lattice temperature.

2. Theory

To study the thermalization process of a photo-generated
electron gas in a bulk semiconductor we use a set of rate
equations we have developed to investigate several physical
situations [5, 6]. These equations describe the evolution of
the electron population in semiconductors under several ge-
neral conditions, and consider the most important interaction
mechanisms, including screening and phonon population ef-
fects. Our theoretical scheme is based in the following for-
malism.

Let us start by defining the carrier population in a volume
element in the(r,k)-space orµ-space, composed of the car-
rier positionr and the carrier wavevectork,

η(r,k, t) = f(r,k, t)
V

4π3
drdk, (1)

where f(r,k, t) is the carrier distribution function in the
µ-space andV is the crystal volume.

In a similar way, for the optical phonon population we
can write

Nj(q, t) = gj(q, t)
V

(2π)3
dq, (2)

where j labels the branch,q is the phonon wave vector
andgj(q, t) is the phonon distribution function. In the fol-
lowing we will use the indexα to denote the couple(j,q).
So thatNα will denote the phonon population in the modeα.

An electron in a semiconductor is characterized by its po-
sition r, its wavevectork, and the index of the energy band.
An electric field introduces a preferred direction. By assum-
ing an homogeneous, isotropic system, and for null applied
electric field, the only relevant variable is the energy, as is the
case of cubic semiconductors like GaAs [6, 11]. Therefore,
we can write for the carrier and phonon populations

η(ε, t) = f(ε, t)
V dSdε

4π3|∇kε(k)| , (3)

Nα(t) = gj(q, t)
V

(2π)3
dq, (4)

wheredS is a surface element on the surface of constant ener-
gy ε.

Now we wish to establish the equations which govern the
time evolution of these quantities. In order to do that we as-
sume the following. Transport and optical properties of cu-
bic semiconductors like GaAs are explained in terms of their
band structure. The band structure of a cubic-model semicon-
ductor is composed of one conduction band with three sets of
minima, and three valence bands. The minima of the con-
duction band are located at theΓ point (k = 0), at theL
points [k = (π/a0, π/a0, π/a0), a0 being the lattice cons-
tant], and along the∆ lines k = (k, 0, 0). The tops of the
valence bands are located at theΓ point. Two of them are de-
generate at this point and the other is separated by spin-spin
interaction. Then, we suppose a band structure composed of
the valleyΓ separated from the valleyL by an energy∆.
This model is appropriate for the description of photoexcited
semiconductors where the transitions involve only the center
of the Brillouin zone [11]. We assume also that the continuum
of states of the valley is partitioned into a set of discrete inter-
vals of energy∆ε. For simplicity, and in order to have a direct
reference we choose∆ε to be the longitudinal optical (LO)
phonon of energy~ωLO. This choice is not an essential as-
sumption for the development of our procedure [6].

Instead of establishing evolution equations for the quan-
titiesη(ε, t), we shall set up the evolution equations for these
quantities integrated in the interval of range∆ε = ~ωLO. So,
we have

ηγi(t) = fγ(εi, t) dγi, (5)

whereγ = Γ, L labels the valleys, andi the levels of ener-
gy εi = i∆ε; (i = 0, 1, 2, . . .), and

dγi =
∫

∆ε

Dγ(εi) dε =
∫

∆ε

V dSdε

4π3|∇kε(k)| (6)

is the number of energy states in the interval characterized by
set of indexes(γi). Obviously it depends on the density of
statesDγ(ε) in the respective valley.

We obtain the evolution equation for the carrier popula-
tion in the different levels in the energy space by using the
conservation of the electron number, thus we can write

dηγi

dt
=

∑
m

(bm − am) + Gγi −Rγi, (7)

wheream (bm) is the flux out from (into) the levelγi due
to the interaction mechanism labeled bym. The photo-
generation of carriers is accounted byGγi, while Rγi de-
notes the recombination rate. The rate Eqs. (7) govern the
evolution of the carrier system and form a set of non linear
coupled differential equations where the fluxes depend on the
carrier populations

am = am(ηγi−1, ηγi, ηγi+1),

bm = bm(ηγi−1, ηγi, ηγi+1).

2.1. Scattering mechanisms

We now particularize our treatment to the case of polar semi-
conductors. However, the adaptation of the theory necessary
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to deal with covalent semiconductors is almost direct. The
evaluation of the probabilities associated to the collision
mechanisms can be done by using the straightforward first-
order perturbation theory. The expressions obtained by the
use of the Fermi Golden rule for the transition probabilities
due to the different interaction mechanisms, can be found
somewhere else. The derivation of some of them and modi-
fications of these expressions according with our theoretical
framework, is almost direct, here we just discuss those de-
tails which in our opinion might need some clarification. Full
details can be found in Ref. 6.

2.1.1. Electron-longitudinal-optical phonon interaction
(polarization potential)

When a carrier undergoes an electron-logitudinal-optical
phonon interaction makes a transition to the neigbour le-

vels (i ± 1) in the same band. Transition to different bands
(inter valley) in which an optical phonon is participating is
due to a different potential, the optical deformation poten-
tial [11]. For photoexcited semiconductors we are interested
in the transitions occur only at the center of the Brillouin
zone, and these inter valley transitions are neglected [11].
The expression for the fluxes due to the electron-logitudinal-
optical phonon interaction is derived in Ref. 6 and is based
on the matrix elements derived elsewhere, see for example
Ref. 12.

The fluxes can be written as [6, 12, 13]

a = ηγiν
γ±
op (εi)

(
1− ηγi∓1

dγi∓1

)
, (8)

b =
(

1− ηγi

dγi

)
νγ±
op (εi)ηγi±1, (9)

where

νγ±
op (ε) =

√
mγe2~ωLO√

2 ~2

(
1
E∞

− 1
Es

)(
Nq +

1
2
± 1

2

)
1√
ε
Sγ

LO ln




1 +

√
1∓ ~ωLO

ε

±1∓
√

1∓ ~ωLO

ε


, (10)

whereE∞ and Es are the static and optical dielectric con-
stants, respectively.mγ is the effective mass in theγ valley,e
is the electron charge and~ is the Planck constant. The up-
per (lower) sign is for emission (absorption). The screening
effects in thee-ph interaction are included in the factorSγ

LO,
which in the random-phase approximation is given by [13]

Sγ
LO =

Nγ

N

[
1 +

(
Nγ

N c
γ

)2]−1

,

whereN andNγ are the total andγ valley carrier concentra-
tion respectively,N c

γ is the threshold value for the concentra-
tion in theγ valley at which the screening becomes important.
This critical value for the carrier concentration is given by

N c
γ =

E∞mγ(~ωLO)3

33/28πe2~2kBTe

,

whereTe is the electronic temperature andkB is the Boltz-
mann’s constant.

2.1.2. Electron-electron interaction

The electron-electron interaction gives the nonlinear charac-
ter of the Eqs. (7) and is one of the most difficult interactions
to take into account. We adopt the Debye-Hückel screened
potential to describe thee-e interaction. We see that the scat-
tering processes in which the magnitude of exchanged mo-
mentum is small are the most likely, because the probabil-
ity diminishes asq−4. Also, on the average, an electron in
the valleyΓ exchanges approximately~ωLO of energy [6].
Therefore, in our energy levels scheme, carriers make transi-
tions to the neighbour levelsi±1 in the same band due to the
e-e scattering. For more details see Refs. 6 and 14.

The fluxes are given by [6]

a = ηγiZ
γ

[(
1− ηγi−1

dγi−1

)∑

γ′i′
ηγ′i′

(
1− ηγ′i′+1

dγ′i′+1

)
+

(
1− ηγi+1

dγi+1

)∑

γ′i′
ηγ′i′

(
1− ηγ′i′−1

dγ′i′−1

)]
, (11)

b =
(

1− ηγi

dγi

)
Zγ

[
ηγi+1

∑

γ′i′
ηγ′i′

(
1− ηγ′i′+1

dγ′i′+1

)
+ ηγi−1

∑

γ′i′
ηγ′i′

(
1− ηγ′i′−1

dγ′i′−1

)]
, (12)

where Pauli exclusion principle has been taken into account and

Zγ =
e2

√
πmγkBTe

22~2E∞N

1

1 +
N

Nγ
ee

. (13)
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The square brackets factor takes into account the screening
effects. These become important when the carrier concentra-
tion N reaches a critical valueNγ

ee given by

Nγ
ee =

4mγE∞(kBTe)
2

π2~2e2
.

The expression for the total probability, Eq. (13), is an
heuristic useful expression, that allows us to determine in an
easy way the ranges of carrier concentration and electronic
temperature, in which the energy exchange throughe-e scat-
tering is the dominant mechanism in the kinetics of the sys-
tem.

2.2. Generation and recombination

The dynamics of carriers under intense laser irradiation has
been described by Ferry [15]. Here we adopt the following
procedure to describe the generation and recombination pro-
cesses. The rate equation which governs the effect of the
generation and recombination processes on the CDF can be
written as

dηΓi

dt
= GΓi −RΓi (14)

the first RHS term represents the photo-generation of carriers
and the second one represents the recombination processes.
In direct gap semiconductors the photo-excitation involves
the top of the valence band and the bottom of the conduction
band which are at theΓ point. For indirect gap semiconduc-
tors it is necesary the participation of a phonon in order to
conserve momentum. In this report we are interested in direct
gap semiconductors, therefore, we shall assume only genera-
tion of carriers to theΓ valley, therefore, the generation term
can be written as [6]

GΓi = Gp(t)δi,ip

(
1− ηΓi

dΓi

)(
1− σ

ηΓi

dΓi

)
, (15)

whereip∆ε is the excitation energy (measured from the bot-
tom of the conduction band).Gp(t) is proportional to the rate
of generation,i.e., the number of excited carriers per unit time
given by

Gp(t) = G∗pG(t) =
PL

Ad~ωL

G(t),

wherePL is the laser power,~ωL is the photon energy,d is
the penetration length, andA is the area of illumination. The
dimensionless functionG(t) is conveniently chosen in order
to model a given experimental condition. For instance, for the
case of a steady stateG(t) = 1. The factorσ is given byf̄/f ,
wheref̄ is the hole distribution, and in general is a function
which depends uponε andt. In steady state processesσ ac-
counts for the degree of compensation in the material.

The rate of recombination can be expressed as
R = RR + RN, i.e., it is the addition of the radiative and non
radiative components of the recombination.

In this work we assumeRΓi =wηΓi wherew is defined as

w =
〈

1
τrec

〉
=

∫
1

τrec

f(ε)
√

ε dε
∫

f(ε)
√

ε dε

, (16)

andτrec has to be calculated for the pertinent kind of recom-
bination.

2.3. Phonon population effects

We have mentioned that a high population of phonons can
produce some important effects and these effects are more
notorious in the case of the LO phonons [16]. However, the
number of LO modes is limited by the magnitude of the elec-
tron wave vector. These limits can be easily obtained by ap-
plying the energy and momentum conservation conditions
to a transition in which an electron with an energy near the
maximum energyεmax absorbs a LO phonon. In this way one
obtains

qmin =

√
2mγεmax

~

[√
1 +

~ωLO

εmax

− 1
]
,

and

qmax =

√
2mγεmax

~

[√
1 +

~ωLO

εmax

+ 1
]
.

Of course in this energy scheme it is not possible to know
the wave vector of the absorbed phonon. In order to describe
phonon population effects we need to link the carrier system
to the phonon population. To this end we use the following
evolution equation for the whole phonon populationNLO

dNLO

dt
=

1
U

∑

γi

ηγi

[
νγ+
op (εi)

(
1− ηγi−1

dγi−1

)
− νγ−

op (εi)
(

1− ηγi+1

dγi+1

)]
− NLO −N eq

LO

τLO

, (17)

whereU is the number of permitted modes per unit volume,

U =
∫ qmax

qmin

dq

(2π)3
,

andN eq
LO is the equilibrium total LO phonon population andτLO is its time life.

The set of Eqs. (7) and (17) with the respective expressions for the fluxes are the basis of this model. These equations can
be easily extended to represent a more general situation. For instance, the hypothesis of parabolic valleys can be changed to
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allow the description with a more realistic band structure.
The solution to these rate equations can be considerably sim-
plified by the use of effective collision frequencies (ECF).
These frequencies are the average over the band of the scat-
tering frequencies defined for each of the energy levels and
which are the factors appearing in the fluxes. We would like
to notice here that the information about the band structure
and other symmetries of the system is contained in the ECFs.
Thus, this approach can be used to study ultra-fast pheno-
mena in quantum wells, superlattices and heterostructures, as
well as bulk semiconductors systems [6, 17].

3. Normalized rate equations

For not very high carrier concentration we can neglect the in-
ter valley transitions. The threshold in which we can neglect
inter valley transitions depends on the material, for GaAs this
threshold is1× 1018 cm−3 [11]. If additionally one assumes
a non-degenerate electron gas and use the ECFs as defined
before, the rate equations (7) and (17) become notoriously
simplified. The use of the ECFs in our description is in fact
justified by the smooth behavior of the scattering probabili-
ties as function of the energy. Hence, under these conditions
the rate equations can be cast into

dχi

dt
= ν+

o (χi+1 − χi) + ν−o (χi−1 − χi)

+ZNmaxχ(χi+1 − 2χi + χi−1)

+ZNmaxχ0(χi − χi−1) + gpδi,ip
− wχi, (18)

for i 6= 0 and fori = 0 we have

dχ0

dt
= ν+

o χ1 − ν−o χ0 + ZNmaxχ(χ1 − χ0)

+ZNmaxχ0χ0 + gpδ0,ip
− wχ0. (19)

For the phonon population in excess,N exc
LO = NLO − N eq

LO,
we have

dN exc
LO

dt
=

1
u

[
ν+
o (χ− χ0)− ν−o χ

]− ξN exc
LO , (20)

where the populations have been normalized to the maximum
reachable carrier concentrationNmax, i.e., χi = ηi/Nmax;

χ =
∑

i χi; u = U/Nmax; andgp = Gp/Nmax. The ECFν±o
has just the dominant term of thee-LO phonon interaction,
andξ = 1/τLO. Notice the differences between the rate equa-
tion for i = 0 andi 6= 0.

4. Results and discussion

For the sake of brevity, from here on, we will refer as carrier
distribution function to the set of values{χi} of the carrier
population at the different energy intervals on the conduc-
tion band. The link of this distribution with the actual out
of equilibrium CDF is given by the expression (5). We start
our discussion by defining two physical quantities inherent to

the time evolution of the photo-generated carrier population.
More specifically, we wish to characterize by means of these
physical quantities, the stage in which the system reaches the
thermalization condition. These quantities are the therma-
lization time t∗ and the thermalization temperatureT ∗e [5].
Our definition of these quantities intend to be phenomeno-
logically amenable. Thus,t∗ is defined as the time interval,
measured from the begining of the laser pulse, that the carrier
system requires to reach a distribution shape which can be
fitted by means of a single exponential function,

χi = A exp
(
− i

∆ε

kBT ∗e

)
. (21)

HereA is a normalization constant. The quantityT ∗e , which
makes the fitting possible, defines the thermalization tempe-
rature. This last definition closely resembles the way in which
the carrier temperature of a hot electron system is experimen-
tally determined [1]. We proceed by numerically integrat-
ing Eqs. (18), (19), and (20) under different physical con-
ditions and seeking the effects of the external variables ont∗

andT ∗e . Starting at the pulse begining, the carrier population
generated in the conduction band evolves due to the collision
mechanisms according to the rate Eqs. (18), (19), and (20).
At each step of the numerical integration we are able to cal-
culate the CDF and the corresponding values of the ECFs.
In the initial steps of the numerical integration, in general
the CDF differs clearly of the shape of a thermalized distri-
bution,i.e., a Boltzmann factor. Within subsequent iterations
the CDF gradually addopts a decreasing shape, which even-
tually, at t = t∗, admits a fitting by means of a simple de-
creasing exponential function. The exponent in that event is
inversely proportional toT ∗e [1, 2, 5, 6]. This is the way in
which we proceed to evaluatet∗ andT ∗e .

In order to make concrete calculations we consider the
well known values of the electronic band structure, phonon
dispersion relations and material parameters of GaAs. For
example,~ωLO = 36 meV and the energy extent of the con-
duction band at theΓ point is1 eV. This means that the nece-
sary number of energy levels is28. Other GaAs material pa-
rameters can be found Refs. 6 and 11, and references there
in. At t = 0 in an empty conduction band a laser pulse of du-
ration tp injectsgp electrons per unit time with an energyip
in units of∆ε and above of the bottom of the band.

Before starting our analysis of the thermalization process
we discuss briefly the physical suitability of our carrier tem-
perature definition. By means of expression (21) we have de-
fined at timet∗ the thermalization temperatureT ∗e . At sub-
sequent times one also might use this procedure to calculate
the carrier temperatureTe(t). We have studied the time evo-
lution of this quantity under various different physical condi-
tions. Our results show a good agreement with experimental
data [6]. Firstly we analyze the effect of the pulse duration
on the time evolution of the carrier temperatureTe, as well as
on the main interaction frequencies,i.e., e-e, e-ph emission,
and e-ph absorption;z, ν+, andν− respectively. In Fig. 1
(upper) we showTe(t) for an instantaneous pulsetp = 0 ps
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FIGURE 1. Time evolution of the effective carrier temperatureTe

and the kinetic temperature obtained from the mean energy in units
of K, 2〈ε〉/3kB. The time evolution of the main ECFs are shown
in the lower part. The pulse duration is for upper figuretp = 0 ps
and for lower figuretp = 1 ps.

which excitesN = 1017 cm−3 electrons at an energy le-
vel ip = 4. We have also plotted the behavior of the kinetic
temperature defined by2〈ε〉/3kB. We show the behavior of
these quantities since the pulse starts, until times well above
the thermalization condition is reached. We assume in this
calculation a lattice temperatureTL = 10 K and take from
the literature a commonly used value of the damping cons-
tant for the LO-phononsτLO = 12 ps. Notice that the re-
sulting thermalization time ist∗ = 0.26 ps (indicated by an
arrow in the Figure). In the lower part of Fig. 1 (upper figure)
appears the time evolution of the main ECFs during this re-
laxation process. In Fig. 1 (lower) we show these quantities
for a pulse of finite durationtp = 1 ps. In this case we ob-
tain t∗ = 0.65 ps (also indicated by an arrow in the Figure).
From the comparison of these Figures we may conclude that
the pulse duration has a clear influence on the general cha-
racteristics of these quantities, namely, the pulse duration
modifiest∗ andT ∗e . Thus, this is one of the external variables
which determines the interaction mechanisms and their rela-
tive importance in the thermalization process of the CDF. The
evolution of the main ECFs provide detailed information, at
every stage of the relaxation process, about the relative inci-
dence of the main collision mechanisms in the kinetics of the
carrier system. We wish to recall here that we are considering

FIGURE 2. Temperature and time of thermalizationvs.pulse dura-
tion for two values of the excitation energy level. (—–) correspond
to ip = 4 and (- - -) corresponds toip = 10. The carrier concentra-
tion is N = 1017 cm−3. The scale fort∗ is at the right axis of the
graph.

in our treatment screening and phonon population effects. We
notice that thee-e ECF varies rather slightly along the period
of time considered, but the ECFs corresponding toe-ph inter-
action exhibit more pronounced variations. Notice the semi-
logarithmic scale of the graphics. In Fig. 1 (lower) one can
observe a clear abrupt change in the time evolution of the
electronic temperature at the time when the pulse ends. We
now restrict our analysis to the thermalization process and,
on the basis of the behavior of the ECFs in this stage, we
discuss the effect oftp and other external parameters onT ∗e
andt∗.

Figure 2 shows the changes which the pulse duration in-
duces onT ∗e and t∗. We consider here a carrier population

N = 1017 cm−3, a lattice temperatureTL = 10 K, and
two energy levels of excitationip = 4 and ip = 10. No-
tice that the scale fort∗ appears on the right hand side of the
graphs. We observe that bothT ∗e andt∗ reach higher values
for ip = 10 than they do forip = 4, this is so all along
the interval oftp. This result is easily explained if we realize
that for ip = 10 the carrier system receives a higher excess
energy than it does forip = 4, it leads the carrier system to
reach, comparatively, a higher value ofT ∗e and due to the also
relatively larger number of energy states accesible to the car-
riers, the thermalization condition requires a longer time. The
other aspect of the Figures worthy of mention is the differen-
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FIGURE 3. T ∗e andt∗ as a function of the lattice temperatureTL

for N = 1017 cm−3 and two pulse durationstp = 1 ps (—–)
andtp = 10 ps (- - -).

ce between the behavior ofT ∗e and t∗ in the region of low
values oftp, for bothip = 4 andip = 10. While t∗ increases
with tp to reach a maximum value and then decreases,T ∗e de-
creases monotonously. This last asymptotic behavior would
correspond to the values of time and temperature of therma-
lization that the system would reach in the event of a CW
laser mode experiment in which the same rate of generation
is kept during a long time,i.e., tp →∞. Again here the larger
energy in excess received by the carriers and the large energy
of states of the system withip = 10 explain the correspond-
ing larger value ofT ∗e andt∗, in comparison to the respective
results forip = 4.

The carrier population at the lowest level in the conduc-
tion band governed by Eq. (19) has an important role in the
thermalization process [14]. The shoulder shown in the be-
havior of t∗ as a function of the pulse durationtp, is caused
predominantly by two aspects of the carrier kinetics. One of
them is the time necesary to form, in the lowest level, a car-
rier population, which in the thermalized condition must ex-
ponentially decay for increasing energies. The other aspect is
the rate of carrier generation at the level of energyip, which
in the thermalized condition should be small enough in order
that this generation at each step becomes included in the error
tolerance in the fitting.

Figure 3 shows how the values oft∗ andT ∗e change with
the lattice temperatureTL. We consider here two different
pulse durationstp = 1 ps (continuous line) andtp = 10 ps
(dashed line), an excitation energyip = 4 and a carrier con-

FIGURE 4. T ∗e andt∗ vs.energy level of excitationip for the same
pulses as in Fig. 3.

centrationN = 1017 cm−3. We observe that the lattice tem-
perature has a rather mild effect on the thermalization pro-
cess. According to the behavior of the ECFs during the ther-
malization process (Fig. 1), the major influence must come
from phonon absorption events, whose contribution is larger
for higherTL values, this is so, because it propitiates a high
LO-phonon population in such a way that, comparatively to
the phonon emission, phonon absorption increases its parti-
cipation in the kinetics of the carrier system.

In Fig. 4, for the same pulses as in Fig. 3, we have de-
picted our results fort∗ andT ∗e as a function of the energy of
excitationip. The dashed curves correspond totp = 10 ps.
The non-linear nature of thee-e interaction is reveled in these
results. We observe that a general behavior of both quanti-
ties is that, they increase with increasing values of the ex-
citation energy, however, this behavior is non-monotonic.
The dependence of the carrier temperature upon the carrier
concentration and upon the energy of excitation have been
studied since the70’s decade. We have studied this depen-
dences theoretically. In particular we have found that strong
changes in the CDF, associated with the non-linear nature of
thee-e interaction, can be induced by varying the excitation
energy [18]. The abrupt change inT ∗e andt∗ aboutip = 14
is a manifestation of this sensitive dependence. There has
been in the literature some discussion regarding to this point.
In particular, this phenomenon has been analized as a phase
transition like behavior of the carrier population in the lowest
level of energy [14].
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FIGURE 5. Dependence ofT ∗e and t∗ on the carrier concentra-
tion. Energy of excitationip = 4 and pulses oftp = 1 ps (—–)
andtp = 10 ps (- - -).

In Fig. 5 we show the dependence ofT ∗e and t∗ on the
carrier concentration. We also consider here two pulses of
durationtp = 1 ps, continuous lines, andtp = 10 ps, dashed
lines, an energy level of excitationip = 4, and a lattice
temperatureTL = 10 K. The non-linear dependence oft∗

and T ∗e upon the carrier concentration is clearly exhibited.
Notice that for carrier concentrations larger than1017 cm−3

the screening effects begin to be noticeable. Screening turns
thee-e interaction less effective in thermalizing the CDF and
reduces the rate at whiche-ph scattering takes out energy
from the electronic system, in this way, bothT ∗e and t∗ in-
crease with the carrier concentration.

5. Comments and remarks

The criterion we have applied here to defineT ∗e and t∗ by
means of the expression (21) may require some improvement.

We think that the least squares fitting to an exponential func-
tion, although it resembles an experimental procedure, the
included inherent error could be the origin of some of the un-
even behavior we observe in various of our results. However,
the agreement of our results in the description of the cool-
ing and the steady state processes in hot electron systems [6],
with the experimental data, provides support to our theoreti-
cal model to describe the ultra-fast phenomena which lead a
photo-generated carrier population to reach the thermalized
condition. The reported experimental and theoretical results
on the subject of the kinetics of the thermalization [2] also
support our definition. One of the advantages of our “kinetic”
approach is that, due to the fact that ECFs depend only on the
band structure of the system and consequently on the system
dimensionality, it can be applied to study some ultra-fast phe-
nomena in systems of reduced dimensionality and also sys-
tems with a small number of particles. In fact we have applied
these theoretical framework to study some transport phenom-
ena in mesoscopic semiconductor heterostructures [17]. An
additional interesting characteristic of this theoretical proce-
dure is that, the required numerical calculations are not at all
expensive. All the results we present in this paper can be ob-
tained in a few minutes in an ordinary PC. In our analysis we
have focused our attention to the role that the main interac-
tion mechanisms play, however, the inclusion of some other
scattering processes in the kinetics of the system is a simple
task in this theoretical scheme [6].

In conclusion, we have presented a detailed analysis of
the thermalization process in terms of the relevant external
parameters,i.e., laser pulse duration, energy of the photoex-
citation, intensity of the photoexcitation, and lattice tempera-
ture. We defined two physical parameters inherent to the time
evolution of the system on which the analysis of thermaliza-
tion have been done, the thermalization time and temperature.
We have found that the lattice temperature has a neglegible
influence onT ∗e andt∗. The other three external parameters
clearly influence the thermalization process.
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