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Tricritical behavior in stationary double diffusive convection with cross diffusion
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We derive an amplitude equation for the stationary instability for the isothermal double diffusive system with cross diffusion. A quintic term
is computed in terms of rescaled cross-diffusion constants. This quintic term is stabilizing in the vicinity of the tricritical point. The existence
of a tricritical point indicates the presence of a hysteresis loop whose parameters are also presented.

Keywords:Hydrodynamic stability; convection.

Derivamos una ecuamh de amplitud para la inestabilidad estacionaria del sisteméxisimo doble difusivo con difuén cruzada. Se calcula
un trmino a quinto orden ertminos de las constantes re-escaladas de difusuzada. Estetmino es estabilizador en la vecindad del
punto triciitico. La existencia de un punto tritico indica la presencia de un ciclo de kisisis, cuyos pametros se presentan en esta carta.

Descriptores:Estabilidad hidrodiamica; convecdéin.

PACS: 47.20.Bp; 47.20.Ky

1. Introduction. It has been shown that since the Lewis number can be varied
between the value8.1 to nearlyl, these two points can be
The study of the dynamics of fluid layers in which there aremade well separated in the Rayleigh numBgr [4]. Hence
gradients of two properties with different molecular diffusiv- isothermal double diffusive convection in a Hele-Shaw cell is
ities is known as double diffusive convection. The compo-a promising system in which is feasible to experimentally in-
nents most commonly used in these systems have been heaistigate its dynamics near these points. This is not the case
and salinity []. However, experiments performed a few for other double diffusive systems at room temperature where
years ago by Predtechenskyal. are isothermal and con- these points are very close to each other in their correspond-
vective flow is driven by imposed vertical concentration gra-ing parameter spaces]f
dients of two species with different diffusion constanty. [ It is known that amplitude equations can help us model
Convective motion takes place in a very thin Hele-Shaw celthe occurrence and evolution of instabilities near the onset of
of length L, and height. In this system, a fixed concentra- convection. An analysis of the bifurcations presented in this
tion of fast diffusing speciesy, is imposed at the top of the system was carried out recently][ Nonetheless, cross dif-
Hele-Shaw cell (where the concentration of the slow diffus-fusion was neglected. A comparison between the measured
ing species vanishes), and a fixed concentration of a slow ditraveling wave frequency, at the onset of convection and
fusing species;, is imposed at the bottom of the cell (where the predicted frequency of linear stability analysis without
the concentration of the fast species is zero). The novel celiross-diffusion was made in Ref. 2. This comparison con-
employed by Predtechensky in the experiment provided thesitrmed qualitatively the square root dependences@fwith
well defined boundary conditions for the concentrations atther,; however, there was a deviation between experimental
top and bottom of the cell. The resultant density gradient forand predicted frequency that may be due to cross diffusion
the slow diffusive species was stabilizing, while that for theeffects, as Predtechensky suggeste]. [A study of how
fast diffusing species was destabilizing. cross diffusion affects the onset of convection was recently
As in thermosolutal 1] and binary mixture convection made p]. In particular the location of the tricritical point
[3], isothermal double diffusive convection exhibits a rich va- along the stationary branch was found in terms of rescaled
riety of bifurcation phenomena. Above a critical value of the cross-diffusion constants. The existence of a tricritical point
solutal Rayleigh number for the fast diffusing soluitg, sta-  indicates that there may be a hysteresis loop along the sta-
tionary convection arises depending on the value of the saionary branch T]. In this letter, we derive a fifth order am-
lutal Rayleigh number for the slow diffusing soluks. The  plitude equation using a perturbation scheme. This allows
system also presents a codimension 2-point (CTP) bifurcads to pin down the sign and magnitude of this quintic term
tion where the stationary and oscillatory instabilities collide.and to roughly determine the expected amount of hysteresis
Along the stationary branch, there is a tricritical point (TCP).in the vicinity of the TCP. Thereby it is possible to predict the
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crossover from critical behaviorl? ~ e) to tricritical behav- 3. Linear stability analysis

ior (A% ~ ¢'/2) with € = (R; — R¥:)/ Ry, a prediction that . B _ . .

may be experimentally tested. The goal of linear stability theory is to ascertain when a given
state of a system, in our case the conductive state, is unstable
to a small perturbatiod. Linear stability analysis yields the
conditions under which the system will undergo a transition
to a convective state. We assume periodicity in the horizontal

direction, and vertical velocity vanishes at the botian= 0)

The basic equations of motion are the continuity and theyq the togf» = 1) of the cell. Thus the eigenfunctions read
Navier-Stokes equation together with the diffusion equations

for the concentrations. tb/d << 1 (wherew is the width iA exp(—igr)
of the cell) then the system can be considered 2-dimensional, ) .

9 o L : = T¢(z,2) = = | Bexp(—igx) | exp(At)sin(7z) + c.c., (3)
and the termv 7“ @ appearing in the Navier Stokes equation C exp(—ig)
can be replaced by 12vii/w? [8] (v is the kinematic viscos- PATe
ity). The Rayleigh numbers for the slow £ s) and for the  Using¢, linear stability analysis yields a dispersion relation
fast ¢ = f) species are defined By; = a;ciogdw?/12vDy; from which the stationary and oscillatory critical Rayleigh
whereg is the acceleration due to gravity, andthe deriva-  numbers are found to bes][
tive of the logarithm of the density with respect to the con-

2. Equations of motion

centration deviatiorr; from the conduction profile. In the . Ro(1 —7ps) . k(T — Tay7ys)
conducting state, the fluid is at rest, and the dimensional fe = T Tof o] (4)
concentrations:, and ¢y depend linearly upon the dimen- : °

sional vertical coordinatee as ¢, = c4 (1 — 2/d) and osc k

>lona I > C . ?0( Z/) Rfc — Rs+7(1+7) (5)
¢r = cs0(2/d). We non-dimensionalize the equations as q

in Ref. 9. The rescaled cross-diffusion constants are degeres? — ¢2 + 72, The critical wave number for both insta-
fined asrys = 7 = Dys/Dyy, 7ps = Dysay/Dyras, @and  ilities isq = 7. The codimension-2 point bifurcation occurs

Tsf = Dsjas/Dyray, 7pp = 1. 7 is the ordinary Lewis  yhere both instabilities collide. In parameter spéBe, R ),
number, and);; are dimensional-diffusion constants; de- i js given by ‘
scribes the flow of the species$’‘due to the gradient of the

species 4”. Even though there is an Onsager relatiot0][

between these off-diagonal elements, it seems there is no rel- RS
evant thermodynamics derivative matrix].] As a result,

these cross-diffusion terms were introduced as independent R;? 42 . %

parameters in Ref. 2. L= 7+ 7oy — 75

The typical value of the modified Schmidt number= The frequency at onset of the traveling waves is
12vd? /D¢ sw? for the different cells and fluids used in

Predtechenskegt al's is of the orderi0° [2]. Therefore, we 5 o A )
work with the hydrodynamic equations in the limit efgo- wo=q"Rs(L=7+7sp =7y " (rap (14+7=745)=7%) . (8)
ing to infinity. The basic dimensionless nonlinear equationsyhich vanishes at the CTP as can be easily verified.

for the deviations from the conductive state in the Oberbeck-

I[BS;]Jussmesq approximation with cross-diffusion terms read4. Amplitude equation

:47r27'2 — Tsf(1+7 —7f5)
1—74+ 75 — 755

1+ 7ps(Tsp —7—1)

(6)

Amplitude equations are simplified mathematical models that
describe the slow spatial and temporal variations of the origi-

v? —0; —0; R 0 nal variables that characterize any given system near critical-
R0y  —T2 40 —7yv? |6=| J(1ico) | (D) ity. They help us to determine the nature of the different bi-
—Ri0y  —TpsV' — VPO J(,cy) furcations and capture the essential dynamics near threshold.
A set of third order amplitude equations corresponding to the
where stationary, oscillatory and codimension-2 point bifurcations
was derived for isothermal double diffusive convection with
v cross diffusion terms included in Ref. 6. For the stationary
a,2)=| e |, (2) instability this equation reads
C
! oA = A — g3 Al AP, (©)

¥ being the stream function, arg andc; the deviations of ~ wheree = (R;. — Rj;)/R5 is the parameter of the tran-
the concentrations from the conductive profil f, g) isthe  sition, andr, is the relaxation time. If we write the com-
Poisson bracket in the — z variables. plex amplitude of the stream function ds= A exp(i6), we
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find thatdd/dt = 0 and thatA satisfies (9). By introducing numberR; in terms of a small parameteras follows:

B(t) = A2(t), (9) acquires the fordB/dt = aB + bB>

which is a Bernoulli’s equation whose solution reads , A

B(0) exp(2et /) Ry = R¥, +°Ry + 'Ry + ..., (11)
B(0)gs(exp(2¢et/70) — 1) + €’
Fore < 0, B(t) — 0 ast — oo, butfore > 0, B(t) = A* —
€/gs3 ast — oo. Therefore, when the asymptotic solution is and replace; by 728;. Inserting these expansions into Eq.
not the trivial one, andgis > 0 a nontrivial stable solution (1), we find a series of linear equations at different orders in
exists fore > 0, and the bifurcation is called forwards or su- ;, whose integrability condition involves the solution of the
percritical, whereas if; < 0 a nontrivial unstable solution adjoint of the linear operator1]]

exists fore < 0 and the bifurcation is called backwards or

subcritical. The point at which there is a shift from supercrit-

ical to subcritical bifurcation is known as the tricritical point. v? —0y — 0y

We actually do not need to know the explicit solution of (9) Lo = R, -1V TV | (13)

in order to find out thatd> = ¢/g3 we just have to consider —R30, —1sv7 —V?

the steady state of (9), namelyl — g3 A|A|?> = 0. Thus non- .

linear coefficientg; determines the bifurcation behavior of The equation at ordey is £o{1 = 0 and has the solution
the system along the steady branch. In order to compute thg o< exp(—imz)sin(mz). At second order we find that
coefficientsy; andry, we expand the fields and the Rayleigh {2 o sin(27z). To third order, the integrability condition

| yields Eq. (9), with the coefficientg andr, given by ]

B(t) = (10)

€ ==& A+ S| AP+ PG AlAP+ . +ec), (12)

N =

1
16(T — s, )(T — TsfTys)

g3 = [RS(1+T)(—1+T+TfS—TSf)+

AP 7% — 27y 7 (Tps — DTog + Top (=14 75 = To5755)]] (14)

(1= 756)(Rs + 7o RY) + (755 — 7)(TRYL 4 74 Rs)
0 = - 2 Pss : (15)
22 R (Tsp — T)(TofTps — T)

The tricritical point reads

Rtc — An? [_TS + 7—27—5f + T(Tsf - 27—5fo5) + [1 + Tfs(_]' + TSf)]TSf] (16)
3 A4+7)(—14+7+7Tps — Tsf)

Thus forR, < R, g5 is positive and the bifurcation is su-
percritical and stable. Otherwise the bifurcation is subcritica|

and unstable. The existence of this unstable branch indicat . . .
that a hysteretic loop could be traced by increasing and d§ Hysteresis loop in the stationary branch

creasing: around zero . o ~ Sincegs < 0 for R, > R, there is a hysteresis loop which
In Ref. 2, ther;;'s were found by fitting the theoretical q,1d be traced by varyin,; aroundR3; of the stationary
frequency to the experimentally determined frequency. Theygnch. AsR; is increased, the system will remain in the
values found are- = 0.58, 7.y = 0.7and7;, = 0.35  conductive state as long @& < R3. WhenR; > R%:
which correspond to NaCl and glycerol used as fast- angonyective motion will begin. If?; is then decreased, con-
slow-diffusing solutes respectively. With Egs. 16 and 6 theyective flow will stop at the turning poinRj}’ < R (or
separation between the CTP and the TCP can be obtained @'quiva|ent|y at a certain,, < 0) An approximate value of
terms of cross diffusion constants, namely, this turning point can be found by adding a quintic term to
the amplitude equation (9), so that we will havd /dt =
€A — gsA|A? — gsA|AJ%. In order to computes, we have
to go to fifth order in the perturbation scheme of last section.
| After atedious calculation we obtain thatat the TCP reads

RC2 _ Rt(: — 47‘[‘2 (T B TSf)(TS.foS B T) ) (17)
s s A4+7)(—14+7—Tg5 +7ps)

B 3A+7) (1474155 — Tsy)
640(T — 755 ) (T — TfSTSf)( -1+ T]%STSf +71rs(1+ 7472 — 2755 — TTsf))

g5 (18)
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In the limit 7,¢, 7¢s — 0, (18) agrees with the the quintic their vicinity should be experimentally accessible. In this pa-
term computed in Ref. 4 without cross diffusion, as it shouldper we computed a quintic coefficient of the amplitude equa-

be. tion in terms of cross diffusion constants which had been ne-

Considering the steady state of the fifth order amplitud equaglected so far. The quintic term allows us to roughly deter-

tion, one is left with mine the expected amount of hysteresis in the vicinity of the
€ = g3 A% + gs AL (19) TCP. It also allows us to predict the crossover from critical

behavior(A? ~ ¢) to tricritical behavior(4% ~ €!/2) with
Fromde/0.A = 0, one obtains the amplitude of the turning € = (R — R§:)/R5;, a prediction that should be feasible to

point test experimentally.

2 s
(A = 32, (20)

which is the minimum value of the stable branch

g3 1 [1g937%  d4e
A= Iy B+ (21)
295 2\ lgs gs [ "

from which the system jumps to the conductive state,at
which can be calculated by using,, in the Eqn. (19), one
finds

2
93
€p = ———

24,

e (22) N ~— P

Sincegs < 0 for R, > R, Eqn. (20) indicates thats
should be positive as well. In the limit s, /s — 0, it is \
evident thatys = 3(1 — 72)/64072 is positive. It is known )
thatr;, andr,; are smaller tham, a close inspection of (18) €
indicates thays is indeed positive. Given the valuesof, €y
one could computg; andgs, and find the values of the hys- . . o Hysteresis loop diagram. AB; approaches?}: (or
teresis !oop parametets, and A, given by (22) and _(20) equivalently, as a negativeapproaches zero) the systemcwill re-
respectively. These parameters provide a rough estimate Qfain in the stable conductive state. Whap > R (or e be-

the amount of hySterfaSiS expect(_ed in an experiment. comes positive) the system will jump to the convective state with
Figure 1 summarizes the main parameters of the hysteremplitude2.4,. If R; is then decreased, convection will stop at
sis loop which we have just computed. the turning point,, when it has an amplitudd,,, not ate = 0. In

the figure, solid lines represent stable states, whereas dashed lines

. represent unstable states.
6. Conclusions P

The location of the TCP for the stationary branch and theacknowledgments

CTP had already been found witlt] fand without [] cross

diffusion. It has been pointed out that since these points aré/e acknowledge financial support from the Coordibaale
well separated in parameter space, a study of the dynamics Investigacbn Cientfica of the University of Michoacan.

1. H.E. Huppert and D.R. Moord, Fluid Mech.78 (1976) 821. 8. H. Lamb, Hydrodynamics 6th ed. (Cambridge University
2. A.A. Predtechensky, W.D. McCormick, J.B. Swift, A.G. Ross- Press, Cambridge, 1932), p. 582.
berg, and H.L. Swinneyhys. Fluids5 (1994) 3923. 9. A.G. Rossberg, Master’s thesis, University of Texas (1994).
3. W.Sctopf and W. ZimmermanrPhys. RevE 47(1993) 1739. 145 | E. Reichl, A Modern Course in Statistical Physi¢gniver-
4. R. Becerril and J.B. SwiftPhy. RevE 55, (1997) 6270. sity of Texas Press, Austin, 1980), Chap. 14.
5. W.Sclopf and W. ZimmermanrEurophys. Lett8, (1989) 41. 11, M.C. Cross and P.C. Hohenbergev. Mod. Phys65, (1993)
6. R. Becerril,Nuovo Cim115 B, (2000) 1329. 851.
7. P. Manneville, Dissipative Structures and Weak Turbulence 12. H. Brand, P.C.Hohenberg, and V. SteinbelRlys. Re\A 30
(Perspectives in Physics, 1990), Chap. 5. (1984) 2548.

Rev. Mex. 5. 48 (2) (2002) 88-91



	001: 


