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Tricritical behavior in stationary double diffusive convection with cross diffusion
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We derive an amplitude equation for the stationary instability for the isothermal double diffusive system with cross diffusion. A quintic term
is computed in terms of rescaled cross-diffusion constants. This quintic term is stabilizing in the vicinity of the tricritical point. The existence
of a tricritical point indicates the presence of a hysteresis loop whose parameters are also presented.
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Derivamos una ecuación de amplitud para la inestabilidad estacionaria del sistema isotérmico doble difusivo con difusión cruzada. Se calcula
un t́ermino a quinto orden en términos de las constantes re-escaladas de difusión cruzada. Este término es estabilizador en la vecindad del
punto tricŕıtico. La existencia de un punto tricrı́tico indica la presencia de un ciclo de histéresis, cuyos parámetros se presentan en esta carta.

Descriptores:Estabilidad hidrodińamica; convección.
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1. Introduction.

The study of the dynamics of fluid layers in which there are
gradients of two properties with different molecular diffusiv-
ities is known as double diffusive convection. The compo-
nents most commonly used in these systems have been heat
and salinity [1]. However, experiments performed a few
years ago by Predtechenskyet al. are isothermal and con-
vective flow is driven by imposed vertical concentration gra-
dients of two species with different diffusion constants [2].
Convective motion takes place in a very thin Hele-Shaw cell
of lengthL, and heightd. In this system, a fixed concentra-
tion of fast diffusing speciescf0 is imposed at the top of the
Hele-Shaw cell (where the concentration of the slow diffus-
ing species vanishes), and a fixed concentration of a slow dif-
fusing speciescs0 is imposed at the bottom of the cell (where
the concentration of the fast species is zero). The novel cell
employed by Predtechensky in the experiment provided these
well defined boundary conditions for the concentrations at the
top and bottom of the cell. The resultant density gradient for
the slow diffusive species was stabilizing, while that for the
fast diffusing species was destabilizing.

As in thermosolutal [1] and binary mixture convection
[3], isothermal double diffusive convection exhibits a rich va-
riety of bifurcation phenomena. Above a critical value of the
solutal Rayleigh number for the fast diffusing soluteRf , sta-
tionary convection arises depending on the value of the so-
lutal Rayleigh number for the slow diffusing soluteRs. The
system also presents a codimension 2-point (CTP) bifurca-
tion where the stationary and oscillatory instabilities collide.
Along the stationary branch, there is a tricritical point (TCP).

It has been shown that since the Lewis number can be varied
between the values0.1 to nearly1, these two points can be
made well separated in the Rayleigh numberRs [4]. Hence
isothermal double diffusive convection in a Hele-Shaw cell is
a promising system in which is feasible to experimentally in-
vestigate its dynamics near these points. This is not the case
for other double diffusive systems at room temperature where
these points are very close to each other in their correspond-
ing parameter space [5].

It is known that amplitude equations can help us model
the occurrence and evolution of instabilities near the onset of
convection. An analysis of the bifurcations presented in this
system was carried out recently [4]. Nonetheless, cross dif-
fusion was neglected. A comparison between the measured
traveling wave frequencyω0 at the onset of convection and
the predicted frequency of linear stability analysis without
cross-diffusion was made in Ref. 2. This comparison con-
firmed qualitatively the square root dependence ofω0 with
Rs; however, there was a deviation between experimental
and predicted frequency that may be due to cross diffusion
effects, as Predtechensky suggested [2]. A study of how
cross diffusion affects the onset of convection was recently
made [6]. In particular the location of the tricritical point
along the stationary branch was found in terms of rescaled
cross-diffusion constants. The existence of a tricritical point
indicates that there may be a hysteresis loop along the sta-
tionary branch [7]. In this letter, we derive a fifth order am-
plitude equation using a perturbation scheme. This allows
us to pin down the sign and magnitude of this quintic term
and to roughly determine the expected amount of hysteresis
in the vicinity of the TCP. Thereby it is possible to predict the
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crossover from critical behavior (A2 ∼ ε) to tricritical behav-
ior (A2 ∼ ε1/2) with ε = (Rf −Rss

fc)/Rss
fc, a prediction that

may be experimentally tested.

2. Equations of motion

The basic equations of motion are the continuity and the
Navier-Stokes equation together with the diffusion equations
for the concentrations. Ifω/d << 1 (whereω is the width
of the cell) then the system can be considered 2-dimensional
and the termν 52 ~u appearing in the Navier Stokes equation
can be replaced by−12ν~u/w2 [8] (ν is the kinematic viscos-
ity). The Rayleigh numbers for the slow (i = s) and for the
fast (i = f ) species are defined byRi = αici0gdw2/12νDf ;
whereg is the acceleration due to gravity, andαi the deriva-
tive of the logarithm of the density with respect to the con-
centration deviationci from the conduction profile. In the
conducting state, the fluid is at rest, and the dimensional
concentrationŝcs and ĉf depend linearly upon the dimen-
sional vertical coordinatêz as ĉs = cs0(1 − ẑ/d) and
ĉf = cf0(ẑ/d). We non-dimensionalize the equations as
in Ref. 9. The rescaled cross-diffusion constants are de-
fined asτss ≡ τ = Dss/Dff , τfs = Dfsαf/Dffαs, and
τsf = Dsfαs/Dffαf , τff = 1. τ is the ordinary Lewis
number, andDij are dimensional-diffusion constants.τij de-
scribes the flow of the species “i” due to the gradient of the
species “j”. Even though there is an Onsager relation [10]
between these off-diagonal elements, it seems there is no rel-
evant thermodynamics derivative matrix [2]. As a result,
these cross-diffusion terms were introduced as independent
parameters in Ref. 2.

The typical value of the modified Schmidt numberσ =
12νd2/Dffw2 for the different cells and fluids used in
Predtechenskyet al’s is of the order105 [2]. Therefore, we
work with the hydrodynamic equations in the limit ofσ go-
ing to infinity. The basic dimensionless nonlinear equations
for the deviations from the conductive state in the Oberbeck-
Boussinesq approximation with cross-diffusion terms read
[9]




52 −∂x −∂x

Rs∂x −τ 52 +∂t −τsf52

−Rf∂x −τfs52 −52 +∂t


~ξ=




0
J(ψ, cs)
J(ψ, cf )


, (1)

where

~ξ(x, z) =




ψ
cs

cf


 , (2)

ψ being the stream function, andcs andcf the deviations of
the concentrations from the conductive profile.J(f, g) is the
Poisson bracket in thex− z variables.

3. Linear stability analysis

The goal of linear stability theory is to ascertain when a given
state of a system, in our case the conductive state, is unstable
to a small perturbation~ξ. Linear stability analysis yields the
conditions under which the system will undergo a transition
to a convective state. We assume periodicity in the horizontal
direction, and vertical velocity vanishes at the bottom(z = 0)
and the top(z = 1) of the cell. Thus the eigenfunctions read

~ξ(x, z) =
1
2




iA exp(−iqx)
B exp(−iqx)
C exp(−iqx)


 exp(λt) sin(πz) + c.c., (3)

Using ~ξ, linear stability analysis yields a dispersion relation
from which the stationary and oscillatory critical Rayleigh
numbers are found to be [6]

Rss
fc =

Rs(1− τfs)
τ − τsf

+
k4(τ − τsfτfs)

q2(τ − τsf )
, (4)

Rosc
fc = Rs +

k4

q2
(1 + τ) (5)

Herek2 = q2 + π2. The critical wave number for both insta-
bilities isq = π. The codimension-2 point bifurcation occurs
where both instabilities collide. In parameter space(Rs, Rf ),
it is given by

Rc2
s = 4π2 τ2 − τsf (1 + τ − τfs)

1− τ + τsf − τfs
, (6)

Rc2
f = 4π2 1 + τfs(τsf − τ − 1)

1− τ + τsf − τfs
. (7)

The frequency at onset of the traveling waves is

ω2
o =q2Rs(1−τ+τsf−τfs)+k4

(
τsf (1+τ−τfs)−τ2

)
. (8)

which vanishes at the CTP as can be easily verified.

4. Amplitude equation

Amplitude equations are simplified mathematical models that
describe the slow spatial and temporal variations of the origi-
nal variables that characterize any given system near critical-
ity. They help us to determine the nature of the different bi-
furcations and capture the essential dynamics near threshold.
A set of third order amplitude equations corresponding to the
stationary, oscillatory and codimension-2 point bifurcations
was derived for isothermal double diffusive convection with
cross diffusion terms included in Ref. 6. For the stationary
instability this equation reads

τ0∂tA = εA− g3A|A|2, (9)

whereε = (Rfc − Rss
fc)/Rss

fc is the parameter of the tran-
sition, andτ0 is the relaxation time. If we write the com-
plex amplitude of the stream function asA = A exp(iθ), we
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find thatdθ/dt = 0 and thatA satisfies (9). By introducing
B(t) = A2(t), (9) acquires the formdB/dt = aB + bB2

which is a Bernoulli’s equation whose solution reads

B(t) =
εB(0) exp(2εt/τ0)

B(0)g3(exp(2εt/τ0)− 1) + ε
, (10)

Forε < 0, B(t) → 0 ast →∞, but forε > 0, B(t) = A2 →
ε/g3 ast → ∞. Therefore, when the asymptotic solution is
not the trivial one, andg3 > 0 a nontrivial stable solution
exists forε > 0, and the bifurcation is called forwards or su-
percritical, whereas ifg3 < 0 a nontrivial unstable solution
exists forε < 0 and the bifurcation is called backwards or
subcritical. The point at which there is a shift from supercrit-
ical to subcritical bifurcation is known as the tricritical point.
We actually do not need to know the explicit solution of (9)
in order to find out thatA2 = ε/g3 we just have to consider
the steady state of (9), namelyεA− g3A|A|2 = 0. Thus non-
linear coefficientg3 determines the bifurcation behavior of
the system along the steady branch. In order to compute the
coefficientsg3 andτ0, we expand the fields and the Rayleigh

numberRf in terms of a small parameterη as follows:

Rf = Rss
fc + η2Rss

2 + η4Rss
4 + . . . , (11)

~ξ =
1
2
(η~ξ1A+η2~ξ2|A|2+η3~ξ3A|A|2+ . . .+c.c.), (12)

and replace∂t by η2∂T . Inserting these expansions into Eq.
(1), we find a series of linear equations at different orders in
η whose integrability condition involves the solution of the
adjoint of the linear operator [11]

L0 ≡



52 −∂x −∂x

Rs∂x −τ52 −τsf52

−Rss
fc∂x −τfs52 −52


 . (13)

The equation at orderη is L0
~ξ1 = 0 and has the solution

~ξ1 ∝ exp(−iπx) sin(πz). At second order we find that
~ξ2 ∝ sin(2πz). To third order, the integrability condition
yields Eq. (9), with the coefficientsg3 andτ0 given by [6]

g3 =
1

16(τ − τsf )(τ − τsfτfs)
[
Rs(1 + τ)(−1 + τ + τfs − τsf ) +

4π2[τ3 − τ2τsf + τ(τfs − 1)τsf + τsf (−1 + τfs − τsfτfs)]
]

(14)

τ0 = − (1− τfs)(Rs + τsfRss
fc) + (τsf − τ)(τRss

fc + τfsRs)
2π2Rss

fc(τsf − τ)(τsfτfs − τ)
. (15)

The tricritical point reads

Rtc
s =

4π2
[−τ3 + τ2τsf + τ(τsf − 2τsfτfs) + [1 + τfs(−1 + τsf )]τsf

]

(1 + τ)(−1 + τ + τfs − τsf )
(16)

Thus forRs < Rtc
s , g3 is positive and the bifurcation is su-

percritical and stable. Otherwise the bifurcation is subcritical
and unstable. The existence of this unstable branch indicates
that a hysteretic loop could be traced by increasing and de-
creasingε around zero [7].

In Ref. 2, theτij ’s were found by fitting the theoretical
frequency to the experimentally determined frequency. The
values found areτ = 0.58, τsf = 0.7 and τfs = 0.35
which correspond to NaCl and glycerol used as fast- and
slow-diffusing solutes respectively. With Eqs. 16 and 6 the
separation between the CTP and the TCP can be obtained in
terms of cross diffusion constants, namely,

Rc2
s −Rtc

s = 4π2 (τ − τsf )(τsfτfs − τ)
(1 + τ)(−1 + τ − τsf + τfs)

. (17)

5. Hysteresis loop in the stationary branch

Sinceg3 < 0 for Rs > Rtc
s , there is a hysteresis loop which

could be traced by varyingRf aroundRss
fc of the stationary

branch. AsRf is increased, the system will remain in the
conductive state as long asRf < Rss

fc. WhenRf > Rss
fc

convective motion will begin. IfRf is then decreased, con-
vective flow will stop at the turning pointRtp

f < Rss
fc (or

equivalently at a certainεtp < 0) An approximate value of
this turning point can be found by adding a quintic term to
the amplitude equation (9), so that we will havedA/dt =
εA − g3A|A|2 − g5A|A|4. In order to computeg5, we have
to go to fifth order in the perturbation scheme of last section.
After a tedious calculation we obtain thatg5 at the TCP reads

g5 =
3(1 + τ)(−1 + τ + τfs − τsf )

640(τ − τsf )(τ − τfsτsf )
(− 1 + τ2

fsτsf + τfs(1 + τ + τ2 − 2τsf − ττsf )
) (18)
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In the limit τsf , τfs → 0, (18) agrees with the the quintic
term computed in Ref. 4 without cross diffusion, as it should
be.
Considering the steady state of the fifth order amplitud equa-
tion, one is left with

ε = g3A2 + g5A4 (19)

From∂ε/∂A = 0, one obtains the amplitude of the turning
point

(Atp)2 =
−g3

2g5
, (20)

which is the minimum value of the stable branch

A2 = − g3

2g5
+

1
2

√[g3

g5

]2

+
4ε

g5
, (21)

from which the system jumps to the conductive state atεtp

which can be calculated by usingAtp in the Eqn. (19), one
finds

εtp = − g2
3

4g5
. (22)

Sinceg3 < 0 for Rs > Rtc
s , Eqn. (20) indicates thatg5

should be positive as well. In the limitτsf , τfs → 0, it is
evident thatg5 = 3(1 − τ2)/640τ2 is positive. It is known
thatτfs andτsf are smaller thanτ , a close inspection of (18)
indicates thatg5 is indeed positive. Given the values ofτij ,
one could computeg3 andg5, and find the values of the hys-
teresis loop parametersεtp andAtp given by (22) and (20)
respectively. These parameters provide a rough estimate of
the amount of hysteresis expected in an experiment.

Figure 1 summarizes the main parameters of the hystere-
sis loop which we have just computed.

6. Conclusions

The location of the TCP for the stationary branch and the
CTP had already been found with [6] and without [4] cross
diffusion. It has been pointed out that since these points are
well separated in parameter space, a study of the dynamics in

their vicinity should be experimentally accessible. In this pa-
per we computed a quintic coefficient of the amplitude equa-
tion in terms of cross diffusion constants which had been ne-
glected so far. The quintic term allows us to roughly deter-
mine the expected amount of hysteresis in the vicinity of the
TCP. It also allows us to predict the crossover from critical
behavior(A2 ∼ ε) to tricritical behavior(A2 ∼ ε1/2) with
ε = (Rf −Rss

fc)/Rss
fc, a prediction that should be feasible to

test experimentally.

FIGURE 1. Hysteresis loop diagram. AsRf approachesRss
fc (or

equivalently, as a negativeε approaches zero) the system will re-
main in the stable conductive state. WhenRf > Rss

fc (or ε be-
comes positive) the system will jump to the convective state with
amplitude2Atp. If Rf is then decreased, convection will stop at
the turning pointεtp when it has an amplitudeAtp, not atε = 0. In
the figure, solid lines represent stable states, whereas dashed lines
represent unstable states.
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