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Diffusion of a dipolar tracer in a salty surface
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The two dimensional translational and rotational diffusion coefficients of a dipolar tracer in a charged surface are determined with the
generalized Langevin equation approach. The electrolyte friction effect on the translational brownian movement displays a maximum as a
function of ionic strength showing similar trends to its three dimensional counterpart. However, its effect on the rotational motion is important
only at low and moderate salt concentration and negligible at high ionic concentration.
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Se determinaron los coeficientes de difusión en dos dimensiones de una trazadora dipolar en una superficie cargada con el enfoque de la
ecuacíon de Langevin generalizada. la fricción de electrolito en el movimiento browniano traslacional presenta un máximo como funcíon de
la intensidad íonica mostrando un comportamiento similar a su contraparte tridimensional. Sin embargo, el efecto de la fricción de electrolito
en el movimiento rotacional es importante sólo a concentraciones bajas o moderadas y es despreciable a alta concentracin iónica.

Descriptores:Difusión; electrolito; coloide; membrana.

PACS: 82.70.-y,61*,05.40.-a

1. Introduction

Diffusion properties of biopolymers and colloidal particles
with anisotropic interactions in charged interfaces and mem-
branes are of much current interest [1–7]. Due to the spa-
tial constraint on the particles to lie in a quasi bidimensional
film, the long range nature of the electrostatic interactions
among charged particles leads to unusual structural proper-
ties: imperfect shielding of the electric field in the normal
direction to the plane, and non-exponential screening by the
supporting electrolyte solution, to the field in the lateral di-
rection, in contrast to what occurs in a three dimensional en-
vironment [8]. The diffusion coefficient of a particle in con-
centrated solutions confined to a bidimensional geometry is
currently measured with the methods of fluorescence recov-
ery after photobleaching, and single particle tracking [2, 3].
These techniques allow to determine the effect of direct inter-
actions on tracer diffusion properties. In this work we study
the longtime translational and rotational diffusion of a bidi-
mensional dipolar tracer in an electrolyte solution of several
point like ionic species (brownian muticomponent plasma,
BMP) in a membrane, and determine the effect of the electro-
static interaction between the tracer and its electrical double
layer. We use the generalized Langevin equation approach
to calculate the friction contribution on the tracer∆ζ due
to direct interactions among particles [9]. This quantity is
given in terms of the dipole-ion pair correlation function ob-
tained at the Debye-Ḧuckel (DH) level from a solution of the
corresponding Poisson-Boltzmann equation for the BMP in
the anisotropic electric field of the dipolar particle. In this
approach, the correlation function is the static property that
embodies the non-exponential screening of ions confined to
planes. At this level of approximation our model system is

analytically soluble and we obtain explicit analytic expres-
sions for both the pair correlation function, and of the trans-
lational and rotational diffusion coefficients in terms of ionic
strength and dipole moment. The electrolyte friction effect
makes the translational friction on the tracer to display a max-
imum in terms of the ionic strength similar to the diffusion in
a bulk solution. However, for the rotational two dimensional
friction this effect is only important at low and moderate salt
concentration, and it is completely negligible at high salt con-
centration, where the tracer diffuses with its free rotational
diffusion constant value.

2. Debye-Ḧuckel theory of structural proper-
ties

In this section we define the model potential of the tracer, and
the charged membrane by a multicomponent electrolyte so-
lution at surface charge densityn̄α in an aqueous continuous
solvent of dielectric constantε. The two dimensional electro-
static potentials of anα-species point like ion of chargeqα in
the plane is

uα(r) =
qαln(r)

ε
, (1)

and we model the electrical dipolar tracer as a hard disc of
diameterσ:

φ(r) =
µµ̂ · r̂

εr
+ φHC(r), (2)

whereφHC(r) is infinite within the disc core that contains
the dipole and zero otherwise.
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The unit vector̂µ determines the orientation of the dipole
of magnitudeµ by an angleφ with respect to the field vector
positionr, wherer̂ = r/r andµ̂ · r̂ = cosφ. We consider a
Boltzmann’s probability distribution of ions

nα(r) = n̄αe−βqαψ(r), (3)

whereβ = 1/kBT , kB the Boltzmann’s constant,T the tem-
perature and

ψ(r) = φ(r) +
∑
α

∫
d2r′nα(r′)uα(|r− r′|). (4)

The Poisson-Boltzmann equation corresponding to the
source fields of Eqs. (1) and (2) is given by

ε∇2ψ(r) = −2π
∑
α

qαnα(r)− 2π∇ ·P(r), (5)

with P(r) = µ̄δ(r), µ̄ = µµ̂, δ(r) the Dirac’s delta function
in two dimensions. For a low charged surface we approxi-
mate the profile concentration Eq. (3) by its Debye-Hückel
limit nα(r) = n̄α[1 − βqαψ(r)]θ(r − σ), with θ(r − σ) the
Heaviside step function, and therefore Eq. (5) reduces to

∇2ψ(r) = e−βφHC(r)κ2ψ(r)− 2π

ε
∇ ·P(r), (6)

where the electroneutrality conditionΣαnαqα = 0 was used
andκ2 = 2πβ

∑
α n̄αq2

α/ε. The solution to this equation is
given in Appendix A, and leads to the effective potential

ψ(r)=

{
µκ
ε

K1(κr)µ̂·r̂
[κσK1(κσ)+ 1

2 (κσ)2K0(κσ)]
, r > σ

[−µκ
εσ

K0(κσ)r
[κσK0(κσ)+2K1(κσ)]+

µ
εr ]µ̂ · r̂, r ≤ σ,

(7)

with Kν the modified Bessel function of orderν. The pair
correlation functiong(r) of ions in the field of the dipolar
tracer isnα(r) = n̄αg(r), and the two dimensional Fourier
transform of the total correlation function, is given by

h(k)=g(k)−1=
2πiβµκ

ε

µ̂ · k̂
[κσK1(κσ)+ 1

2 (κσ)2K0(κσ)]

×[− kσ

k2+κ2
J1(kσ)K1(κσ)+

κσ

k2+κ2
J1(kσ)K2(κσ)], (8)

wherei =
√−1, k̂ = k/k (with the wave vectork of magni-

tudek = |k|), andJν the Bessel function of orderν. These
structural quantities will be used in the next section to de-
termine the electrolyte friction effect on the diffusion of the
tracer in the plane.

3. Longtime tracer diffusion

In this section we calculate the effect of the friction of the
electrolyte solution on the diffusion of the dipolar tracer. This

time-dependent friction∆
⇔
ζ (t) derives from the direct in-

teractions of the ions with the dipolar particle and leads to a

contribution to its bare frictionζ
⇔
0 at infinite dilution of the

supporting electrolyte, that is, in the absence of interactions.
The total direct forceF(t) and torqueT(t) on the tracer par-
ticle, exerted by the ions are, respectively

F(t) =
∑
α

∫
dr[∇ψα(r)]nα(r; t), (9)

and

T(t) =
∑
α

∫
dr[r×∇ψα(r)]nα(r; t), (10)

where nα(r; t) is the instantaneous local concentration
of ions with the equilibrium ensemble average
neq

α (r) ≡ < nα(r; t) >, andψα(r) = qαψ(r).
The translational and rotational motion of the tracer is

determined by its linear and angular velocitiesV(t), W(t),
respectively, as observed from a laboratory frame with ori-
gin at the center of mass of the tracer particle. The cartesian
components of the velocities coincide with the orientation of
the principal axis of the particle. Thus, the Langevin equa-
tion describing the diffusion of the tracer in solution can be
written exactly as a linear function of the instantaneous fluc-
tuations in the concentrationδnα(r; t) = nα(r; t) − neq

α (r)
as:

⇔
M ·d

⇒
V (t)
dt

= −ζ
⇔
0 · ⇒V (t) + f

⇒
0 (t)

+
∑
α

∫
dr[

⇒
∇ ψα(r)]δnα(r; t). (11)

This equation couples the dynamical quantities
d

⇒
V (t)/dt and δnα(r; t).

⇔
Mij = Mδij (i, j = 1, 2),

⇔
Mij = δijIi−2 (i, j = 3), with M, I1 being the mass and
principal moment of inertia of the tracer. The diffusion tensor

D
⇔
0 ≡ kBT/ζ

⇔
0 , with ζ

⇔
0
ij (i, j = 1, 2, 3), that turns out to be

diagonal with the nonzero componentsζ0
11 = ζ0

⊥, ζ0
22 = ζ0

‖ ,
ζ0
33 = ζ0

R, being the free friction coefficients coupling the

random white force and torque, grouped inf
⇒
0 (t), with the

generalized velocity
⇒
V (t) = (V(t),W(t)),

⇒
∇= (∇, r×∇).

The theory of fluctuations of linear irreversible thermody-
namics, leads to the general evolution equation forδnα(r; t)
as:
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∂δnα(r; t)
∂t

= [∇⇒neq
α (r)] ·V⇒(t)

−
∑

γβ

∫ t

0

dt′
∫

dr′
∫

dr′′Lαγ(r, r′; t− t′)

×σ−1
γβ (r′, r′′)δnβ(r′′; t′) + hα(r; t), (12)

with hα(r; t) being a fluctuation term with zero mean
that satisfies the fluctuation dissipation relationship
L(r, r′; t) = < h(r; t)h(r′; 0) >. In Eq. (12),σ−1 is
the inverse of the static correlation function ofδnα(r; 0):
σαβ(r, r′) = < δnα(r; 0)δnβ(r′; 0) >.

The solution of Eq. (12) can be written as

δnα(r; t) =
∑

β

∫
dr′χαβ(r, r′; t)δnβ(r′; 0)

+
∑

β

∫ t

0

dt′
∫

dr′χαβ(r, r′; t− t′)[
⇒
∇ neq

β (r)]· ⇒V (t′)

+
∑

β

∫ t

0

dt′
∫

dr′χαβ(r, r′; t− t′)hβ(r′; t′), (13)

with χ(t) being the propagator of Eq. (13) that satisfies

∂χαβ(r, r′; t)
∂t

=−
∑

γδ

∫ t

0

dt′
∫

r′′r′′′Lαγ(r, r′′; t− t′)

×σ−1
γδ (r′′, r′′′)χδβ(r′′′, r′; t′), (14)

with the initial conditionχ(0) = 1. By using Eq. (13) we
eliminate the variableδnα(r′; t) in Eq. (11) and we obtain
the generalized Langevin equation [9]

⇔
M ·d

⇒
V (t)
dt

= −ζ
⇔
0 · ⇒V (t) + f

⇒
0 (t)

−
∫ t

0

dt′∆
⇔
ζ (t− t′)· ⇒V (t′)+

⇒
F (t). (15)

In Eq. (15),
⇒
F (t) is a fluctuating generalized force de-

riving from the spontaneous departures from zero of the net
direct force exerted by the other particles on the tracer. It
groups a random force and torque on the tracer with zero
mean value, and time dependent correlation function given

by 〈⇒F (t)
⇒
F
†

(0)〉 = kBT∆
⇔
ζ (t), with the time dependent

friction contribution

∆
⇔
ζ (t) = β

∑

αβγ

∫
dr

∫
dr′

∫
dr′′[

⇒
∇ ψα(r)]χαβ(r, r′; t)

σβγ(r′, r′′)[
⇒
∇ ψγ(r′′)]. (16)

Equation (16) is an exact result for the dynamical fric-
tion on a nonspherical tracer diffusing in a host suspension
of particles of radially symmetric interactions, which for our
case in this manuscript, it is constituted by the BMP. We are
interested in the longtime friction coefficient obtained at the
diffusive regime

∆
⇔
ζ =

∫ ∞

0

dt ∆
⇔
ζ (t). (17)

In order to apply Eq. (17) we introduce an ap-
proximation for χ(t) = exp[

∫
dr′′L(r, r′′)σ−1(r′′, r′)t]

given by the homogeneous Fick’s diffusion approximation

Lαβ(r, r′) = δαβ

⇒
∇ ·D

⇔
0
α · neq

α (r)· ⇒∇ δ(r − r′), for the
instantaneous relaxation of the concentration of the spherical
particles in the external tracer’s electric field. Therefore, the

Fourier transform ofχαβ(k, t) = exp[−k2D
⇔
0
α n̄ασ−1

αβ (k)t].
The general expresions for the static friction coefficients
within the so-called homogeneous modified Fick’s approxi-
mation for the relaxation of ions in the tracer’s field [9] gives
the static translational friction

∆ζ =
kBT

(2π)2
∑
α

n̄α

D̄0
α

∫
d2kk̂k̂h(k)h(−k), (18)

and for the rotational motion

∆ζR=
kBT

(2π)2
∑
α

n̄α

D0
R

∫
d2k[k̂×∇kh(k)][k̂×∇kh(−k)], (19)

where∇k is the gradient operator,̄D0 = D0 + D0
CM ,

D0
CM = (D0

|| + D0
⊥)/2 for the tracer and we assumed

D0 ≡ D0
α for all ions. The modified diffusion constant

due to charge fluctuations isDγ = kBT/(ζ0
γ + ∆ζγ), where

γ = ‖ ,⊥ , R. Substitution of Eq. (8) into Eqs. (18) and (19)
lead to the total translational friction∆ζ = (∆ζ||+∆ζ⊥)/2:

∆ζ =
µ2

4εσ2D̄0
TRANSL(κσ)Z(κσ), (20)

with

TRANSL(x) =

[I2(x)K2(x) +
xI ′2(x)K2(x)

2
+

xI2(x)K ′
2(x)

2
]

×K2
1 (x)− xK2

1 (x)
2

[I ′1(x)K1(x) + I1(x)K ′
1(x)]

+2K1(x)K2(x)[I ′1(x)K1(x) + I1(x)K ′
1(x)]

+
K1(x)K2(x)

2
[xI ′′0 (x)K0(x) + I ′0(x)K0(x)

+2xI ′0(x)K ′
0(x) + xI0(x)K ′′

0 (x) + I0(x)K ′
0(x)], (21)
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and

∆ζR =
µ2

2εD̄0
ROT (κσ)Z(κσ), (22)

with

ROT (x) =
−K2

1 (x)
2x

[I ′1(x)K1(x) + I1(x)K ′
1(x)]

+(K1(x)K2(x)− xK2
2 (x)
4

)

×[
−I2(x)K1(x)

x2
+

I ′2(x)K1(x)
x

+
I2(x)K ′

1(x)
x

]

−xK2
2 (x)
4

d

dx
(
I1(x)K0(x)

x
), (23)

wherex = κσ. Iν is a modified Bessel function of or-
der ν. I ′ν(x) = dIν(x)/dx, I ′′ν (x) = d2Iν(x)/dx2,
and similarly for the other Bessel functions. Also
Z(κσ) = (κσ)4/[κσK1(κσ) + 1

2 (κσ)2K0(κσ)]. In Fig. 1
the functionsTRANSL(κσ)Z(κσ) and ROT (κσ)Z(κσ)
are plotted in terms ofκσ. Fig. 1a shows that∆ζ has a
maximum at aboutκσ ≈ 4.8 which leads to a minimum in
the translational diffusion coefficientD = kBT/(ζ0 + ∆ζ)
due to electrolyte friction, a feature also noticed in the three
dimensional version of this system [9]. Fig. 1b depicts
∆ζR as an increasingly damped function for increasing val-
ues of the ionic strength, such that at a high ionic concen-
tration the static rotational friction∆ζR becomes zero. That
is, for sufficiently high ionic concentrationκσ ≥ 2 the rota-
tional diffusion coefficientDR = kBT/(ζ0

R + ∆ζR) of the
dipolar tracer is exactly the same as its free diffusion coef-
ficient D0

R = kBT/ζ0
R. Thus, electrolyte friction becomes

an important effect on the two dimensional rotational brow-
nian motion only at small and moderate salt concentration.
In the three dimensional version of this model,i.e., in the ro-
tational brownian movement of an electric dipolar tracer in a
BMP, the longtime rotational diffusion constant shows a min-
imum for a given salt concentration, in the same way as for
the translational diffusion property [9]. Therefore, the elec-
trolyte friction effect at high salt concentration on the two
dimensional rotational diffusion of the dipolar tracer is less
effective than in its three dimensional counterpart.

4. Conclusion

In this manuscript we presented an analytically soluble model
of the electrolyte friction effect on the longtime rotational and
translational diffusion coefficients of a dipolar tracer parti-
cle diffusing in a charged membrane. For the translational
brownian motion we found that the friction contribution due
to direct interactions between the tracer and the surround-
ing ions displays a non-monotonous behavior, with a maxi-
mum at an intermediate ionic strength, a behavior also found
for this property in the three dimensional version of this

model. However, the two dimensional rotational friction con-
tribution (contrary to what occurs in three dimensions) is a
monotonous decreasing function of salt concentration such
that it is zero at high ionic content where the tracer diffuses
with its free rotational friction value.

FIGURE 1. (a) plot of TRANS(κσ)z(κσ) as a function of ionic
strengthκσ; (b) same plot for ROT(κσ)z(κσ)
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Appendix A

The general solution of the Poisson-Boltzmann equation (6)
of Section II reads

ψ(r)=





A0 + B0lnr +
∞∑

l=1

[Alr
l +

Bl

rl
] cos(lθ), r > σ

∞∑

l=0

[ClKl(κr)r+DlIl(κr)] cos(lθ), 0<r≤σ

(A1)

whereKl andIl are modified Bessel functions of orderl. The
boundary conditions on the fieldψ(r) are: (a)ψ(r) → µµ̂

εr
for r → 0, (b) ψ(r) → 0 for r → ∞, (c) ψ(σ+) = ψ(σ−),
(d) dψ(r)/dr|σ+ = dψ(r)/dr|σ− . From condition (a), and
the general solution Eq. (A1) for0 < r ≤ σ one gets
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ψ(r) = (A1r + B1
r ) cos(θ) with B1 = µ/ε. Using the sec-

ond part of the solution, forr > σ and condition (b) we get
Dl = 0 sinceIl(κr) diverges whenr → ∞ and in order
to get a converged solutionψ(r) = C1K1(κr) cos(θ) with
l = 1. Finally from (c) and (d) it is found that

A1σ +
µ

εσ
= C1K1(κσ) (A2)

and

A1 − µ

εσ2
= −C1κ[K0(κσ) +

K1(κσ)
κσ

]. (A3)

From Eqs. (A2) and (A3) it follows that:

A1 = −µκ

εσ

K0(κσ)
[κσK0(κσ) + 2K1(κσ)]

(A4)

C1 =
2µ

εσ

1
[κσK0(κσ) + 2K1(κσ)]

. (A5)

Substitution ofA1 andC1 into the expression forψ(r) given
above leads to Eq. (7) of Section II.
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