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Supersymmetric quantum solution for FRW cosmological model with matter
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Using the technique of supersymmetric quantum mechanics we present new cosmological quantum solutions, in the regime for FRW cosmo-
logical model using a barotropic perfect fluid as matter field.
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Usando la &cnica de la mémica cié@ntica supersigtrica, se presentan nuevas soluciones casgmas canticas para el modelo cos-
molbgico FRW, para un fluido perfecto bargpico como campo de materia.
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1. Introduction automatically a zero energy ground state. This simplifies the
. ) ~problem of finding supersymmetric ground state because the

We are interested to study some cosmological models in thenergy is known a priori and also because the factorization

supersymmetric qguantum mechanics scheme. Recently, pass Hy|¥ >= 0into Q¥ >= 0, Q|¥ >= 0 often pro-

ticular exact solutions to the Wheeler-DeWitt (WDW) equa-yjges a simple first-order equation for the goround state wave

tion in Witten's [1] supersymmetric quantum mechanics for fynction. The simplicity of this factorization is related to the

all Bianchi Cosmological Class A Models in the Einstein the'solubility of certain bosonic hamiltonians. For example, in

ory were found 2]. this work we find for the empty (+) and filled (-) sector of the

Our goal in this work is to try to solve an ambiguity in the fermion Fock space zero energy solution

factor ordering of the position and momenta operators and

give selection ruleghat fix the parameter that measures this

ambiguity. Such ambiguities always arise, when there are Wy >=e¥|+ >, ()

expressions containing the product of non-commuting quan-

tities that depend og* and P, as in our case. It is then whereX: denotes a superpotential, afd. and ¥ are

necessary to find some criteria to know which factor orderingn® corresponding components for the empty and filled sec-
should be selected. The factor ordering in the semiclassic prm the wave function. We ?"SO observe a tendency for
approximation is irrelevant, but not so in the exact theory. ms_upersymmetrlc_vacga to remain close to their semi-classical
a previous work ] the global factor was dropped by hand limits, because in this work and otherg],[the exact solu-

and the factor ordering ambiguity was avoided when they fac!ionsh@) are alsp the onvezt—_ordher 1)N|:<B gpproximations.
torized the WDW equation. This paper is organized in the following way: In Sec. 2,

Thus, the idea of Witten 1] is to find the supersym- the ADM lagrangian of our model is constructed and also,

metric super-charges operatags () that produce a super- V€ Propose the known classical solution for this model. In

hamiltonianH, and that satisfies the closed superalgebra Sec. 3, we derive the corresponding H_amlltonlan that allows
us to obtain the quantum WDW equation for the FRW cos-

mological model with matter field. In Sec. 4 we derive the
{Q,Q} = H,,, [Hys, Q] =0, [HWQ} =0, (1) WDW solution in the supersymmetric quantum mechanics
approach. Sec. 5 is devoted to conclusions.
where the super-hamiltoniat,, has the following form:

0% (x, y)
dq¥ ogH

_ 2. ADM Lagrangian formulation

Hss = HO + [Tﬁuﬂ/)“] ) (2)
We consider the total lagrangian, where one part is geometry

here Hy is the bosonic Hamiltonian and is known as the and the other one corresponds to the matter field. We will

super-potential term that is related with the potential term thatonsider a perfect fluid with barotropic equation of state as

appears in the bosonic hamiltonian. This idea was applied iour matter field:

reference 2] for all Bianchi type cosmological models.

In this approach, the hamiltonidf,, = 1Q? is positive
semi-definite and a supersymmetric state Vil >= 0 is Liotal = Lgeom + Limatter; (4)
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where the lagrangian density for geometry is the usual

geom V _(4) R (5)
whereR is the Ricci scalar.
Using the metric for FRW:
ds? = g, (x*) dx* dx” = —N?dt?
2 dr? 2 2 . 2 2
+A +r (d@ + sin“0d¢ ) , (6)
1 — kr?

whereN is the lapse functionA is the scale factor of the
model, andx is the curvature index of the universe:(=
0,41, —1 plane, close and open, respectively)

The covariant components for the tensor metric are:

At)?

gtt = _N(t)27 Grr = 11— 2

00 — A2T‘2, 9o = A2T’2 sin2 0, (7)
and the contravariant components
w1 e 1= K12
TN g = A2
1 1

00 _ _* b _ . 8
A2p2’ g A2r25in20 ®)

With these elements, we can calculate the nonzero Christoffel

symbols:
N ) A
thzﬁv Ftr_FtO_th:Fz;:Fit:Ka
—AA _
M= = =y (k% 1),

N2 (kr2—1)" ~ ™ kr2—1’

1 ArA
% =19, _Ff;:r‘ﬁff, Tho =~z -
0 ) 6 b cost
F¢>¢> = —cosfsinf , F(M = 1"94) =m0’
Ar2Asin?0 .
F¢¢ ==z oy = rsin? @ (m”z - 1) , (9)
whereA = dA/dt.
The Ricci scalar becomes
6 d2A 6 (dA\? 6 dAdN 6x
R=—— "2 2 (22), > S2%% P g
ANZ di7  AZN? (dt>+AN3 i @ Az 19

We consider a perfect fluid energy-momentum tensor

T/w = P8uv + (p + ,0) U/LUV) (11)
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wherep, p, U, are the pressure, energy density and the four-
velocity of the system, respectively. Using the covariance of
this tensor:

TMV;V = 07 (12)
we obtain the following partial differential equation:
dA dA dp
— — A = 13
3 P p+3 P 0, (13)

and using the barotropic state function between the pressure
and the energy density, = ~p, with v constant, we have
the solution for the energy density as a function of the scale
factor of the FRW universe as:

M,

p= A+ (14)
whereM, is an integration constant.
The corresponding Einstein field equations are
3 [dA

Gi=—81GM, A= D4 N2< )+3A— 0,
(15)

g 2 @A 1 (dA\' 2 dAdN

VTOAN? di2 T A2N2 \ dt ANZ qt dt

K 8rGM,

Tt e =0

(16)

We now consider the gaugé = 1 and making some algebra
we get the following master equation for the scale factor A:

d?A  4rGM,(3v+1) 1
W 3 A3'Y+2 == 0 (17)
Here we use a power law ansatz
A= Ag(t —to), (18)

with ¢ and Ay parameters to be determined in terms of the
parameters of the models.
Introducing this ansatz in Eq. (17) we obtain that

_ 2
3(v+1)

1
3(v+1)

g= Ap = [GWGM7 (v +1)° . (19)
Thus, the scale factad has the following well-known
classical behavious]:
A= [67rGM7 (v + 1)2} O (4 o)5E. (20)
Taking different values for the constantve have the fol-
lowing subcases:
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or in its canonical form

1
{%WGM%} " (t—to)z fory =1 radiation

3

A= [67G M) (t —t9)5  fory =0 dust (21) L=TA—-NH
24rGM,]° (t —to)5  for~ =1 stiff fluid : 2
| Ut =t) v AN |24 L Gea —16rGaL AP, (28)
However, for the case = —1, we will solve the Eq. (17), 24A
whose solution is exponential:
where
A = Age'lt, with H = 24/ ngM_l, (22)
2
here, we consider the sign (+) in the exponential function, H= 1 +6kA — 16mGM,, A~ 3, (29)

because we consider the inflationary behaviour.

24A

Using the line element for FRW, the density lagrangianyhen we perform the variation of this lagrangian (28) with
for geometry has the following structure: respect to N)L/ON = 0, implying H = 0.

qeom

and the matter density lagrangiah }] is:

Lmatter = _1677Np{ (fy + 1) (1 + gkm Uk Unl)

_1
(14" ULU,) }+ 167p(y + U N'™. (24)

The quantization procedure will be made in the usual
g 6A2 d?2A  6A /dA way, considering the momentum as operators and taking rep-
V-gR = N dt2 N < dt > resentation for them, but it is possible to realize other type
of quantization for this same model. For example, the super-

6A% dAdN 65N A symmetric quantum mechanics scheme [6-8] is
N2 dt dt
d (—6A%A\  6A (dA\?
~ & (N ) N <dt> — 6kNA, (23) H— HY =0, My = —iha%, (30)

where¥ (A) is the wave function of the FRW universe model.
In this work we take: = 1.

With these assumptions, (29) is transformed into a non
linear differential equation:

W=

1 d?

H= —— +144kA% 3847 GM, A3 (31)

In L,atter We consider the comovil fluid{;, = 0), and the 24A | dA2
gaugeNk = 0, obtaining

In Ref. 7 was shown that closed, radiation-filled FRW

s guantum universe for arbitrary factor ordering obey the Whit-
Lumatter = 167N My AT, (25)  taker equation.

Finally, the total density lagrangian has the following form One important result yields at the level of WKB method,

where we perform the transformatidhy — d®/dA, then
(29) is transformed in the Einstein-Hamilton-Jacobi equation,

1 2
Loor = a —6A%A 64 (dA> where® is the superpotential function, that is related to the
U dt N N \ dt physical potential under consideration.
65N A + 167rGNM7A*37. (26) Introducing this ansatz in (29),
. . . . 1 o
3. Hamiltonian formulation He (d ) 1445 384GM, AT | | (32)

T 24A |\ dA

Following the well-known procedure for obtaining the canon-

ical hamiltonian function, we define the canonical momen-

tum conjugate to the generalized coordinate A (scale factor)
asll, = OL/9A:

thus, the superpotentid has the following form:

o=+ / \/3847TGM7A—3’Y+1 _144kA2dA,  (33)

A [dA\?
L=6 N(d) —Nf<;A+§7rGNM7A_37 . (27

dt

where for whatevet the integral has the solution
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/ \/3847GM, A=+ — 144k A%dA = |/~ 144K A% + 384G M, A=

1 v+ 1 —3A137K + 8GM,, 7
~A 5 AGM,/ il
X{2 T 117 BA . —8GM, ) ( GM, 27r\/ GM,

_ 143y
’173( 1+’y),3A K (34)
2(1+3y)  8GMym

3(=14+9) 1
2(1+37) 2

X2F1 |:—

where, F is the hypergeometric function.
However, we can solve the integral in (33) for particular cases of th@ameter, that is:

e radiation casey = 3

/ \/3847rGM1 /3 — 1445 A2dA = g\/38477GM1 /3 — 144542

16iGm My /-
+ul

_ y _ 2
T n{ 24i AV +2\/3847TGM1/3 144k A } (35)

e dust fluid:y =0

A 2G7M,
2 3K

/ \/3847GMyA — 144k A2dA = ( ) V3841 GMyA — 144k A2

16G2M2n?\/384rGMyA — 144r A% In (2\/3/-@/1 +2/3RA = 8G7TM0>

, (36
3V3k3A\/3xA — 8Gm M, 36)
o inflation like casery = —1
1 [2A?
/\/3847TGM_1A4 — 144/€A2d14 = ﬂ (3 - 4C;’7:j\4> \/3847TGM71A4 - 144:“&14.2, (37)
-1

o stiff fluid: 7 = 1

/ V/3847G M A2 — 144k A2d A = /3847 GM; A—2 — 144K A2

% {1 + iA\/Q?TGM1 In (_4i\/27TGM1 + 2\/3,‘{144 - 87TGM1)} (38)
24 /3kA* —87GM, A? A2 ’

These results will be used in the next section, to obtain the solution according to the supersymmetric quantum mechanics
scheme.

4. Supersymmetric quantum solutions where the real parametemeasures the ambiguity in the fac-
tor ordering. So, the Wheeler-DeWitt equation can be written

In order to include the factor ordering problem, we substi-2s follows:

tute the following relation into (31), that corresponds to what 2w dw

Hartle and Hawking q] called a semi-general factor ordering Ho¥ = —Am + Poa V(AT =0, (40)

with V (A) = 3847nG M, A=37+2 — 144k A3

L d2U B d _d¥ In this scheme, we start giving the following super-
A 1@ — A 1+pde pﬂ hamiltonian:
d>v A 0?%(A) | -
= A_l - — 127 =

(dA2 pA dA) ) (39) Hsuper <HO + F@q”@q“ [I)ZJ, 1;[)]) ) (41)
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where the bosonic hamiltonigh, corresponds to the one in where the component,. is the contribution of the bosonic
eg. (40), F is a complex function anxlis the superpotential sector, and whereas,_ is the contribution of the fermionic

function. We write the super-charges as follows: sector.
The supercharges read as
d dX(A
0 = v(rL i Z0) @
dA dA d d
Q = - <\/Z +iDA2) —, (51)
_ - d du(A) dA do
Q = ¢ flA)77 —i ; (43)
dA dA _ d
. N , _ _ Q = ¢ <\/Z - z’DAE) : (52)
wheref(A) is an auxiliary function to be determined via the dA

analogy with the hamiltonian under study.
We suppose the following algebra for the variableg «f
andq:

whereD 4 = d/dA.
Using Eq. (48), we get the following differential equa-
tion:

Using the representation = —d/d#° andy = 6°, one
finds the superspace hamiltonian to be written in the form

(\/deﬂA+ - ‘Da2m+> —0. (53)

The solution of the latter equation is

Hsuperqj:{Qaé}\p: (QQ+QQ)\I’ R DS dA
2 My =Toge’ va 4=, (54)
N pa® df d  (dS(A)
- ( )W -/ )diAdTLl U dA wherery, is an integration constant.

Employing Eqg. (49) one gets
d*v(A)
M-
dA? (JdeA + iDa2H> —o, (55)
This last equation is similar to (41).
Comparing Egs. (40) and (45) we obtain the following \wherer_ has the form:

T if(A) [zz,w]) v, (45)

relations:
R
—i L DsXdA
1 IS (AN 2 MN_=TMy_e VA . (56)
Pu=a p=-z viy- (S e
Equations (54) and (56) can be written in the following way:
We can see that the parameter that gives the measure of the
factor ordering is fixed gb = —% in this approach, leading R,
to My = |_|0i6il ﬁDAEdA. (57)
d
—f (A)d—f:1 =p 47 The integration in these equations corresponds exactly to

o o ) _ equation (33). Thus, the supersymmetric quantum solutions
Then, any hamiltonian equation in one dimension that obeygye gbtained in closed form.

persymmetric regime. In other cases, it will be necessary tgf the Grassmann variables po|2 given by (50) is well
study the particular hamiltonian equation and the supersymgnown [10]:

metric scheme.
Moreover, in this scheme, any physical state must obey

the following quantum constraints: (U |Wy) =
_ =650,
Q¥ =0, (48) /(@1(9*))*@2(9*)6 N | CT G
QY =0. (49) i

The wave function has the following decomposition in theWhere the operationis defined as:
Grassmann variables representation

U =r, +n_6° (50) (COy...0,)" = o

n--

0;0,
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with the usual algebra for the Grassman numberfthe bosonic and fermionic sectors of the density probabil-
0;0; = —0;0;. The rules to integrate over these numbers arety are equal.
the following:

5. Conclusions
/ 0,0%..0,0%d0% d6, ...d05do, =1, (59)

The main results in this work are to provide the methodol-
ogy to find the general form for all contributions that ocurre
/d&f“ _ /d@- _o. (60) in the expansion of the FRW wave function of the Universe

! ! with matter, within the approach of Witten’s supersymmet-

In our case, we hav#, = U, — U. So, when we inte- i quantum mechanics. In addition, we find one criterion
grate to the Grassmann numbers, employing also the relatio@" fixing the parameter that measure the factor ordering of

(59) and (60), we obtain the operators. Besides, we find that the exact solutions for
B - the empty (+) and filled (-) sector of the fermion Fock space
|2 =Mpm, +0-n_, (61) are at the same time the lowest-order WKB approximations

(Einstein-Hamilton-Jacobi equation). Finally, we find the
general form of the probability density, Eq. (58), for the FRW
case, including matter fields.

where the symbol means the complex operation.

Using the expresions for the functions. andr_ given
in (54) and (56), respectively, we arrive to the following ex-
pression for the probability density:
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