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E-mail: vvillanu@ifm1.ifm.umich.mx

Juan A. Nieto
Facultad de Ciencias F́ısico-Mateḿaticas
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The problem of the electromagnetic coupling for spin3/2 fields is discussed. Following supergravity and some recent works in the field of
classical supersymmetric particles, we find that the electromagnetic coupling must not obey a minimal coupling in the sense that one needs
to consider not only the electromagnetic potential but also the coupling of the electromagnetic field strenght. This coupling coincides with
the one found by Ferraraet alby requiring that the gyromagnetic ratio be 2. Coupling with non-Abelian Yang-Mills fields is also discussed.
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Discutimos el problema del acoplamiento electromagnético para campos de espı́n 3/2. Usando algunos resultados recientes de partı́culas
supersiḿetricas cĺasicas, encontramos que el acoplamiento electromagnético debe ser no ḿınimo en el sentido de acoplarse no sólo al
potencial electromagnético, sino tambíen al tensor de campo electromagnético. Este tipo de acoplamiento coincide con el encontrado por
Ferraraet al. al demandar que la razón giromagńetica de cualquier partı́cula seag = 2. Se discute también el acoplamiento con campos no
abelianos del tipo Yang-Mills.

Descriptores:Ecuacíon de Rarita-Schwinger; acoplamiento no-mı́nimo; supergravedad.
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1. Introduction

The standard treatment of the free masless spin3/2 field is
achieved by means of the Rarita-Schwinger (R-S) lagrangian
[1]

LRS = −1
2
εµνρσΨ̄µγ5γν∂ρΨσ . (1)

This lagrangian leads to the field equations

εµνρσγ5γν∂ρΨσ = 0 . (2)

It is however well known that the usual minimal electromag-
netic coupling prescription for the Dirac field does not work
adequatelly for this spin3/2 field. In fact if one couples min-
imally this field with electromagnetism, then several physical
inconsistencies arise of which the most remarkable is the ap-
pareance of superluminal speed for the particles [2].

By demanding that the scattering amplitudes for arbitrary
spin particles should have a good high energy behaviour,
Weinberg [3] showed that the gyromagnetic ratio should be
g ∼ 2. Following a consistent procedure for constructing the
lagrangians for higher spin massive particles interacting with
the electromagnetic field, Ferraraet al [4] also obtained a

gyromagnetic ratiog = 2. As a result, their equations of mo-
tion contain an extra dipole term that can be implemented at
the tree level, thus modifying the usual minimal electromag-
netic coupling. A very important feature of this extra dipole
term is that, as shown by Ferraraet al, it avoids the physical
inconsistencies for spin3/2 particles described in Ref. 2.

On the other hand, two of the authors have constructed a
theory of the classical supersymmetric spin3/2 particle [5]
in analogy with the classical supersymmetric spin1/2 parti-
cle formalism developed by Galvao and Teitelboim [6].

In that article, it was shown that the Rarita-Schwinger
equations in flat space-time are the square root of the full
linearized Einstein field equations. This is not a consequence
of the well known result in canonical supergravity [8], where
it was shown that the supersymmetry constraint is the square
root of the usual Hamiltonian constraint in canonical general
relativity. This last procedure involves only some of the dy-
namical equations, in contrast with the relations found in Ref.
5 which relates the complete set of linearized Einstein field
equations and Rarita-Schwinger field equations.

The result of the paper mentioned above shows that the
Rarita-Schwinger equation is related with linearized gravity
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as the Dirac equation is related to the Klein-Gordon equation.
Thus, following this analogy and knowing how gravity cou-
ples with matter one would expect to be able to find out the
way matter couples with the spin3/2 field in flat space.

The last point is the main guide for this work, because in
principle we can add a matter tensor on the right side of the
linearized Einstein field equations and investigate its “square
root” in a similar manner to that developed in Ref. 5. As a
result of this procedure a modified R-S equation will arise.
Obviously, this “square root” must include the terms of in-
teraction with the matter fields, and these terms of interac-
tion will give us the information for the coupling of spin3/2
fields with any kind of matter, particularly electromagnetism
or Yang-Mills fields. It is important to mention that this work
is a refined version of Ref. 7.

This paper is organized as follows: in Sec. 2 we gen-
eralize the four indices differential operator representing the
linearized general relativity equations [5] in order to include
electromagnetism and non-abelian Yang-Mills fields. Based
on the particular form of this extra matter term in the lin-
earized Einstein field equations we search for the particu-
lar extra terms in the Rarita-Schwinger equation which when
squared will produce the desired term. As a result, we find
the interaction for the spin3/2 field with electromagnetism
and Yang-Mills fields. It is to be remarked that this modified
R-S equation when squared does not reproduce only the de-
sired extra term in the linearized gravity equations, but there
appear extra terms. This is not surprising because the rela-
tionship between the R-S equation with interaction and the
linearized Einstein field equations is similar to that existing
between the Dirac equation with interaction and the Klein-
Gordon equation, where theLS coupling term appears.

Our spin3/2 field equation with interaction can be under-
stood as a constraint in the classical supersymmetric spin3/2
particle formulation whose squared gives another constraint
which is a kind of generalized “hamiltonian”. In this case the
linearized gravity equations with the four indices generalized
matter tensor.

In some sense our R-S equations can be interpreted as
supercharges generating the hamiltonian but does not corre-
spond to a canonical formulation. On the other hand, super-
gravity is the theory that naturally incorporates in a consis-
tent supersymetrization procedure gravity, spin3/2 fields and
matter fields. We expect that by linearizing supergravity we
will be able to reproduce the case without matter [5], which
will correspond to Supergravity N=1. This is performed in
Sec. 3.

In the next two sections we also linearize Supergravity
N=2 (Sec. 4) and N=4 (Sec. 5). We show that the same
kind of interaction found in section 2 for the electromag-
netic field and the non-abelian Yang-Mills field respectively
follow. However, in these cases there are correspondingly
two and four spin3/2 fields. In each of these linearized Su-
pergravities ( N=2, 4), the interaction acts by mixing these
R-S fields. The apperance of more spin3/2 fields is di-
rectly related with the fact that in these last two cases we are

treating with an enlarged supersymmetry. Supergravity dic-
tates, however, esentially the same interaction found by tak-
ing the “square root” of the generalized four indices hamil-
tonian containing the linearized Einstein field equations with
matter.

In Sec. 3 we obtain from linearized SupergravityN = 1
the Rarita-Schwinger equations as the square root of the lin-
earized Einstein field equations. In section 4 by the same
procedure we obtain from linearized SupergravityN = 2 a
non-minimal electromagnetic coupling for the spin3/2 field.
It is interesting to mention that this coupling coincides with
the one found by Ferraraet al. Nevertheless we must mention
that the price of using SupergravityN = 2 is that we have
now two spin3/2 fields (the two gravitinos). In Sec. 5 we
repeat once more the procedure outlined in section 3, but this
time we apply it on linearized SupergravityN = 4 in order
to obtain a coupling with non-abelian Yang-Mills fields. In
this point we apply the formalism over four spin3/2 fields
(the four gravitinos).

2. Electromagnetic and Yang-Mills generalized
energy momentum tensors

As mentioned in the introduction, we have on one hand the
linearized Einstein field equations and on the other hand,
we have the Rarita-Schwinger equations as their square root.
Thus it is natural to think that we can put an interaction for
these Einstein field equations and obtain its square root in or-
der to investigate the possible coupling of the spin3/2 field
with matter fields.

It has been shown in ref. [5] that if one associates to the
R-S equation the classical constraint

Sαβ ≡ εαβρσθρPσ = 0 , (3)

then one has
{Sa

µ,Sβ
ν } = Hαβ

µν , (4)

where
Hαβ

µν = εα ρσ
µ εβ λγ

ν ηρλPσPγ , (5)

is the “Hamiltonian” operator that acts overhαβ in standard
linearized gravity,i. e.

Hαβ
µν hαβ = 0 . (6)

We first note that in Eq. (5) the momentaPσ appear
quadratically. Now we want to introduce the potential term
in Hαβ

µν , obviously, this must also be a four indices tensor
T αβ

µν , it should also have units of energy (same asP 2
σ ) and it

should be possible to take its square root in terms of the fields
characterizing the matter under consideration.

In particular for the electromagnetic case, the most nat-
ural “potential” ought be constructed as some square of the
field Fµν . The mathematical structure of Eq. (5) suggests us
to accompany theF 2 term by two Levi-Civitta tensors,i.e.,

T αβ
µν ∼ εα ρσ

µ εβ λγ
ν

(
FρσFλγ +ΛF̃ρσFλγ +κF̃ρσF̃λγ

)
. (7)
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whereΛ and κ are constants and̃Fρσ is the dual ofFρσ.
In order to achieve the square root of the “hamiltonian”,

Eq. (5) plus the “potential”, Eq. (7) we, first notice that the
desired interaction term in the R-S constraint, Eq. (3), must
alone give us when squared, the “potential” termT αβ

µν . Thus,
the most general construction one can propose is a linear
combination ofFρσ plus its dual. Nevertheless Dirac matri-
ces must be introduced in the linear combination of the fields
Fρσ and its dual since we are applying these constraints over
four components spinors.

Then the desired interaction term in the R-S constraint is
of the form

Fµν + κεµνρσFρσ , (8)

where nowκ is a Dirac matrix or a product of Dirac matrices.
A natural generalization of this result to the case of non-

abelian Yang-Mills would be the tensor

Tαβ
µν ∼ εα ρσ

µ εβ λγ
ν

(
F a

ρσF a
λγ +ΛF̃ a

ρσF a
λγ +κF̃ a

ρσF̃ a
λγ

)
, (9)

whereF a
ρσ is the Yang-Mills field tensor, and the correspond-

ing interaction will be also of the form (3) with appropriate
indices.

3. Free massless spin3/2 field

In this section we will review the calculations of the main re-
sult of Ref. 5. The reasons of doing so are just pedagogical.

The langrangian for SupergravityN = 1 [9] is given by

L = −e

2
R− e

2
Ψ̄µΓµρσDρΨσ , (10)

where e is the determinant of the tetrad,R is the gener-
alized curvature,Ψµ is the gravitino field (spin3/2), and
Γµρσ = εµνρσγ5γν .

Once more the equations of the motion for the gravitino
field are found to be

εµνρσγ5γν∂ρΨσ = 0 , (11)

we can associate to Eq. (11) the classical constraint

Sµν ≡ εµνρσθρPσ = 0 , (12)

whereθρ =(1/
√

2)γ5γρ, θ5 =(1/
√

2)γ5 are the classical limit of
the gamma matrices of Dirac and the operatorPσ = −i∂σ

(~ = 1).
Considering that the only nonvanishing Poisson brackets

[5] between these variables are
{
θµ, θν

}
= ηµν , (13)

{
θ5, θ5

}
= 1 , (14)

{
xµ, Pν

}
= iηµν , (15)

we get the algebra

{Sa
µ,Sβ

ν } = Hαβ
µν , (16)

where
Hαβ

µν = εα ρσ
µ εβ λγ

ν ηρλPσPγ , (17)

is the “Hamiltonian” operator that acts overhαβ in standard
linearized gravity,i.e.,

Hαβ
µν hαβ = 0 . (18)

As claimed in the preceding section, the Rarita-
Schwinger equations turn out be the square root of the lin-
earized Einstein field equations. Obviously, we have no con-
tribution of any other matter field, since we have no interac-
tion at all. Nevertheless this result will be the guide to inves-
tigate the coupling of Rarita-Schwinger fields, in principle,
with any kind of matter as will be developed in the next sec-
tions.

4. Electromagnetic interaction of spin3/2 fields

In order to investigate the electromagnetic coupling of spin
3/2 fields we use the resource of SupergravityN = 2 [9],
since it naturally incorporates the graviton, the electromag-
netic field and two gravitinos.

The lagrangian for SupergravityN = 2 is

L = −e

2
R− e

2
Ψ̄i

µΓµρσDρΨi
σ −

e

4
FαβFαβ

+
κ

4
√

2
Ψ̄i

µ

[
e(Fµν+F̂µν)+ 1

2γ5(F̃µν+ ˜̂
Fµν)

]
Ψ̄j

νεij , (19)

wheree is the determinant of the metric,R is the curva-
ture, Γµρσ = εµλρσγ5γλ, Dρ = ∂ρ + (1/2)ωmn

ρ σmn, is
the derivative including the spin connection,ωmn

ρ , σmn =
(1/4)[γm, γn], F̃µν = εµναβFαβ , and

F̂µν = ∂µAν − ∂νAµ − κ

2
√

2
[Ψi

µΨj
ν −Ψi

νΨj
µ]εij , (20)

is the supercovariant curl.
By performing variations with respect tōΨl

α in the ac-
tion, we obtain the equations of the motion for the gravitinos
as:

−e

2
ΓαρβDρΨl

β +
κ

4
√

2

{[
e
(
2Fαβ − κ

2
√

2
(Ψ̄iαΨjβ

−Ψ̄iβΨjα)εij
)

+ 1
2γ5ε

αβρσ
(
2Fρσ − κ

2
√

2
(Ψ̄i

ρΨ
j
σ

−Ψ̄i
σΨj

ρ)ε
ij

)]
Ψk

βεlk− κ

2
√

2
Ψ̄kβ

[
e(δαβΨjγ−δαγΨjβ)

+1
2γ5ε

βγρσ(δα
ρ Ψj

σ − δα
σ Ψj

ρ)
]
Ψh

γεljεhk
}

= 0. (21)

Linearizing the above equation by eliminating gravitational
interactions and neglecting terms of the orderΨ3, the field
equations reduce to

εαµνβγ5γµ∂νΨi
β−

κεij

√
2

[
Fαβ+1

2γ5ε
αβρσFρσ

]
Ψj

β = 0, (22)
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notice that the term in squared bracketsF+αβ = Fαβ +
(1/2)γ5ε

αβρσFρσ is precisely the dipole term found by Fer-
rara et al. [4]. In their article they have shown that this
term cancells divergences and avoids superluminal velocities
in systems of spin3/2 particles.

Equation (21) can be shown to be the generalized Rarita-
Schwinger equation

εαβµν
[
δijθµPν + iεijFµν

]
Ψj

β = 0 , (23)

whereFµν =(κ/
√

8)[(1/
√

8)F̃µν+θ5Fµν ] is a “rotation” of the
dipole termF+µν . Obviously, the solutions of these equa-
tions are the cuasiclasical ones, and it becomes clear that as
a consequence of supergravity, the solutions of our equation
must not have physical inconsistencies, such as superluminal
motion [2]. Thus, we can associate to Eq. (23) the constraint

Sαβ
ij = εαβµν

[
δijθµPν + iεijFµν

]
= 0 , (24)

and by using the Poisson brackets of Sec. 3, we get the alge-
bra
{Sα ij

µ ,Sβ kl
ν

}
= εα ρσ

µ εβ λγ
ν

×[
ηρλPσPγδijδlk − κ2

8
FρσFλγεijεlk

+i
(
θρFλγ,σδijεlk+θλFρσ,γεijδlk

)]
. (25)

The first term in the last equation is the Hamiltonian for
linearized gravity discussed before

εα ρσ
µ εβ λγ

ν ηρλPσPγδijδlk = Hαβ
µν δijδlk, (26)

the second of these terms is the generalized energy momen-
tum for the electromagnetic field announced in Eq. (7), that
is

κ2

8
εα ρσ

µ εβ λγ
ν FρσFλγεijεlk = T αβ

µν εijεlk , (27)

where this tensor has the form

T αβ
µν =

κ2

8
[
2ηµνηαβFρσF ρσ − 2δα

ν δβ
µFρσF ρσ

−2Fα
µ F β

ν + 4ηαβFµρF
ρ
ν + 4ηµνFαρF β

ρ

−4δα
ν FµρF

ρβ + 4δβ
µFαρFνρ

]
. (28)

The third term gives an electromagnetic interaction for
the gravitinos, this term is

εα ρσ
µ εβ λγ

ν

(
θρFλγ,σδijεlk + θλFρσ,γεijδlk

)
. (29)

This term contains a coupling between the gradient of
the electromagnetic tensor fieldFρσ,γ and the spin tensor
Sµν = iθµθν . It is interesting to comment thatT αβ

µν may be
understood only as part of a total energy momentum tensor
that contains now alsoFαβ

µν . In this way, our model predicts
a coupling between gravity, the gradient of the electromag-
netic field tensor and the spin tensor, thus the nonminimal
coupling for spin3/2 fields is now given by (23).

5. Yang-Mills field interaction of spin 3/2 fields

Now we are in a position to explore the possibility that
a Yang-Mills field be coupled to a Rarita-Schwinger field.
The simplest supergravity model that involves a non-Abelian
Yang-Mills field is SupergravityN = 4 [9].

In the philosophy of the preceding calculations, we can
associate a classical constraint to the field equation for the
gravitinos. It turns out to be

Sαβ
ij =

i√
2
εαβ
µν δijθ

µP ν− κ

2
√

2

(Fµν
(ij)−

i√
2
θ5ε

αβ
ρσFρσ

(ij)

)

−
√

2δij

4κ

(
eA +

√
2ieBθ5

)
σαβ , (30)

where now the contribution of the non-Abelian field is given

Fρσ
(ij) = αk

(ij)A
ρσ
k +

√
2iθ5β

k
(ij)B

ρσ
k , (31)

and

Ak
ρσ = ∂ρA

k
σ − ∂σAk

ρ + eAεijkAi
ρA

j
σ , (32)

Bk
ρσ = ∂ρB

k
σ − ∂σBk

ρ + eBεijkBi
ρB

j
σ , (33)

are the non-Abelian Yang-Mills fields. In Eq. (31) the alpha’s
and beta’s are matrices that generate theSU(2)×SU(2) sym-
metry of SupergravityN = 4.

By using the Poisson brackets of the preceding section,
we get the algebra

{Sα
µij ,Sβ

νkl

}
= −1

2
εαρσ
µ εβλγ

ν

[
ηρλPσPγδijδlk +

κ2

4
Fρσ(ij)Fλγ(kl)

]− iκ

4
[
εαρσ
µ δijθρ

(Fβ
ν,σ(kl) −

i√
2
θ5ε

βλγ
ν Fλγ,σ(kl)

)

−εβλγ
ν δklθλ

(Fα
µ,γ(ij) −

i√
2
θ5ε

αρσ
µ Fρσ,γ(ij)

)]
+

eB

8
[
εαρσ
µ σβ

ν δklFρσ(ij) + εβλγ
ν σα

µδijFλγ(kl)

]

+
1

8κ2
δijδkl

[
e2
B

(
θνθβ − θβθν

)(
θµθα − θαθµ

)

+
(1
2
(e2

A − e2
B) + 2

√
2ieAeBθ5

)(
ηαβθµθν − ηµνθβθα + δα

ν θµθβ − δβ
µθνθα

)]
. (34)
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Once more, we can identify terms and the first of them
is exactly the same tensor found in ref. [5], it give us the
linearized operator for the Einstein field equations. That is

εα ρσ
µ εβ λγ

ν ηρλPσPγδijδlk = Hαβ
µν δijδlk , (35)

The second term is the analogous of the generalized elec-
tromagnetic field energy momentum tensor, that in this case
is a non-Abelian gauge field energy momentum tensor.

εα ρσ
µ εβ λγ

ν Fρσ(ij)Fλγ(kl) = T αβ
µν(ijkl) . (36)

The following terms contain couplings of the spin tensor
Sµν = iθµθν and to the gradient of the non-Abelian field
tensorFρσ(ij).

Thus we have obtained a nonminimal coupling once more
for spin3/2 particles. Moreover the coupling obtained gen-
eralizes that of the dipole term found by Ferraraet al.

6. Conclusions

We have discussed the problem of the non-minimal coupling
for the Rarita-Schwinger fields, and the attempts of Weinberg
and Ferraraet al. to solve the problem by demandingg = 2
for arbitrary spin particles. As a result, they have obtained an
extra dipole term in the equations for these fields. This dipole
term avoids the bad energy behavior of the particles and the
physical inconsistencies discussed in Ref. 2.

By using the fact that the Rarita-Schwinger field equa-
tions are the square root of the linearized Einstein field
equations as a guide, we have implemented energy momen-
tum tensors for electromagnetic and non-abelian Yang-Mills
fields. After that, linearized SupergravityN = 2 was used
as a tool that provided us with field equations for the Rarita-
Schwinger fields. Surprisingly, by squaring the constraints

associated to these equations we obtained an energy momen-
tum equal to that announced in section 2. Moreover, we ob-
tained for the fields a non-minimal coupling consisting of a
“rotation” of the dipole term found by Ferraraet al.

A similar analysis for non-abelian Yang-Mills fields was
developed by using SupergravityN = 4. Thus obtaining a
similar energy momentum tensor to that claimed in section 2.
The coupling term in this case has a similar structure to that
of the electromagnetic case. It consist of terms of the type

Field +
1
2
γ5Dual F ield.

It is interestring to mention that a term of similar struc-
ture was implemented by Cucchieri, Porrati and Deser [10]
by studying the gravitational coupling of higher spin fields,
where theField of the above expression is the Riemman ten-
sor. Due to supersymmetry (specially for the coupling with
non-Abelian gauge fields) it may be expected that such a term
also avoids superluminal velocities, but this is an issue that
requires a more careful discussion.

Further developments of this formalism are being consid-
ered. For instance the massive spin3/2 particle interacting
with electromagnetic and Yang-Mills fields [11]. Another
interesting issue is the quantization and possible phenomeno-
logical implications of the theory [12].
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