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The problem of the electromagnetic coupling for spjt2 fields is discussed. Following supergravity and some recent works in the field of

classical supersymmetric particles, we find that the electromagnetic coupling must not obey a minimal coupling in the sense that one need:
to consider not only the electromagnetic potential but also the coupling of the electromagnetic field strenght. This coupling coincides with

the one found by Ferrart al by requiring that the gyromagnetic ratio be 2. Coupling with non-Abelian Yang-Mills fields is also discussed.
Keywords:Rarita-Schwinger equation; non-minimal coupling; supergravity.

Discutimos el problema del acoplamiento electron&igo para campos de és@B/2. Usando algunos resultados recientes deiaes
supersingtricas chsicas, encontramos que el acoplamiento electrogimgndebe ser no mimo en el sentido de acoplarse nasal
potencial electromagatico, sino tamhén al tensor de campo electrométjoo. Este tipo de acoplamiento coincide con el encontrado por
Ferraraet al. al demandar que la rém giromagetica de cualquier padula seay = 2. Se discute tambn el acoplamiento con campos no
abelianos del tipo Yang-Mills.

Descriptores:Ecuacon de Rarita-Schwinger; acoplamiento n@aimo; supergravedad.

PACS: 11.10.-z; 1480.-j; 11.10.Ef

1. Introduction gyromagnetic ratig = 2. As a result, their equations of mo-
tion contain an extra dipole term that can be implemented at
The standard treatment of the free masless 8pinfield is  the tree level, thus modifying the usual minimal electromag-
achieved by means of the Rarita-Schwinger (R-S) lagrangiafetic coupling. A very important feature of this extra dipole
[1] term is that, as shown by Ferragaal, it avoids the physical
1 oo = . ) . ; . X .
Lrs = *56“ PIU5 10y Vs (1)  inconsistencies for spiy/2 particles described in Ref. 2.

On the other hand, two of the authors have constructed a
theory of the classical supersymmetric spjf2 particle p]
in analogy with the classical supersymmetric spi2 parti-
cle formalism developed by Galvao and Teitelboid]. [

It is however well known that the usual minimal electromag-  In that article, it was shown that the Rarita-Schwinger
netic coupling prescription for the Dirac field does not work equations in flat space-time are the square root of the full
adequatelly for this spiB/2 field. In fact if one couples min- linearized Einstein field equations. This is not a consequence
imally this field with electromagnetism, then several physicalof the well known result in canonical supergravityj, [where
inconsistencies arise of which the most remarkable is the agt was shown that the supersymmetry constraint is the square
pareance of superluminal speed for the partictéls [ root of the usual Hamiltonian constraint in canonical general
By demanding that the scattering amplitudes for arbitraryelativity. This last procedure involves only some of the dy-
spin particles should have a good high energy behaviouflamical equations, in contrast with the relations found in Ref.
Weinberg B] showed that the gyromagnetic ratio should be5 which relates the complete set of linearized Einstein field
g ~ 2. Following a consistent procedure for constructing theduations and Rarita-Schwinger field equations.
lagrangians for higher spin massive particles interacting with  The result of the paper mentioned above shows that the
the electromagnetic field, Ferraehd al [4] also obtained a Rarita-Schwinger equation is related with linearized gravity

This lagrangian leads to the field equations

5,0, W =0 2)
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as the Dirac equation is related to the Klein-Gordon equatiortreating with an enlarged supersymmetry. Supergravity dic-
Thus, following this analogy and knowing how gravity cou- tates, however, esentially the same interaction found by tak-
ples with matter one would expect to be able to find out theng the “square root” of the generalized four indices hamil-
way matter couples with the spiy2 field in flat space. tonian containing the linearized Einstein field equations with
The last point is the main guide for this work, because inmatter.
principle we can add a matter tensor on the right side of the In Sec. 3 we obtain from linearized Supergraviy= 1
linearized Einstein field equations and investigate its “squar¢he Rarita-Schwinger equations as the square root of the lin-
root” in a similar manner to that developed in Ref. 5. As aearized Einstein field equations. In section 4 by the same
result of this procedure a modified R-S equation will arise.procedure we obtain from linearized Supergravity= 2 a
Obviously, this “square root” must include the terms of in- non-minimal electromagnetic coupling for the spif2 field.
teraction with the matter fields, and these terms of interach is interesting to mention that this coupling coincides with
tion will give us the information for the coupling of sp#f2  the one found by Ferraet al. Nevertheless we must mention
fields with any kind of matter, particularly electromagnetismthat the price of using Supergravity = 2 is that we have
or Yang-Mills fields. It is important to mention that this work now two spin3/2 fields (the two gravitinos). In Sec. 5 we
is a refined version of Ref. 7. repeat once more the procedure outlined in section 3, but this
This paper is organized as follows: in Sec. 2 we gentime we apply it on linearized Supergravily = 4 in order
eralize the four indices differential operator representing théo obtain a coupling with non-abelian Yang-Mills fields. In
linearized general relativity equations] fn order to include  this point we apply the formalism over four spi2 fields
electromagnetism and non-abelian Yang-Mills fields. Basedthe four gravitinos).
on the particular form of this extra matter term in the lin-
earized Einstei.n field equations we search .for thg particuzl Electromagnetic and Yang-Mills generalized
lar extra terms in the Rarita-Schwinger equation which when
squared will produce the desired term. As a result, we find energy momentum tensors
the interaction for the spifi/2 field with electromagnetism ag mentioned in the introduction, we have on one hand the
and Yang-MiIIs fields. Itis to be remarked that this modified |jyearized Einstein field equations and on the other hand,
R-S equation when squared does not reproduce only the dgze have the Rarita-Schwinger equations as their square root.
sired extra term in the linearized gravity equations, but thererp s it js natural to think that we can put an interaction for
appear extra terms. This is not surprising because the relgese Einstein field equations and obtain its square root in or-

tionship between the R-S equation with interaction and thgjer 1o investigate the possible coupling of the spjia field
linearized Einstein field equations is similar to that existing\yith matter fields.

between the Dirac equation with interaction and the Klein- |+ has been shown in ref.5] that if one associates to the

Gordon equation, where theS coupling term appears. R-S equation the classical constraint
Our spin3/2 field equation with interaction can be under-
stood as a constraint in the classical supersymmetric3sain S =¢e*Pr79,P, =0 (3)

particle formulation whose squared gives another con:strairﬁ1en one has
which is a kind of generalized “hamiltonian”. In this case the

a gBY _ 0B

linearized gravity equations with the four indices generalized {S/“ S} Huw (4)
matter tensor. where R

In some sense our R-S equations can be interpreted as Hy = €7l AP, Py (5)

supercharges generating the hamiltonian but does not corrgs the “Hamiltonian” operator that acts ovs,s in standard
spond to a canonical formulation. On the other hand, supetinearized gravityj. e.

gravity is the theory that naturally incorporates in a consis- 5
tent supersymetrization procedure gravity, shif fields and H has =0 . (6)
matter fields. We expect that by linearizing supergravity we We first note that in Eq. (5) the momenta, appear

W!:: be able to (;etprosduce the iasﬁlfvl'thgl# ”?a“éh fWh'Ch di quadratically. Now we want to introduce the potential term
will correspond to supergravity N=1. IS IS performed N, 4/a8 obviously, this must also be a four indices tensor

py
Sec. 3. ) ) , . T2P it should also have units of energy (same?#$ and it
In the next two sections we also linearize Supergravnys“

B a hould be possible to take its square root in terms of the fields
N=2 (Sec. 4) and N=4 (Sec. 5). We show that the Same, . terizing the matter under consideration.

kind of interaction found in section 2 for the electromag- | particular for the electromagnetic case, the most nat-

netic field and the non-abelian Yang-Mills field respectivelyural “potential” ought be constructed as some square of the

follow. However, in these cases there are correspondingly, F,,,.. The mathematical structure of Eq. (5) suggests us
two and four spir8/2 fields. In each of these linearized Su- to accompany thé?2 term by two Levi-Civitta tensors,e
pergravities ( N=2, 4), the interaction acts by mixing these o

R-S fields. The apperance of more s@if2 fields is di- } o
rectly related with the fact that in these last two cases we are72’ ~ e";f"e‘f}” (FWFA7 +AF, . Py + HF,,UF)\,Y) . (M

nv
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whereA and x are constants anﬂpa is the dual ofF,,. where

In order to achieve the square root of the “hamiltonian”, Hﬂf = GCLMEﬁVMUpAPnPw , 17)
Eg. (5) plus the “potential”, Eq. (7) we, first notice that the . L .
desired interaction term in the R-S constraint, Eq. (3), mus{S the “Hamiltonian” operator that acts ove,s in standard
alone give us when squared, the “potential” tefiy’. Thus, linearized gravityi.e,
the most general construction one can propose is a linear
combination ofF ), plus its dual. Nevertheless Dirac matri-
ces must be introduced in the linear combination of the fields
F,, and its dual since we are applying these constraints ov
four components spinors.

Then the desired interaction term in the R-S constraint i
of the form

HoPhas =0 . (18)

As claimed in the preceding section, the Rarita-
eéchwinger equations turn out be the square root of the lin-
earized Einstein field equations. Obviously, we have no con-
Yribution of any other matter field, since we have no interac-
tion at all. Nevertheless this result will be the guide to inves-
FM 4 g Veo R @) . . ) . mne guide ton
P tigate the coupling of Rarita-Schwinger fields, in principle,
where nows is a Dirac matrix or a product of Dirac matrices. with any kind of matter as will be developed in the next sec-
A natural generalization of this result to the case of non-ions.
abelian Yang-Mills would be the tensor
o apo B A a 1a ra ra a rha TeN] i i i
Tol ~ e 7 M (Fo Fy + AFS F +kFLFL) . (9) 4. Electromagnetic interaction of spin3/2 fields
whereF7 is the Yang-Mills field tensor, and the correspond- In order to investigate the electromagnetic coupling of spin
ing interaction will be also of the form (3) with appropriate 3/2 fields we use the resource of Supergravity= 2 [9],

indices. since it naturally incorporates the graviton, the electromag-
netic field and two gravitinos.
3. Free massless Spiﬁ/? field The lagrangian for Supergravity = 2 is
e e - ; e
In this section we will review the calculations of the mainre- £ = —573 - §\IJLF“P”D9\I/; - zFagFaﬁ

sult of Ref. 5. The reasons of doing so are just pedagogical. .o } . o

The langrangian for Supergravity = 1 [9] is given by er% [e(FM 4+ F* )+ 1y (F* + F*) | W€ | (19)
wheree is the determinant of the metri®® is the curva-
ture, THP? = %5y, D, = 0, + (1/2)wi ™ omn, IS
the derivative including the spin connection/’,””, Omn =

L=—SR— U7 D,W, | (10)

where e is the determinant of the tetrad is the gener-
alized curvature ¥, is the gravitino field (spirg8/2), and

THPT = HVPT ey . (/D) [V ¥nls Frv = Ewa’@Faﬁ’ and
Once more the equations of the motion for the gravitino . K P PR
field are found to be Fu = 0,4, — 0,4, — Tﬁ[‘l’#‘l’i — U, wle” , (20)
P00 =0, (1) isthe supercovariant curl.

By performing variations with respect !, in the ac-

we can associate to Eq. (11) the classical constraint , . ; i -
tion, we obtain the equations of the motion for the gravitinos

S =e"P?9,P, =0 , (12) as:
wheref, =(1/v2)vs,, 05 =(1/v2)+s are the classical limit of _EraPﬁDp\p% n L{ [e(2F°F — B (piegis
the gamma matrices of Dirac and the operdpr= —id, 2 V2 2v2
(h = 1) SYCA TR LA VAN afpo K NTER\IZ)
S . . —PrPgI) et 1 PI(2F )y — —= (U W/
Considering that the only nonvanishing Poisson brackets )e) + pse (2, 2\/5( pee

[5] between these variables are o _ ) .
S0 W)€ ) | Whetk— LGk [o(500 w7 —5or @)
7r 2V/2

{e,uv eu} = Nuv (13) ] ) )
{0,05) = 1, (14) Hse 1 (0p WG — 7)W= 0. (21)
{%7 pl,} = N , (15) Linearizing the above equation by eliminating gravitational

interactions and neglecting terms of the orde¥, the field
equations reduce to

we get the algebra K

R A
€HMVBren 0, Th— FPqiygeProp 107, =0, (22)
(85,80} = Hy (16) Vg | ’ ol

77
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notice that the term in squared brackéts®’ = 8 + The third term gives an electromagnetic interaction for
(1/2)75€*PP° F,, is precisely the dipole term found by Fer- the gravitinos, this term is

raraet al [4]. In their article they have shown that this 3 y

term cancells divergences and avoids superluminal velocities  €%.°7€5, (8, Fay.007 €' + 03 Fpoye¥6') . (29)

in systems of spii3/2 particles.

Equation (21) can be shown to be the generalized Rarital NS teérm contains a coupling between the gradient of
Schwinger equation the electromagnetic tensor fieli,, , and the spin tensor

‘ S = 10,0, Itis interesting to comment thﬁ;f*ﬁ may be

By (640, Py + i€i; Fu ] U, =0, (23) understood only as part of a total energy momentum tensor
_ _ that contains now alsﬁ‘ﬁf. In this way, our model predicts

whereF,, =(=/V8)[(1/V8)F,.,+65F,.] iS a “rotation” of the g coupling between gravity, the gradient of the electromag-

dipole termF*#¥. Obviously, the solutions of these equa- netic field tensor and the spin tensor, thus the nonminimal

tions are the cuasiclasical ones, and it becomes clear that @gupling for spin3/2 fields is now given by43).

a consequence of supergravity, the solutions of our equation

must not have physical inconsistencies, such as superluminal . . . . . .
motion [2]. Thus, we can associate to Eq. (23) the Constraing' Yang-Mills field interaction of spin 3/2 fields

33-[3 — caBuv [%eﬂp +i6¢j}',w] 0, (24) Now we are i_n a position to explore .the pos;ibility _that
a Yang-Mills field be coupled to a Rarita-Schwinger field.
and by using the Poisson brackets of Sec. 3, we get the algdhe simplest supergravity model that involves a non-Abelian
bra Yang-Mills field is Supergravityv. = 4 [9].
In the philosophy of the preceding calculations, we can
associate a classical constraint to the field equation for the
gravitinos. It turns out to be

{S(Zij,sﬁykl} — eo;LpUEBV)\'y

2
x [UPAPGP'Y‘SU(SM o %FpaFAveijelk i
) ) S5 =t 0P
+i(0p Fry 007 €405 F po ,€76™%)]. (25) VR \f( i)~ /5
V20
4k

B - 0

The first term in the last equation is the Hamiltonian for

(eA + \/5i6365)00‘ﬁ, (30)
linearized gravity discussed before

where now the contribution of the non-Abelian field is given

€27, Inpa Py P66 = HET6 6N, (26)
. : ro = al AP+ V2i058F . By 1
the second of these terms is the generalized energy momen- Flay) = Ui A+ V205805 BY (31)
tum for the electromagnetic field announced in Eq. (7), thalyhgq
is )
’; €27, e ’\“’F FMeijelk — fzjfcyﬁeijglk ’ (27) A’;G = 8,,A’; — a,Aﬁ + eAe”kA;Aff , (32)
where this tensor has the form By, = 0,Bi—0,B)+epc?*B.B],  (33)
700 = 5 [znwn PF e FP7 — 26060 Fpu FP7
are the non-Abelian Yang-Mills fields. In Eq. (31) the alpha’s
_opa B af 14 ap B
2EL B+ AT E B A A FRUE, and beta’s are matrices that generatethié2) x SU(2) sym-
_453FuprB + 455FGPFVP]. (28) metry of SupergravityV = 4.
By using the Poisson brackets of the preceding section,
| we get the algebra
(03 leg 2 ZK: o
{Smd’ ukl} = 56" e (102 Po P00 + }—pa(ij)f/\"/(kl)] - Z[ w7 0ijbp (7:1/ o(kl) — 7956[} Py (ii)
A « i apo «
€007 (P i) — 505 Fomatin))] + S0l F potis) + €008 P
+, 257]614 % (60,60° - 0°6,) (0,60 — 6°0,,)

1
+(5(¢h — €b) +2V2ieaenls) (10,0, — 1w 0°0% + 630,0” — 60,0%) |. (34)
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Once more, we can identify terms and the first of themassociated to these equations we obtained an energy momen-
is exactly the same tensor found in ref5],[it give us the  tum equal to that announced in section 2. Moreover, we ob-
linearized operator for the Einstein field equations. That is tained for the fields a non-minimal coupling consisting of a

“rotation” of the dipole term found by Ferras al.
(35) A similar analysis for non-abelian Yang-Mills fields was

The second term is the analogous of the generalized elegleveloped by using Supergravity = 4. Thus obtaining a
tromagnetic field energy momentum tensor, that in this casgimilar energy momentum tensor to that claimed in section 2.
is a non-Abelian gauge field energy momentum tensor. The coupling term in this case has a similar structure to that
(36) of the electromagnetic case. It consist of terms of the type

€aupg€ﬁy’w77pxpap75ij5lk = Hzgéij5lk ;

a po A _ 7aB

€’ T Fpo(ig) Fan(ht) = Ttijhly -
The following terms contain couplings of the spin tensor
Sy = 10,0, and to the gradient of the non-Abelian field

tensorF ;i )- It is interestring to mention that a term of similar struc-
Thus we have obtained a nonminimal coupling once morgyre was implemented by Cucchieri, Porrati and Desgl [
for spin3/2 particles. Moreover the coupling obtained gen-py studying the gravitational coupling of higher spin fields,
eralizes that of the dipole term found by Ferratal. where theField of the above expression is the Riemman ten-
sor. Due to supersymmetry (specially for the coupling with
non-Abelian gauge fields) it may be expected that such aterm
also avoids superluminal velocities, but this is an issue that
We have discussed the problem of the non-minimal couplingequires a more careful discussion.
for the Rarita-Schwinger fields, and the attempts of Weinberg  Further developments of this formalism are being consid-
and Ferrarat al. to solve the problem by demandipg= 2  ered. For instance the massive spjf2 particle interacting
for arbitrary spin particles. As a result, they have obtained anvith electromagnetic and Yang-Mills fields11]. Another
extra dipole term in the equations for these fields. This dipoldnteresting issue is the quantization and possible phenomeno-
term avoids the bad energy behavior of the particles and thygical implications of the theory1P].
physical inconsistencies discussed in Ref. 2.
By using the fact that the Rarita-Schwinger field equa-
tions are the square root of the linearized Einstein fieldAcknowledgments
equations as a guide, we have implemented energy momen-
tum tensors for electromagnetic and non-abelian Yang-MillsThis work has been partially supported by CONACyT
fields. After that, linearized Supergravify = 2 was used through the projects: 28454-E, 1-32819-E, University of Mi-
as a tool that provided us with field equations for the Rarita-choacan through the project CIC 4.14 and University of
Schwinger fields. Surprisingly, by squaring the constraintsSinaloa.

1
Field + ifysDual Field.
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