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Simple harmonic oscillator with fractional electric potential
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In this work we demonstrate the effect of an evolved electric potential on a charged particle placed in a harmonic oscillator. The effect of the
evolved potential on the wave function and energy is shown for different states. We also show how the potential itself develops fractionally.
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1. Introduction

Fractional quantum mechanics has been of great interest
by many researchers recently. Laskin [1] has developed
fractional generalization of the Schrödinger equation, Dong
and Xu [2] used a new equation to study time evolution
of the space-time fractional quantum system in the time-
independent potential fields. Dong [3] solved Schrödinger
equation with infinite potential well using Levy path inte-
gral approach, where he obtained among other things the
even and odd parity wave functions. Narahari et al [4] pre-
sented a survey of several approaches that have been pro-
posed to solve the fractional simple harmonic oscillator. He
discussed the advantages and disadvantages and proposed
a generalization of the integral equation of the simple har-
monic oscillator that involves physically meaningful initial
conditions. Rozmej and Bandrowski [5] and Mahata [6]
discussed some applications of a fractional approach to the
Schr̈odinger equation. Herrmann [7] investigated fractional
derivative in Schr̈odinger equation with an infinite potential
well. Ibrahim and Jalab [8] introduced analytical and numer-
ical solutions for systems of fractional Schrödinger equation
using Riemann-Liouville differential operator. Laskin [9,10]
applied fractional calculus to quantum mechanics. He studied
the properties of fractional differential equation and applied
it to a Hydrogen-like atom. Guo and Xu [11] solved the frac-
tional Schr̈odinger equation for a free particle and for an infi-
nite square potential well and obtained the energy levels and
the normalized wave functions. Many applications of frac-
tional quantum mechanics can be obtained in Herrmann [12],
Kilbas et al [13] and fractional differential equation can be
found in Podlubny [14].

In all the aforementioned works the authors dealt with
the second derivative concerning the kinetic energy. They
converted the second derivative to a fractional derivative and
showed its effect on the wave function and eigenvalues of
the energy. In this work we will demonstrate the effect of
an evolved electric potential on a charged particle placed in
a harmonic oscillator; the potential is developing instead of
growing. The derivative in this work is kept unchanged. The

idea of evolution of some physical phenomena has been stud-
ied using fractional calculus to give deeper understanding of
physical phenomena. It was possible to do so through vary-
ing the order of fractional differentiation from zero to one
and observing the change in the phenomenon under consid-
eration, and observe how it develops from one state to the
other through the fractional operation. Engheta [15–17] ap-
plied the idea to the electromagnetic multipole showing the
evolution of multipole from a certain order to the higher one.
Rousanet al [18] have studied such evolution in gravity and
showed the evolution of a semi-infinite linear mass from a
point mass. Rousanet al [19] showed how the oscillatory
behavior (LC circuit) goes over a decay behavior (RC cir-
cuit) as the order of fractional differentiation goes from zero
to one, and vice versa. Also Rousanet al [20] studied frac-
tional harmonic oscillator and suggested that the system goes
through an evolution process as the fractional order goes from
zero (free) to one (damped), letting it pass through interme-
diate stages where the system can have a damping character
and the material can be thought as a pseudo-damping mate-
rial. Gómez-Aguilar and co-workers contributed intensively
to the field of fractional calculus. They studied fractional
electrical circuits. They introduced an analytical solution to
LC, RC, RL and RLC circuits in terms of the Mittag-Leffler
function depending on the order of the fractional differential
equation [21, 22]. Also they studied the transitory response
and analyzed time and frequency domain of RC circuit
applying Caputo fractional derivative [23, 24]. Moreover
they described the dynamics of charged particles in elec-
tric fields employing Laplace transform of Caputo deriva-
tive [25]. They also used Fourier method to find the full ana-
lytical solution of electromagnetic wave in conducting media
considering Dirichlet conditions [26]. Fractional electrical
circuits were studied and analyzed from all aspects by Kac-
zorek and Rogowski [27, 28]. Obeidat et al [29] studied the
evolution of a current in a wire and estimated the time re-
quired for the current to reach its maximum value. A full
review of the scope of applications of fractional calculus in
physics and its applications on evolution process is found
in [18].
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2. Method

The one dimensional time independent Schrödinger equation
is given by:

−~2

2m

d2ψ(x)
dx2

+ V (x)ψ(x) = Eψ(x) (1)

Wherem is the mass of the particle influenced by the
potentialV (x), ~ is the normalized Plank’s constant,E is
the energy of the system andψ is the wave function. For har-
monic oscillator, the restoring force on the mass isF = −kx,
wherek is the restoring force constant. The above equation
(Eq. 1) reduces to

d2ψ(x)
dx2

= −2m

~2

(
E − 1

2
kx2

)
ψ(x) (2)

This equation has a well-known solution given in many
quantum mechanics text books as [30]

ψ(ξ) = Hn(ξ)e−ξ2/2 (3)

Whereξ = (mω/~)2x, andω =
√

k/m is the frequency
of the oscillator, andHn(ξ) is the Hermite polynomials of
degreen. The quantized energy of the oscillator is given by:

En = ~ω
(

n +
1
2

)
, n = 0, 1, 2, · · · (4)

If we assume the particle has a chargeq and the above os-
cillator is placed in an electric field of strengthε, then the
modified Schr̈odinger equation becomes

d2ψ(x)
dx2

= −2m

~2

(
E − 1

2
kx2 − qεx

)
ψ(x) (5)

Complete the squares, the above equation reduces to

d2ψ(x′)
dx′2

= −2m

~2

(
E′ − 1

2
kx′2

)
ψ(x′) (6)

With
x′ = x + qε/k (7)

And
E′ = E + q2ε2/2k (8)

So, the solution again is the same as the normal harmonic
oscillator but with a shift in the displacement and with modi-
fied quantized energy.

In this work, we suggest a potential of the form

αqEx1−α
0 xα (9)

Whereα takes the values from0 to 1 to be introduced
to the oscillator, Schr̈odinger equation will be then written in
the form:

d2ψ(x)
dx2

= −2m

~2

(
E − 1

2
kx2 − αqεx1−α

0 xα

)
ψ(x) (10)

The factorx1−α
0 is introduced here for dimensionality.

There exist exact solutions for the limiting values ofα
namely zero and one, while for the intermediate values of
α a numerical solution utilizing Numerov Algorithm will be
used. Even though, the Runge-Kutta (RK4) method is a very
powerful technique to solve ordinary or system of ordinary
differential equations numerically, the Numerov Algorithm
still is the simplest and most powerful accurate algorithm in
solving such kind of problems even for central potentials.
Numerov algorithm was proven to be faster and more sta-
ble [31,32]. The error using Numerov algorithm on each step,
h, is of orderO(h5), while the error using the Runga-Kutta
(RK4) method is of orderO(h4), i.e., one order of magnitude
better. Due to problems of round off error in Eq. (13), double
precession arithmetic is used. Applying Numerov method to
the general form of the second order differential equation of
the form

d2y

dx2
= −g(x)y(x) + s(x) (11)

Whereg(x) and s(x) are known functions, with initial
conditions given byy(x0) = y0 andy′(x0) = y′0, in our case

gn =
2m

~2
(E − V (xn)) (12)

ands(x) = 0, the final form of Numerov’s formula is

yn+1 =
(12− 10fn)yn − fn−1yn−1

fn+1
(13)

With

fn = 1 + gn
(∆x)2

12
(14)

∆x is the step. Complete derivation for Numerov Algorithm
and final formula can be found somewhere else [33].

The values of constants throughout this work will be con-
sidered as:

~ = 1,m = 1, q = 1, k = 1 (15)

FIGURE 1. The figure shows the wave function (n = 4) for differ-
ent values ofα. The wave function shifts to the right asα increases.
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FIGURE 2. The energy of the system as a function ofα for different
values of the quantum numbern.

FIGURE 3. The potential forα = 0. It represents the harmonic
oscillator potential with no field.

FIGURE 4. The potential forα = 1. It represents the harmonic
oscillator potential in the presence of an electric field.

3. Results and Discussion

The idea of this work is to demonstrate the effect of an
evolved electric potential on the charged particle placed in
a harmonic oscillator; the potential is developing instead of
growing.

We first consider the wave function. As for the case of no
electric field, which means that the value ofα in Eq. (10) is
zero which represents Eq. (2), and the case when there is an
electric field (well developed) which means that the value of

FIGURE 5. The potential for selected values ofα. The figure shows
the evolution process of the potential which affects the wave func-
tion.
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α in Eq. (10) is one which represents Eq. (5). It is expected
now that as the value ofα increases from zero to one the
wave function shifts to the right. The way that the evolved
potential affects the wave function is demonstrated in Fig. 1
where the wave function is displaced to the right towards a
fully developed potential(α = 1) as expected.

Taking the range ofx from −5 to +5, the wave func-
tion for the case ofn = 4 for different values ofα, Fig. 1
shows, beside the shift to the right the amplitudes seam to
change slightly without indicating a specific trend which we
believe due to normalization. Since the values ofx ranging
from a negative value to a positive value, care must be taken
in choosing the values ofα. In our case, we limited the values
to be of power an odd number divided by an odd number.

The values of energy are plotted versusα for differ-
ent values ofn in Fig. 2, where the values of energy de-
crease smoothly from that belong to the simple harmonic case
(α = 0) to that of applying the “full” potential(α = 1),
which is expected.

It might be useful to show how the potential itself is being
developed asα increases from zero to one. We first show the
potential forα = 0 in Fig. 3 and that forα = 1 in Fig. 4.
The evolution then will be between those two limiting cases.
Figure 5 shows the potential for selected values ofα where

a discontinuity appears in its derivative atx = 0, indicating
the evolution process which affects the wave function. This
discontinuity vanishes asα approaches unity as expected. In
this process the potential shifts the minimum along thex-axis
where the potential in this case is the total potential combin-
ing the harmonic oscillator and the electric potential. It is
clear that the potential reshapes itself gradually between the
two limits of α.

It is worth mentioning that the shifts should reverse direc-
tions if the electric field is applied in the opposite direction,
or considering a negative charge.

4. Conclusion

We demonstrate the effect of an evolved electric potential on
a charged particle placed in a harmonic oscillator. The effect
of the evolved potential on the wave function and energy is
shown for different states, where the wave function experi-
enced a shift towards increasing fraction. We also show how
the potential itself develops fractionally and how it was re-
shaped until it takes the form a fully developed potential. In
future work, the anharmonic oscillator will be studied frac-
tionally to have a better understanding of thermal expansion.
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