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We study quantum and super quantum cosmology for a Friedman-Robertson Walker (FRW) flat universe in the presence of an inflation
exponential potential with the corresponding kinetic term for the scalar field. We exhibit exact solutions for the corresponding Wheeler-
DeWitt (WDW) equation and its square root. In both cases, solutions, as is known for the Bianchi models, of #i& fexist, whered is

the Hamilton-Jacobi function. For a particular factor ordering of the standard Wheeler-DeWitt equation we show a “wave packet” in which
for largex (with the radius of expansion of the univekse- e~ ), ¢ the scalar field angd “compete” modulating the behaviour of the “wave
packet”.
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Se estudian soluciones cosibgicas canticas y super@nticas exactas para un universo plano tipo Friedman-Robertson-Walker (FRW)
en presencia de un potencial exponencial de iréfacon un érmino cirético para el campo escalar. Se presentan soluciones exactas a la
ecuacbn de Wheeler-DeWitt (WDW) y su correspondienteeuadrada. En ambos casos, las soluciones, como es conocido de los modelos
Bianchi, son de la forma’®, donde® es la funcbn de Hamilton-Jacobi. Para un valor particular debpaetro de ordenamiento de factores

en la ecuadn de Wheeler-DeWitt, se muestra un “paquete de ondas” en el cual para grandes valofesrdel radio de expartan del
universo definida: ~ ¢~ %), el campo escalap “compite” conz en la moduladn del comportamiento del “paquete de ondas”.

Descriptores: Inflacion; soluciones exactas &uticas; cosmoldg clantica supersiitrica; ordenamiento de factores; ecéadie Einstein-
Hamilton-Jacobi.
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1. Introduction possible resolution of this and related difficulties is to extend
the standard quantization of the universe in a supersymmet-

The best candidate for quantum gravity theory remains to beic fashion. Supersymmetry may help in the quantization of
superstring matrix theory 1[2]. If it is indeed correct, it  gravity for a number of reasons.

should account for a guantum description .Of the univer_se. In order to put in context the approach we present in this

m"""e"‘?“ a twet” hundders'tAood tfeCOTdt quantlzr?t]lcon of St{'nQNork, we will briefly describe the main different formalisms
eory 1S not at hand. - An attempt o search for quan u”}:gnplied to supersymmetric quantum cosmology.

models of our universe has been proposed, namely, to solv

the Wheeler-DeWitt equation for the effective action of string 1) 1n0se defined by means of the use of supersymmetry
theory B, 4]. as a square root9f12], in which the Grassmann variables

Actually, the validity of this approach remains an Openare auxiliary variables and are not to be identified as the su-
question. For example, within the context of Bianchi IX COS_persymmetric partners of the cosmological bosonic variables.

mology, in general relativity, it has been shown thatimposing i) The superfield formulation 13, 14], which permits lo-
additional symmetry on the model alters the physical prediccal supersymmetric quantum cosmological models to be con-
tions [5]. It has, on the other hand, been argued that one caftructed in a systematic way, getting in a direct manner the
find conditions that must be satisfied to justify the minisuper-corresponding fermionic partners and being able to incorpo-
space approximation6]. It has been claimed that the WDW rate matter 15]. These fermionic partners are not deduced
equation corresponds to the s-wave approximatidnif the  directly from the gravitino.
string theory formalism. Nevertheless, the expectations seem iii) Models based on supergravity. They have been stud-
to be that the fundamental behaviour of the wave functioried using the Arnowitt-Deser-Misner (ADM) canonical for-
will be preserved §], by considering a more general analy- mulation and a four-component spinor formalisrh6-f18].
sis. They have also been studied with ADM variables and a
In principle, the wavefunction of the universe yields the two-component spinor formalism19,20]. Following this
probability that a spatial hypersurface evolves from a giverscheme, matter has been also includedl, $2], taking
initial state. However, ambiguities arise when attempting toV = 1 aswellasN = 2 supergravity. Further, Ashtekar’s
invoke such an interpretation due to the hyperbolic naturezariables have been considere$,[24]. Some of these mod-
of the Wheeler-DeWitt equation: a conserved current withels have already been presented in two comprehensive and
a positive-definite probability density is not possible. Oneorganized works, a book2§] and an extended review2d].
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The realization of these models needs a homogenizatiowith OU = —‘32%’ 22‘1; is the d’Alambertian in two dimen-
ansatz, which is usually taken to be where the space coosions with signature 20—,+).
dinates dependence of the metric is eliminated. That is, the To solve (4) we use the separation of variables method,
spatial derivatives are set to zero. In the case of supergravityhaking¥ = X (z)Y (), thus we have
the homogeneity ansatz should be formulated to be consistent - 2y ix
with supersymmetry. d _ B

It is also well known that one can transform the la- = da? +Xd7g02 Y g, — e XY =00
grangian in the so called string-frame to the Einstein frame ) ) )
[27]. In this work we will consider the Einstein frame to Ve obtain the following two equations:

describe a Friedman-Robertson-Walker flat universe, the la-

2

grangian will contain a kinetic term for the scalar field com- 7% +pg = 7*X, (6)
ing from the dilaton field in the string frame and a potential dx dz
depending on this scalar field which we will consider an ex- _d27Y tBe Y = %y, @)
ponential function of it. It has been considered thatthg dp? - h
field could be responsable for the presence of these kind of . ,
potentials []. This is one of the possible potentials which Where the parameteris the separation constant.
fits with the present data and can be deduced by performing Eduation (6) is solved easily:
a second order reconstruction of the COBE potent#l. [ LN A N A

For this model, we will exhibit solutions to the WDW X = Xge? ‘T 177 # | x o2 17 126G = (g)

equation in Sec. 2. A “Gaussian” state is also constructed for

which it is shown, for an enough large inflation scalar field, ~We can identify (7) as a Bessel differential equation,
that its approach to the singularity is slowed down by thewhose solution is

presence of the inflation field. The exponential of this scalar

field “compete” with the scale factor of the universe and Y =2, (iime—“ﬁ") , 9)
modifies the behaviour of the “Gaussian” state. The super- H

symmetric quantum wave functions are exhibited in Sec. 3, ) i ) , o
following the procedure in Refs. 9-12. We also observe awhereZV IS a generic Bessel function with order= e
tendency for supersymmetric vacua to remain close to their 1S, the solution becomes

semi-classical limits, because in this work and othetg],[ Ethmix

the exact solutions found are also the lowest-order WKB ap- ¥, = XY = {Xer »

proximations. Section 4 is devoted to final remarks. .

N vETTeL .
2. WDW equation and its solutions H

Since these solutions have the dependence in the parameter

We start with the following classical hamiltonian that comes )
7, the general solution can be put as

from inflationary cosmological model:
H = (=P} + P + fe™%), 1) Uyer = / G(n)¥,dn, (11)
wherez and are the variables in the model, withand whereG(n) represents a weighting function.

cpmplex parameters. In the quantum SChe”?e' this hamilto- For the particular value in the factor orderipg= 0, the
nian is up to operator and we take the following representa:

tion for the operator®,. = —id/dq": solution is
i 21 .2\/3 [y
. NV R U(z, ) = e WK, (11 e 5 %), (12)
_ 3z - _ ’ n

. . _ For this solution avave packetan be constructed2§]:
To include the factor ordering problem, we substitute the

following relation2into (2): 2 U(z, ) = Ne— 5% Sinh(%x)
0°v 0°v ov
3x _ 3x _ m
€ om2 ¢ (51.2 p&;) ' (3) X exp {—21{66_29@ cosh <gm)] . (13)

where the real parametemeasures the ambiguity in the fac-
tor ordering. So, the Wheeler-DeWitt equation, we can rea
now

Jror largez thewave packeteduces to

N u z— L(x—
Ow er(?g — Be MU = 0, (4) U(z, ) = 36‘2( ®) exp [\LBeg( 50)} ,

P (14)

Rev. Mex. 5. 48 (3) (2002) 205-209



QUANTUM COSMOLOGY FOR INFLATIONARY SCENARY

where the exponential functions dependwsny. We can see

that in this stadium, the scalar fiejfdandx compitemodu-

lating the behaviour of thevave packetSo, when the singu-

larity is approached (large x), i is large enough, theave

packetslows its approach to zero.

On the other hand, if in (1) we substitufz = 22 and
9 (for zero factor ordering), where the is known

P, = 5,

©

as the superpotential function, thus we obtain the Einstein-

Hamilton-Jacobi equation

(0w (o0
ox dp

2
) LB =0, (15)

207

This equation is similar to the structure in (17).

So, we obtain the following relations between superpo-
tential® and the potential under study, that is not other thing
that the Einstein-Hamilton-Jacobi equation, whose solution

is given in Eqg. (16):
2
) . (22)

_ 0B(x, ) \* (02(x, )

_ He —
pe < Ox + Op

Also, in this scheme, any physical state must obey the

following quantum constraints

V(x,p)

and using the separation of variables method, we have the

following solution for the superpotencig:

D = D, (2) + Py (¢)

B

s2

1- 8

52

_,/1-éze—uw], (16)

where the parametaris the separation constant.

2 1+4/1— He #v
=4sr+ — |In
I

1-— e H?¥

3. Supersymmetric quantum frame

We start giving the following super-hamiltonian:

D*®(zx, ¢)

Hsu er = H K
: ( O g

). an
where the bosonic hamiltonidri, corresponds to the one in

Eq. (4), K is a complex constant. Following Refl12], we
give the super-charges

QU =0,
QW = 0.

(23)
(24)

The wave function has the following decomposition in the
Grassmann variables representation:

U = 1p, + 10° 4+ 160" + _0°61, (25)

where the componentg. are the contributions to the
bosonic sector, andj, 1 are the contribution functions in
the fermionic sector.

The supercharges read as

0 _ 0
w + (8@ + ZDSG@@) %,

Q=0°0; —iD,®,) + 60" (9, —iD,®,),

Q= —(0; +iD, ;) (26)

(27)

whereD, = £ D, = %.
When we use Eq. (23), we have the following set of par-

tial differential equations

0P (x, 0P(x,
quﬁx(a%_i_z(aa;@))_i_wtp (6804_2;2@) ) (18) (aszr - ZDz‘EﬂM) = 0, (28)
o) @Z?“’(@ -3@($790)>+w@ (8 .3<I>(:c,<p)> (19) (Op4 —iDp®upy) = 0, (29)
= =l ——(——— —1 . . )
' O v dp Opth1 — 1D, Duthy — Dptho +iDp®ythy = 0. (30)
We suppose the following algebra for the variables ]
andv”, (u, v = x, ) [12]: Thus, the solutions for Egs. (28 -29) are
{9 "y =0, {9y =0, {¢F,9"} =0. (20)
Using the representation for these variables as I (31)
Y = p*9/00” andy” = 67, one finds the superspace Vip = K€%=,
hamiltonian to be written in the form @
_ I Vi, = Kige"%, (32)
Hsuper\:[} = {Qv Q} U= (QQ + QQ) v
) ) where K, ; and K, are integration constants. Finally, the
_ 2, 2 [0%(z,9) 9%(z, ) structure for the functionp,, is
=|-0;+0; — +
@ Ox Op
’l/)—i- = K—i-eiq)v (33)
02D (x, o O?O(x, —
Oz dp where® is given in Eq. (16).
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Now, using Eg. (24) we have the other set equations

Ot +iDpPptp— =0, (34) F, = age %% /62@‘” dz 4+ aje 2= (44)
Oxtp— 4+ 1D P 1p_ =0, (35)

— —2iP, 2iP —2iP
—Outbo — iDay by + Dy + DBty =0, (36) F, = age @ /e *do + age ¢, (45)
having the structure form fap_ as With that, using (38) and (39), we have
P = Kye '?, (37) o —e2i®e (ao/e%‘bm dr + a1) P
For functionsyy, 11 we propose the following ansatz: .
_ F2isx 1ag +2isx 1P
= — + , 46
do = Tlge, (38) ’ (; 2" al) ) o
X
IR o Wby =e P <a0 / e*' e dgo+a2> et (47)
= —¢ 39
¢1 0906 ) ( )

whereR = R(z, ¢) is a bosonic function. In this poin_t, we can mention that thesg contribution; to thg

Introducing (38) and (39) in (30), we find that the func- wave.func_tlo_n have a tendency to remain close to Fhe|r semi-

tion R has the following structure: classical limits, (see Ref. 12), and the exact solutions found
are also the lowest-order WKB approximations.

R(.Q?, 90) = Rﬂc(x) + Rtp(@)a (40)

and re-introducing on (36), we obtain 4. Final Remarks

D3R, +2iDy Ry D, ®, = D} R, + 2iD,R,D,®,, We have exhibited exact solutions to the Wheeler-DeWitt
equation and its square root. Some of these solutions result of
= ay, (41)  the forme'®, whered® is the Hamilton-Jacobi function. The

. , , same behaviour was found for the Bianchi model$].[ For
thatis easy to solve when we apply separation variables methne standard WDW equation and a particular factor ordering
ods, for instance (3) we have found thevave packet13). For large x thevave
packetreduces to (14), where the exponential functions de-

Dol + 20, Ve = ao, (42) pend oz — . So, when the singularity is approached (large
with F,, = D, R,, V,=D,®,; X), if ¢ is large enough, thevave packeslows its approach
to zero.
DyFy +2iF,V, = ao, (43)  Acknowledgments
with F, = D,R,, V,=D,®,. This work was partially supported by CONACYT grant
E28454. We thank N. Lopez for critical reading of the
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