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Otto and Diesel engine models with cyclic variability
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Typically, in an internal combustion engine, thousands of cycles are performed in a minute. In this sequence of cycles many physical and
chemical quantities change from cycle to cycle. For example, the combustion heat changes due to residual gases, imperfect combustion
and other reasons. In this work, we present two finite-time thermodynamics models for both an Otto and a Diesel cycle, in which the cyclic
variability is studied as occurring in the heat capacities of the working fluid. The fluctuations considered are of the uncorrelated type (uniform
and gaussian) and one correlated case (logistic map distribution). We find that in the correlated fluctuations case, the power output and the
efficiency of both cycles reach bigger fluctuations than in the uncorrelated cases. This result can provide insights over the performance of
internal combustion engines.
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En máquinas de combustión interna, t́ıpicamente, miles de ciclos son realizados en un minuto. En esta secuencia de ciclos algunas cantidades
fı́sicas y qúımicas cambian de ciclo a ciclo. Por ejemplo, el calor de combustión cambia debido a gases residuales, a combustión imperfecta
y a otras razones. En este trabajo presentamos dos modelos a tiempo finito para los ciclos Otto y Diesel, en los cuales se estudia la
variabilidad ćıclica como si estuviera ocurriendo en las capacidades calorı́ficas de la sustancia de trabajo. Consideramos tanto fluctuaciones
descorrelacionadas (uniforme y gaussiana) como correlacionadas (distribución tipo mapa loǵıstico). Encontramos que en el caso de las
fluctuaciones correlacionadas, la potencia y la eficiencia de ambos ciclos alcanzan mayores fluctuaciones que en los casos descorrelacionados.
Este resultado puede ayudar a comprender mejor el funcionamiento de máquinas de combustión interna.

Descriptores:máquinas de combustión interna, variabilidad cı́clica, fluctuaciones

PACS: 44.60.+K; 44.90.+C

1. Introduction

In 1996, Badescu and Andresen [1] proposed that finite-time
thermodynamics (FTT) can be complemented with some
probabilistic concepts allowing a more accurate description
of the performance indicators of a power system. These au-
thors studied a continuous flow tube reactor which supplies
heat to an engine from a chemical reaction with linear ki-
netics. In general, typical FTT-models of thermal cycles are
worked in steady state and only one cycle is taken as repre-
sentative of all the other cycles pertaining to a sequence of
them. In a typical internal combustion engine, several thou-
sands of cycles are performed in a minute and there exist the-
oretical and experimental reasons to expect important vari-
ations from one cycle to the next [2, 3]. These variations
can be found for example in the combustion heat of an Otto
cycle [3, 4]. In a recent paper, Dawet al. [3] proposed a dis-
crete engine model that explains how both stochastic and de-
terministic features can be observed in spark-ignited internal
combustion engines. These authors present a model which
reproduces the experimental observations of the cyclic vari-
ability of the combustion heat in a four-stroke, spark-ignition
Otto cycle. Recently, we have reported an irreversible Otto

cycle model including chemical reactions [5]. In that model,
we analyzed the performance of an Otto engine (see Fig. 1)
taking into account power losses due to a kind of lumped
friction and we also consider the combustion reaction at the
end of the adiabatic compression. In other work [6], we took
the concept of fluctuant combustion heat proposed by Dawet
al. [3] as the input of our irreversible Otto cycle model, and
then we analyze the behavior of performance outputs, such as
the power (P) and the efficiency (η) of the Otto cycle model.
In that work, we found that the size of the fluctuations in P
andη around their mean values can be driven by the size of
the combustion heat fluctuations and also by thermodynamic
properties of the states of the working fluid. In the present
work, we study two thermal cycles, namely the Otto and the
Diesel cycles, under heat fluctuations, but using an alterna-
tive approach, where the fluctuations are taken as occurring
in the heat capacity of the working fluid. In our approach,
we take two previous FTT- models for both the Otto [7] and
the Diesel [8] cycles. The paper is organized as follows: in
Sec. 2, we present a brief resume of our previous thermal cy-
cle models; in Sec. 3 we discuss our fluctuant models of both
cycles and finally in Sec. 4 we present the conclusions.
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2. Otto and Diesel FTT-models

In Fig. 1 we depict the Otto cycle pressure-volume diagram
of the processes followed by the working fluid consisting of
n moles of air. In Ref. 7 it was considered that both the
“absorbed” heatQeff and the rejected heatQout occur at finite
times given by

t1V = K1 (T3 − T2) ,

and (1)

t2V = K2 (T4 − T1) ,

respectively, whereK1 andK2 are constants linked to the
mean variation rate of the temperatures. In this approach
the adiabatic processes were taken as approximately instan-
taneous, as it is common in FTT-models [9]. In this way, the
cycle’s period is given by,

τ = t1V + t2V = K1 (T3 − T2) + K2 (T4 − T1) . (2)

FIGURE 1 Pressure-volume diagram of an ideal Otto cycle.

In Ref. 7 the cycle’s power output without losses was
taken as

PR =
WTOT

τ
=

CV1
− CV2

r1−γ

K1 −K2r
1−γ

, (3)

whereCV1
andCV2

are the constant-volume heat capacities
of air in both isochoric processes2 → 3 and4 → 1, and
γ = CP1/CV1 = CP2/CV2 , beingCP1

andCP2
the constant-

pressure heat capacities of the working fluid during the pro-
cesses2 → 3 and4 → 1 respectively,r = V1/V2 is the
so-called compression ratio. When in the model, losses due
to friction, turbulence in the working fluid, heat leaks etc, are
added, all of them lumped in only a friction-like term, we
have [7]

Pµ = −µν2 = −b (r − 1)2 , (4)

whereµ is a lumped friction coefficient that embraces all
the global losses,ν is the piston speed andb = µx2

2/∆t212,
being x2 the piston position at minimum volumeV2 and

∆t12 = τ/2 the time spent in the power stroke. Thus, the
Otto model effective power output is given by

P = PR − Pµ =
CV1

− CV2
r1−γ

K1 −K2r
1−γ

− b (r − 1)2 , (5)

and the cycle’s efficiency by

η =
P

Qeff/τ
=1−CV2

CV1

r1−γ− b (r−1)2

CV1

(
K1−K2r

1−γ
)
. (6)

Equation (6) reduces toη0 = 1 − r1−γ (the ideal Otto effi-
ciency) forCV1

= CV2
andµ = b = 0 and Eq. (5) reduces

to P= 0 for the ideal reversible (infinite-time) case.

FIGURE 2 Pressure-volume diagram of an ideal Diesel cycle.

In Fig. 2, we depict a pressure-volume diagram of a
Diesel cycle. In the FTT-approach of this cycle followed in
Ref. 8 mainly based in the ideas of Ref. 7, the following
expressions were obtained, for the cycle’s period,

τ = K1 (T3 − T2) + K2 (T4 − T1) , (7)

and for the lumped friction losses

Pµ = −b (r
C
− 1)2 , (8)

where r
C

is the compression ratior
C

= V1/V2 and
b = µ x2

2/∆t212. The effective power output and the cycle’s
efficiency are given by [8]

P =
CP (rC − rE ) (rE rC )γ−1 − CV

(
rγ

C
− rγ

E

)

K1 (r
C
− r

E
) (r

E
r

C
)γ−1 −K2 (rγ

C − rγ
E )

−b (r
C − 1)2 , (9)

and

η = 1− rγ
E
− rγ

C

γ (rE − rC ) (rE rC )γ−1

−
b (rC−1)2

[
K1 (rE−rC) (rE rC)

γ−1+K2 (rγ
E−rγ

C)
]

CP (r
E
− r

C
) (r

E
r

C
)γ−1 , (10)
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where CP is the constant-pressure heat capacity and
r

E = V1/V3 is the expansion ratio. Eq. (10) immediately
reduces to the ideal Diesel efficiency [10] whenµ = b = 0
and Eq. (9) reduces to P= 0 for the ideal reversible case.

As it was remarked in Refs. 7 and 8, Eqs. (5), (6), (9) and
(10) have a reasonable behavior when they are compared with
real power and efficiency curves for actual Otto and Diesel
engines. In fact, the obtained values for Pmax andηmax in
both cases are close to the real Pmax and ηmax values. In
addition, these equations lead to loop-shaped curves for P
versusη plots as it is common in many real engines [11].

3. Otto and Diesel cycles with cyclic variability

Lukanin [2] and Heywood [12] remark that in a sequence of
thermal cycles pertaining to an internal combustion engine,
one finds cycle to cycle variations in several quantities, such
as the chemical composition of the working fluid, the com-
bustion heat, etc.. Among the phenomena that cause cyclic
variability (CV), the following ones can be mentioned: there
exists in the process of admission and recharge of the fuel an
overlap in the opening times of the intake and exhaust valves
producing that not all of the gases in the cylinder are expelled
during the exhaust process. This residual fraction includes
combustion products and some unreacted fuel and air. Thus,
the reactive mixture is different in each cycle of a sequence of
them, and therefore, the combustion heat also changes from
cycle to cycle [3, 6]. Small changes in the atmospheric pres-
sure and in the chemical composition of the air can also pro-
duce minor changes in the combustion heat. In fact, all of the
corner states in Figs. 1 and 2 can fluctuate from cycle to cycle
due to variations in the combustion heat and in addition, due
to friction losses, adiabatic imperfections, and turbulence in
the working fluid, among many other reasons [2, 12, 13]. In
the Dawet al. model [3] only the net effect of the mentioned
CV-causes is taken into account through stochastic fluctua-
tions in one or more key parameters as the injected fuel-air
ratio for example. From the central-limit theorem these au-
thors assume that the noisy parametric inputs are gaussian
distributed because they arise from the combined contribu-
tion of many high-dimensional processes. They consider a
primary deterministic element arising from the retained fuel
and air from one engine cycle to the next. Retained resid-
ual gases influence succeeding cycles because of a strong
nonlinear dependence of combustion rate on the time of the
spark [3]. Dawet al. mainly work with the analysis of a
parameter called the equivalence ratioφ0 defined by the quo-
tient between the mass of fuel and mass of air for thei-th
cycle. Finally, they reduce a high-dimensional problem to
one with only one degree of freedom expressed by a chaotic
deterministic map of the formQeff [i + 1] = f (Qeff [i] , λj);
j = 1, 2, ..., whereQeff is the heat released in each com-
bustion event, andλj are parameters such as the equivalence
ratio and others [3]. In ref. [6], we study the role of the
thermodynamic properties of an Otto engine model over the
fluctuations of the combustion heat, expressed through out-

puts such as the power P and the efficiencyη. In the present
paper we extend the study to a Diesel engine model and we
assume that the heat fluctuations can be represented by fluc-
tuations in the heat capacities of the working fluid along the
branches of the thermal cycles.

3.1. The Otto cycle case

In this case, we assume that the intake mixture (gas r) is com-
posed by methane and air according to the following expres-
sion:

gas r= (1−α) CH4+2
[
1+

α

9.546

]
(O2+3.773N2) , (11)

whereα ∈ [0, 0.1] determines the proportions of methane
and air in the intake mixture, that is, it defines a mixture poor
or rich in fuel contents. The molar numbernr of gas r is de-
termined by the initial state of the mixture taken as ideal gas:

nr =
P1V1

R̃T1

; (12)

if we take T1 = 350K, P1 = 1.03 × 105Pa, and
V1 = 4 × 10−4m3, which are typical values ofP ,
V , and T [14] for an initial state in an Otto cycle, with
R̃ = 8.31451 J mol−1K−1 the universal gas constant, we
have,nr = 0.01415 mol. When the combustion reaction
occurs, gas r [Eq. (11)] is converted in gas p according to

gas r= (1−α) CH4+2
[
1 +

α

9.546

]
(O2 + 3.773N2)

↑Qeff−→ (1− α) CO2 + 2 (1− α) H2O + (2.2095α) O2

+(7.546 + 0.7904α) N2 = gas p, (13)

whereQeff is the combustion heat. Whenα = 0, we have
the stechiometric case, and when0 < α ≤ 0.1, we have a
poor-fuel mixture. In fact,α can vary in the interval[0, 1],
but we are only interested in small fluctuations around the
stechiometric case. In Fig. 1, gas r undergoes the process
1 → 2, then the combustion reaction occurs in some place
of the process2 → 3, then gas p undergoes the processes
3 → 4 and4 → 1. The constant-pressure heat capacities of
gases r and p,CPr andCPp, respectively, in the appropriate
temperature intervals are calculated by means of the polyno-
mials reported by Heywood [12] for someα values. Then,
we obtain the constant- volume heat capacitiesCVr andCVp

by means of the Mayer relation

CVr = CPr − nrR̃

and

CVp = CPp − npR̃ (14)

From Eq. (13), we observe thatnp = nr. Thus, we have all
of data to calculate the heat capacities of gases r and p for
severalα values, which we present in Table I.
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TABLE I. Values of heat capacitiesCP and CV for several values
of α

α CPr (J/K) CPp (J/K) CVr (J/K) CVp (J/K)

0.00 0.4712502 0.5988764 0.3535998 0.4812260

0.02 0.4706447 0.5974308 0.3529943 0.4797804

0.04 0.4700389 0.5959877 0.3523885 0.4783373

0.06 0.4694360 0.5945464 0.3517856 0.4768960

0.08 0.4688305 0.5931025 0.3511801 0.4754521

0.10 0.4682470 0.5916577 0.3505743 0.4740073

In Fig. 3, we depict the linear dependence resulting between
CVp andCVr respectively, for values taken from Table I. The
linear fit gives

CVp = −0.362478 + 2.38604CVr . (15)

FIGURE 3 Linear behavior of the heat capacities for several values
of α.

If in Eqs. (5) and (6) for the power output and the ef-
ficiency of the Otto cycle model, we takeCV1

= CVr and
CV2

= CVp = 2.38604CVr − 0.362478, then we obtain both
CV1

andCV2
in terms ofCVr . The adiabatic exponentγ is

taken with the same value for both adiabatic branches1 → 2
and3 → 4,

γ =
CPr

CVr

= 1 +
nrR̃

CVr

, (16)

the additional parameters appearing in Eqs. (5) and (6) are
taken with the same values used in Ref. 7, which are:r = 8,
K1 = 8.128 × 10−6sK−1, K2 = 18.67 × 10−6sK−1 and
b = 32.5W. Thus, P andη can be expressed in terms ofCVr

only, then, Eqs. (5) and (6) become

P(CVr) =
CVr − (2.38604CVr − 0.362478) r

n eR
CVr

K1 + K2r
n eR
CVr

−b (r − 1)2 , (17)

and

η (CVr) = 1− (2.38604CVr − 0.362478) r
n eR
CVr

CVr

−b (r − 1)2

CVr

(
K1 + K2r

n eR
CVr

)
. (18)

As we said before, our approach to the cyclic vari-
ability will be through fluctuations in the heat capacity
CVr . With this objective, we proposeCVr fluctuating around
CVr0

= CVr (α = 0) = 0.3535998 JK−1 [15] according
to, CVr = (1 + ε) CVr0

, whereε is a fluctuating parameter
such thatε ∈ [−0.1, 0.1], the reference value forCVr0

cor-
responds to a methane-air mixture. Theε fluctuations will
be considered as uncorrelated noises of the gaussian and uni-
form type and we will also study a correlated nonlinear case
given by a logistic map in the chaotic region.

FIGURE 4 Schematic variations of an Otto cycle between the ex-
treme values of the parameterε.

The variation interval ofCVr is 0.9CVr0
≤ CVr ≤ 1.1CVr0

,
thus, the Otto cycle in aP −V diagram will change between
two extreme configurations as can be seen schematically in
Fig.4. In this manner the pressure in state 3 will fluctu-
ate from cycle-to-cycle, such as occurs in pressure diagrams
of real engines [12] and in other fluctuating engine models
[3, 6]. For example, in Fig. 5 we depict the pressure traces
arising of our previous fluctuating Otto cycle model [6]. We
calculate the P andη fluctuations for a 3000 cycles sequence.
In Figs. 6a, 6b and 6c we show the power output
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FIGURE 5 Pressure traces in an internal combustion engine (Otto
case) with cyclic variability.

time series for three cases of fluctuations in the heat capacity
CVr in Eq. (17): In Fig. 6a an uncorrelated uniform distri-
bution; in Fig.6b an uncorrelated gaussian distribution and

FIGURE 6 Power output fluctuations of the Otto cycle model:
a) Uniform; b) Gaussian; c) Logistic

in Fig. 6c, a correlated logistic map distribution given by
ε (n) = 3.8ε (n− 1) [1− ε (n− 1)], that is, with the pa-
rameterλ = 3.8 corresponding to the chaotic region [16].
In Table II, we show the characteristic parameters of the fluc-

tuant power output of the cycle model. As it can be seen
in Table II, the mean power output for the three cases is al-
most the same and they correspond to realistic values of P
[2], the uncorrelated gaussian noise has the smallest stan-
dard deviationσP = 550.61W and also the smallest rel-
ative fluctuationσP/P = 0.1133, on the other hand the
correlated logistic map leads to the most noisy case with
both the greatest standard deviation and relative fluctuation(
σP = 1096.29W andσP/P = 0.2265

)
, that is, the case that

resembles the situation in which combustion residuals of the
previous cycle affect the next cycle produces bigger fluctua-
tions as it is expected. For the efficiency case, and using the
same three noisy inputs (uniform, gaussian and logistic) in
Eq. (18), we obtain similar results, as can be seen in Figs. 7a,
7b, 7c and in Table II. In the case of the Diesel engine

FIGURE 7 Efficiency fluctuations of the Otto cycle model: a) Uni-
form; b) Gaussian; c) Logistic

TABLE II. Characteristic parameters of a fluctuant Otto cycle

ε P(W) σP (W) σP/P η ση ση/η

uniform 4830.95 910.59 0.1884 0.2405 0.0537 0.2232

gaussian 4855.73 550.61 0.1133 0.2407 0.0325 0.135

logistic 4840.03 1096.29 0.2265 0.2419 0.0647 0.2677

model, we can use the same approach, that is, first we
write Eqs. (9) and (10) for the power output and the effi-
ciency in terms ofCV only. TakingCP = CV + nR̃ and
γ = CPr/CVr = 1 + nrR̃/CVr , for Eqs. (9) and (10), we
have

Rev. Mex. F́ıs. 48 (3) (2002) 228–234
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P(CV ) =

(
CV + nR̃

)
(r

C
− r

E
) (r

E
r

C
)

n eR
CV − CV

[
r
1+ n eR

CV
C − r

1+ n eR
CV

E

]

K1 (r
C
− r

E
) (r

E
r

C
)

n eR
CV −K2

[
r
1+ n eR

CV
C − r

1+ n eR
CV

E

] − b (rC − 1)2 (19)

and

η (CV ) = 1− r
1+ n eR

CV
C − r

1+ n eR
CV

E[
1 + n eR

CV

]
(r

C
− r

E
) (r

E
r

C
)

n eR
CV

−
b (rC − 1)

[
K1 (rC − rE ) (rE rC )

n eR
CV + K2

(
r
1+ n eR

CV
C − r

1+ n eR
CV

E

)]

(
CV + nR̃

)
(r

C
− r

E
) (r

E
r

C
)

n eR
CV

. (20)

As in the Otto case, we simulate the cyclic vari-
ability through the variations in the constant-volume heat
capacity by means ofCV = (1 + ε)CV0

, where
CV0

= 0.2988JK−1 andCP0
= 0.41832JK−1 [15], thus

n = (CP − CV )/R̃ = 0.0143748 mol, in this case
our reference value forCV0 corresponds to air. The addi-
tional values for the parameters involved in Eqs. (19) and
(20) were taken from Ref. 8,K1 = 8.12 × 10−6sK−1,
K2 = 18.67 × 10−6sK−1, b = 3W, r

E
= 1.35 and

r
C = 12.5. As in the Otto case theCV interval of vari-

ation is 0.9CV0
≤ CV ≤ 1.1CV0

, of course, this interval
is somewhat arbitrary, but our objective is only a qualitative
and comparative analysis of fluctuations. In Fig. 8, we de-
pict a scheme of the fluctuant Diesel cycle. In Table III, we
show some statistical parameters of the fluctuant Diesel cycle
model, as in the Otto case, we observe that for the three fluc-
tuant variations ofCV , the mean power output results almost
the same. On the other hand, the logistic fluctuation leads to
the biggest fluctuations in both the standard deviationσP and
the relative fluctuationσP/P. A similar result is obtained for
the efficiency of the Diesel cycle (see Table III). It is remark-
able that for similar fluctuant inputs the Diesel cycle is less
noisy than the Otto cycle, yet in the case of the logistic fluctu-
ations. In all the cases, we have calculated de Hurst exponent
H of both the time series of power and efficiency, and we
find H ≈ 10−3, that is, the series have an antipersistent and
stable behavior [17].

TABLE III. Characteristic parameters of a fluctuant Diesel cycle

ε P(W) σP (W) σP/P η ση ση/η

uniform 4800.41 32.9295 6.85×10−3 0.2971 0.0133 0.0448

gaussian 4799.91 19.8738 4.14×10−3 0.2970 0.008 0.0271

logistic 4801.72 39.6953 8.266×10−3 0.2976 0.016 0.054

4. Conclusions

There exist many theoretical and experimental reasons for
taking a sequence of thermal cycles no as an identical repeti-
tion of a representative steady-state cycle, but as a sequence

FIGURE 8 Schematic variations of a Diesel cycle between the
extreme values of the parameterε.

of cycles changing in several thermodynamic quantities. In
fact, in internal combustion engines, as the Otto and Diesel
engines, the combustion heat changes from cycle to cycle due
to imperfect combustion and residual gases inside the cylin-
der after each combustion event. Evidently, this cyclic vari-
ability in the combustion heat must produce changes in the
performance of a cyclic sequence, for example, in both the
power output and efficiency. Recently, Dawet al. [3] pro-
posed an internal combustion engine model, in which, the
combustion heat changes from cycle to cycle. Those authors
obtained a reasonable reproduction of the experimental time
series of the fluctuant combustion heat for a spark-ignited
Otto engine. Starting from this model, we proposed another
model [6] in which, the fluctuant combustion heat drives the
thermodynamics of an Otto engine including a chemical com-
bustion reaction, and dissipative losses. In that work [6], we
find that power and efficiency are fluctuant quantities whose
fluctuation sizes (standard deviation and relative fluctuation)
can be driven through the managing of the thermodynamic
state variables of the working fluid [6]. In the present work,
we develop fluctuant models for both an Otto and a Diesel

Rev. Mex. F́ıs. 48 (3) (2002) 228–234
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cycle, but assuming that the cyclic variability can be lumped
through the fluctuations of the constant-volume heat capacity.
In both cases we have obtained that the size of fluctuations
is bigger in a logistic correlated noise than in two uncorre-
lated noises (uniform and gaussian), that is, in the case when
the time series qualitatively resembles the situation in which
combustion residuals are maintained from cycle to cycle. Our

results also suggest that the Diesel cycle is a better “thermo-
dynamic filter” of the fluctuations than the Otto cycle.
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