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The motion of single charged particles in a magnetized plasma is studied using a Lagrangian formalism, applied to the average over a gyro-
period, in the presence of an electromagnetic wave that is being resonantly absorbed by the medium. Near the resonance surface the wave
amplitude has a gradient and the resulting particle drifts are shown to be consistent with the existence of a ponderomotive force, produced
by the wave-field-gradient. The orbits are also obtained numerically to show how the drifting motion arises, and to study the case of high
field-gradients, which is not described with the formal analysis.
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Se estudia el movimiento de partı́culas cargadas individuales en un plasma magnetizado con un formalismo Lagrangiano, aplicado al prome-
dio sobre un perı́odo de giro, en presencia de una onda electromagnética que es absorbida de manera resonante por el medio. Cerca de la
superficie de resonancia la amplitud de la onda tiene un gradiente y se muestra que los movimientos de deriva resultantes son consistentes con
la existencia de una fuerza ponderomotriz, producida por el gradiente del campo de la onda. También se obtienen laśorbitas nuḿericamente
para mostrar ćomo es el movimiento de deriva y para estudiar el caso de gradientes de campo grandes, que no se describe adecuadamente
con el ańalisis formal.

Descriptores: Orbitas de partı́culas cargadas; ondas electromagnéticas en plasmas; mecánica lagrangiana.

PACS: 52.20.Dq; 52.35.Hr; 45.20.Jj

1. Introduction

The use of electromagnetic waves to heat a plasma has been
studied for many years in relation to magnetic confinement
fusion applications. It is now clear that for a plasma to reach
the required high temperatures for nuclear fusion to be sus-
tained, it will be necessary to inject energy in the form of
radio frequency (rf) waves or energetic neutral beams. The
wave is absorbed at the resonance frequency of the charged
particles (electrons or ions) gyrating in the magnetic field,
which occurs at a specific location in the plasma, since the
magnetic field varies with position. At this resonant surface,
the wave amplitude decreases and therefore, in front of the
surface, the wave fields have a gradient in the direction of
wave propagation. It is known that an oscillating field with
a spatial variation produces a time-averaged ponderomotive
(PM) force in the direction opposite to the field gradient, so
one would expect to have such a force in the vicinity of the
resonant surface. The momentum transfered to the plasma
by a PM force has been invoked as the cause of the rotation
produced in toroidal experiments, when the injected rf wave
is not resonant [1]. But also, for resonant absorption of high-
frequency rf waves it is possible to have a rotation due to the
PM force, as proposed in Ref. 2. These waves resonate with
electron cyclotron (EC) frequency and their absorption is in
a very localized region of the plasma, which may give rise to
quite high field gradients.

The physical origin of the PM force is quite clear, when
one considers an unmagnetized plasma in presence of a rf
wave. Essentially, a field gradient parallel to the field itself,
gives an oscillating particle a larger push in one direction than
in the other, which produces the effect of a net force along
the negative field gradient, when averaged over a wave pe-
riod. The physics is less clear when there is a background
magnetic field, since there are two frequencies involved, and
the gradient does not necessarily have to be parallel to the
wave field. If the magnetic field is weak enough, such that
the wave frequencyω is larger than the cyclotron frequency
Ω, as the particles gyrate they feel the effect of the wave fields
averaged over the wave oscillations, and experience a drifting
motion of their guiding center; one would expect the drift to
be the result of the PM force crossed with the magnetic field.
However, whenΩ is of the order of, or larger thanω, the
averaging procedure over the wave period, interferes with the
gyromotion and the concept of ponderomotive force becomes
confused.

In this paper we look at the particle motion in the com-
bined fields of a rf wave and a background magnetic field,
B0, under different circumstances, relevant to the problem of
rf heating of a toroidal magnetized plasma, in order to elu-
cidate the effect of the wave gradients on the particle fluxes.
Of particular importance to us is the use of electron cyclotron
waves to produce a particle flux in the vicinity of the reso-
nant surface. The situation we consider is that, an EC wave
propagating in the radial direction (perpendicular to the mag-
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netic field) arrives at the resonant surface, where it is mostly
absorbed and thus its amplitude has a radial gradient; the par-
ticle (electron or ion) motion in these fields is then studied,
including the case of large wave amplitude, [2] and for ω
equals to any harmonic ofΩ. The two wave polarizations,
the ordinary (O-mode), with the waveE-field parallel toB0,
and extraordinary (X-mode), with the waveE-field perpen-
dicular toB0, are considered. We first adopt a Lagrangian
description of the particle orbits, using averages over the gy-
romotion. This is done in Sec. 2 where we obtain the drift
velocity of the guiding center, and it is identified as produced
by a ponderomotive force. Then, in Sec. 3 the equations of
motion are numerically solved to display the orbits directly
and show how the drifting motion is actually occurring. In
this way it is also possible to consider extreme cases that are
not possible to describe with an analytical description. It is
shown that, in most resonant cases, the drifting motion of the
guiding center is not accompanied by a matching particle or-
bit displacement, as in theE×B drift, for instance, but rather
the increasing radius causes the guiding center displacement.
This does produce an average particle flux, but it is limited
by the geometrical size of the device and the gradient scale
lengths. Finally, in Sec. 4 we comment on the application of
our results and give the conclusions.

2. Lagrangian particle motion

In order to analyze the motion of a charge particle in a mag-
netic field, and influenced by the action of an electromagnetic
field, we follow a Lagrangian description. Since the back-
ground magnetic field is assumed to be larger than the wave
field, the gyromotion of the particle in the strong field is dom-
inant and it is then possible to consider the wave as a pertur-
bation. Thus, the Lagrangian is averaged over a gyroperiod,
so that, the Euler-Lagrange equations resulting from the vari-
ational principle for the averaged Lagrangian, give the mo-
tion of the guiding center. The Lagrangian than we will use
is a phase space Lagrangian that is a function of the coordi-
natesq, velocitiesq̇ and the momentump, obtained from a
HamiltonianH(p,q, t) as [4]

L(q,p, q̇, t) = p · q̇−H(q,p, t), (1)

where the relativisticH for a particle in an electromagnetic
field is given by

H(q,p, t) = [m2c4 + c2(p− q/cA)2]1/2 + qφ.

The fields are given in terms of the electromagnetic potentials
φ andA, while the canonical momentum is

p = mγv + q/cA,

whereγ is the relativistic factor. In this description, the ve-
locities q̇, and momentamγv, are treated as independent
variables, although there is a relation among them, which will

come as a result of the Euler-Lagrange equations. It is actu-
ally more convenient to work with a variableu = γv, instead
of the velocity or the momentum.

For a uniformB field in thez-direction, the relevant vec-
tor potential is,A = B0xŷ. For simplicity we adopt cartesian
coordinates, which are valid locally. To represent O- and X-
modes we use the following potentials:

Ao = B0xŷ +
∫

B1(x) cos(kx− ωt)dxẑ, (2)

Ax = [B0x + A2(x) sin(kx− ωt)]ŷ

−A1(x) cos(kx− ωt)x̂, (3)

and choose a gauge whereφ = 0. For the X-mode a lon-
gitudinal component is included, according to the charac-
teristic elliptic polarization of this mode. The amplitudes
are functions ofx, the wave propagation direction. For
definiteness, here we will take an exponential dependence,
B1(x) = B1 exp(−ax) and the same forA1 andA2. Note
that in order to have a spatially dependent amplitude it is nec-
essary to have field sources present; a plane wave in vacuum
is homogeneous. However, we do not consider the effect of
the plasma on the wave here. With this variation, the corre-
sponding wave fields are,

E1o =
ω

c

B1 exp(−ax)
k2 + a2

[k cos(kx− ωt)

+a sin(kx− ωt)]ẑ, (4)

B1o = −B1 exp(−ax) cos(kx− ωt)ŷ, (5)

E1x =
ω

c
exp(−ax)[A1 cos(kx− ωt)ŷ

+A2 sin(kx− ωt)x̂], (6)

and

B1x = A1 exp(−ax)[k cos(kx− ωt)

−a sin(kx− ωt)]ẑ. (7)

Here the effect of the amplitude gradient is to add an extra
term to one component of the fields, proportional toa, phase
shifted byπ/2.

The first step is to average the Lagrangian [Eq.(1)] over
the gyromotion, which will give the equations for the guid-
ing center. This process should give the same results as the
standard procedure of averaging the equations of motion, as
it was indeed shown by Littlejohn [4], for the case of static
electric and magnetic fields. In the Appendix we derive the
guiding center drift velocities from the Lagrangian method,
to show that the standard drifts are recovered. Here we use
the potentials (2) and (3) to obtain the particle motion in the
wave field. Guiding center coordinates are used, as defined
in Eqs.(20) and (21) of the Appendix.
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2.1. O-Mode

Starting with the O-mode, the averaged Lagrangian is

Lo = mu‖ż −mc(c2 + u2)1/2 +
mu2

⊥θ̇

2Ω
− e

c
B0XẎ − e

c

B1ż

a2 + k2

×I0

(au⊥
Ω

)
Jn

(
ku⊥
Ω

)
[a cos(kX + ψ)− k sin(kX + ψ)]e−aX , (8)

where the capital letters refer to the guiding center position,
Jn(x) andI0(x) are Bessel and modified Bessel functions,
with n = ω/Ω, andψ = θ − ωt. As a particular, but im-
portant case, we consider the resonance condition at the first
harmonicn = 1, since this is the situation most used in ex-

periments of EC resonance heating at perpendicular injection,
because it has the highest absorption. If we approximate for
small arguments of the Bessel functions (i.e. small gyrora-
dius),J1(x) ∼ x/2, I0(x) ∼ 1, the Lagrangian becomes

Lo = mu‖ż −mc(c2 + u2)1/2 +
mu2

⊥θ̇

2Ω
− e

c
B0XẎ − e

c

B1ż

a2 + k2

(
ku⊥
2Ω

)
e−aX [a cos(kX + ψ)− k sin(kX + ψ)]. (9)

From this Lagrangian we can obtain the Euler-Lagrange
equations of motion. The equation for the variableu‖ gives
the conditionż = u‖/γ, as expected. The drift velocities
are obtained from the equations forX,Y andz, which, when
combined, give

Ẋ = 0, (10)

Ẏ =
B2

1

B0

(
ku⊥
2Ω

)2
q

mγc

e−2aX

a2 + k2
cos(kX + ψ)×

[a cos(kX+ψ)−k sin(kX+ψ)]=− q(kρ)2

8B0mγc

d

dX
Az

2
, (11)

ż=
qB1

mγc

ku⊥
2Ω

e−aX

a2 + k2
[a cos(kX+ψ)−k sin(kX+ψ)]

= − q

mγc

kρ

2
Az, (12)

whereρ is the gyroradius. This tells us that there is no drift
in the x-direction, and the drift iny is due to a force along
the x-axis. This is the ponderomotive force due to the gra-
dient of the fields in thex-direction, which is written here in
terms of the gradient of the averaged potentialAz squared. In
the absence of a background magnetic field, and when theE-
field variation has a component along its own direction, the
PM force is proportional to∇E2, but in this case the wave
E-field is normal to the gradient, and thus it has no effect
on the motion in the plane normal toB0. Here, the compo-
nent responsible for the PM force is the wave magnetic field
B1, which in Eq.(11) appears in terms ofAz. We see from

Eq.(12) that there is also a drift inz, which is due to the fact
that the fieldEz felt by the particle changes magnitude as it
completes one orbit, and then the positive and negative dis-
placements do not exactly cancel. The drift velocity along
B0 should be given by the time integral ofEz which isAz,
as shown in Eq.(12).

At this point it is possible to mention some aspects of the
motion when the resonance conditionn = 1 is not fulfilled.
In that case, one has to use the corresponding Bessel function,
which for small argument goes likeJn(x) ∼ (x/2)n/n!.
Then, whenω ¿ Ω (n ¿ 1) this gives a number close to
one and therefore Eqs.(11) and (12) are almost the same, but
with the factorkρ replaced by one; the drifts are important. It
will be equivalent to the case without a magnetic field since in
a wave period the particle behaves like its guiding center. On
the other hand, whenω À Ω (n À 1) the Bessel function is
close to zero, meaning that the drifts become negligible. This
is due to the fact that the fast oscillation acts as a random
forcing during a gyroperiod., and there is no net effect.

The remaining Euler-Lagrange equations, corresponding
to the variablesu⊥ andθ, are related to the actual particle
gyromotion, giving the perpendicular energy gain and phase
evolution. These are important to resonance heating studies
[5], but not for our purposes, so we do not give them here.
For the X-mode they are coupled to the other equations, so
they will be needed as we will show in the following part.

2.2. X-mode

Next we consider the X-mode. This is more complicated
since there are more effects involved, like two field compo-
nents and a gradient parallel toE. The averaged Lagrangian
is now
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Lx = mu‖ż −mc(c2 + u2)1/2 +
mu2

⊥θ̇

2Ω
− e

c
B0XẎ +

e

c
A1e

−aXJn

(
ku⊥
Ω

)

×
{

I0

(au⊥
Ω

)
[Ẋ cos(kX + ψ)− ξẎ sin(kX + ψ)] + I1

(au⊥
Ω

)
[ξ

u⊥θ̇

Ω
sin(kX + ψ)− u̇⊥

Ω
cos(kX + ψ)]

}
, (13)

whereξ = A2/A1. In this case, the important situation is for
the second harmonic and not the first, since that is where the
X-mode is absorbed the most. Then we can take the small

argument approximations,

J1(x) ∼ x2/8, I1(x) ∼ x/2

and obtain

Lx = mu‖ż −mc(c2 + u2)1/2 +
mu2

⊥θ̇

2Ω
−mΩXẎ +

Ω1u
2
⊥k

8Ω2
e−aX

×
{[

Ẋ − au⊥u̇⊥
2Ω

]
cos(kX + ψ)− ξ

[
Ẏ − au2

⊥θ̇

2Ω2

]
sin(kX + ψ)

}
, (14)

whereΩ1 = qkA1/mc is the cyclotron frequency in the
wave magnetic field. The Euler-Lagrange equations of this
Lagrangian are now coupled, so we have to derive all of them
and then solve the system of equations. Only the two equa-
tions for u‖ andz are decoupled from the others and these
give u‖ = γż = constant as in the O-mode. The other four
equations form the system

FẎ − b1u̇⊥ − c1ψ̇ = R1,

b2u̇⊥ + c2ψ̇ + FẊ = 0,

−a3Ẏ + c3ψ̇ + d3Ẋ = R3, (15)

a4Ẏ + b4u̇⊥ + c4ψ̇ + d4Ẋ = R4,

where the coefficients are

a3 =
Ω1ku⊥

4Ω
ξe−aX sin α, a4 =

Ω1ku⊥
8Ω

ξ cos α,

b1 =
u3
⊥kaΩ1

16Ω5
e−aX

[
(a− 4Ω2

au2
⊥

) cos α + k sinα
]
, b2 =

u⊥kΩ1

4Ω3
ξe−aX sin α,

b4 = eaX − Ω1kau2
⊥

16Ω3
(1− 4ξ) sin α, c4 =

kaΩ1u
3
⊥

32Ω3
ξ cos α,

c1 =
u2
⊥kΩ1

8Ω3
e−aX

[
(1−

(au⊥
2Ω

)2

ξ) sin α +
kau2

⊥
4Ω2

ξ cosα
]
,

c2 =
u2
⊥kΩ1

8Ω3
ξe−aX cos α, c3 =

u⊥
2Ω

[1 +
kaΩ1u

2
⊥

8Ω3
e−aX(2ξ − 1) sin α],

d3 =
Ω1ku⊥
4Ω2

e−aX [(1− a2u2
⊥

4Ω2
) cos α− kau2

⊥
4Ω2

sin α],

d4 =
kaΩ1u

3
⊥

16Ω3
ξ[k cosα− (a− 2Ω2

aξu2
⊥

) sin α], R1 =
k2aωu4

⊥
32Ω4

B1x

B0
,

R3 =
u⊥
γ
− ωu⊥

2Ω
[1 +

kaΩ1u
2
⊥

4Ω3
ξe−aX sin α], R4 =

kaΩ1u
3
⊥

32Ω3
ωξ cos α,
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and the abbreviationsα = kx− ωt and

F = 1 + (B1x/B0)(k2u2
⊥/8Ω2)

were used. Here,B1x is the full wave magnetic field of
Eq.(7). The system (15) can be solved in terms of the deter-
minant of the system matrix which contains terms of different

orders in the fields. To first order inΩ1, it is

∆ = −F 2b4c3 = −eaX u⊥
2Ω

− Ω1kau3
⊥

8Ω4

×[a(ξ − 3/4) sin α + kξ cos α] + O(Ω2
1). (16)

Then, any of the four variables can be solved for in terms
of ∆. We are mainly interested in the drift velocity alongy,
which is a cumbersome expression, but keeping only terms
to second order inΩ1, which is what we need to get the con-
tribution of the non linear PM force, one has

Ẏ = ∆−1eaX

{
Ω1

ku3
⊥e−aX

8Ω3
(
1
γ
− ω

2Ω
) sin α +

B1x

B0

k2au5
⊥

32Ω4γ
+ Ω2

1

k2au5
⊥e−2aX

64Ω6

×
[

aξu2
⊥

8Ω2

((
2ξω

Ω
− 4ω

Ω
+

1− 4ξ

γ

)
k cosα sin α−

(
(4ξ + 1)ω

2Ω
+

2ξ

γ

)

×a sin2 α +
(a

γ
− 4Ω2

au2
⊥γ

+
4ωΩ
au2
⊥

+
2k2ξ

aγ

)
cos2 α + (4ξ − 1)

(
1
2γ

− ω

4Ω

)

×(k cosα− a sin α)− aω

Ω

)
+ (4ξ − 1)

( 1
4γ

− ω

8Ω

)
sin α−

( ω

2Ω
+

1
γ

)

×ξ sin2 α +
( 1

γ
− ω

2Ω

)kξ

a
cos α sin α

]
+ O(Ω3

1)

}
. (17)

This expression includes various effects resulting from the
special wave electric and magnetic field properties, including
spatial and time dependence and the relativistic contributions.
The first two terms are linear in the fields and result from
standard linear drifts, while the remaining terms are the re-
sult of non linear forces along thex-direction, the PM forces.
In this description, they show all the explicit and long depen-
dences, and thus it looks hard to characterize them in terms
of a closed expression for the force. A relatively general ex-
pression for the PM force in a plasma was derived in [6],
which for particles of speciesα has the form,

Fpα =
1
2
Re

{
i

ω
∇E∗ω · jαω

−∇ ·
[
jαω

(
i

ω
E∗ω +

4πj∗αω

ω2
pα

)]}
, (18)

where the current is

jαω = nαq2
αE/mαω,

and

ω2
pα = 4πnq2

j /mj .

The effect of time dependence of the PM force is not included
there. The contribution of the wave magnetic field is not ap-
parent in Eq.(18) because it was eliminated using Faraday’s

law, but it does contribute too. One can use expression (18)
with the fields we are considering, given by Eq.(6) and find
an expression consistent with Eq.(17), with small differences
due to the aforementioned neglect of the time dependence.
Therefore, we can conclude that the second order terms in
Eq.(17) are the result of a PM force, as we would have ex-
pected.

The remaining expressions foṙX, u̇⊥ andψ̇ are equally
involved as Eq.(17), but since they are not relevant for our
discussion, we do not give them here.

3. Numerical computation of trajectories

In the previous section we found analytical expressions for
the particle drifts, which turned out to be quite complicated,
but it was possible to single out the presence of the PM force
in the second order terms. However, although the averaged
Lagrangians (8) and (13) were derived for arbitrary wave fre-
quency, the results for the particle drifts were obtained for
the particular resonant cases:ω = Ω (O-mode),ω = 2Ω
(X-mode), which are the most common situations in the ex-
periments. A general expression for the drift, including off-
resonance cases, would be extremely involved making its
analysis practically impossible. Instead, in this section we
are going to compute the detailed particle orbits by numer-
ically solving the equation of motion in the corresponding
electromagnetic fields. In this way it will be possible, not

Rev. Mex. F́ıs. 48 (3) (2002) 239–249



244 J. J. MARTINELL

only to compare resonant and off-resonance cases, but also to
look at the orbit differences between O- and X-modes.

The equation of motion to solve is

m
du
dt

= q[Ew +
1
c
u× (B0ẑ + Bw)], (19)

where the wave fieldsEw, Bw are those given by Eqs.(4)-(7)
for each mode. We use a Runge-Kutta method to obtain both
the particle orbit and the velocity. We consider the motion in
a standing wave, so the spatial dependence in the argument
in the sinusoidal functions is not included. This is done to
simplify the shape of the orbits and it is appropriate for a par-
ticle near a resonance where the wave is being absorbed. In
the following, the orbits are represented by its projection on
the x − y plane, since we are not interested in the parallel
motion. As one may expect, there are many different possi-
ble orbits depending on the field and particle parameters and
their relative phases. We will show a few representative cases
to visualize the relevant points.

3.1. O-mode

We first consider a case with the resonance condition
w = ω/Ω = 1 for a high intensity wave in which the
wave field amplitude is 50% of the background magnetic
field. The particle trajectory depends on the relative phase
with the wave,i.e. the parameterθ used in Sec. 2.. For this
resonant case, the process of energy absorption by the parti-
cles takes place in a statistical way, as it has been discussed by
Taylor et al. [5]. As they have shown, the wave produces an
energy redistribution of particles over a closed contour in the
energy-θ space, so that, the particles, that are initially in the
low energy side of the contour have an average energy gain.
Since we are not interested here in the process of energy ab-
sorption, we will consider a single phase which may or may

not show an energy gain. In Fig. 1 we show the comparison
of the orbits and the velocity vectors of a positive particle,
for cases with (a = 0) and without (a 6= 0) a field gradient.
The magnetic field points outwards and the wave comes from
the left. For the case with a gradient, the wave amplitude is
constant forx < 0 and it has the exponential drop,e−ax for
x > 0, with a equal to the particle gyroradius. So, the wave
starts being absorbed atx = 0. It is seen that, for this phase,
the projection of the orbit in the case with no gradient is com-
plicated, but there is no mean displacement; that is, the orbit
stays bounded. We note, in passing, that the apparent gyro-
radius changes do not necessarily mean a change in energy,
since the orbit is just a projection in thex− y plane. In con-
trast, with the exponential gradient one can see that there is a
drift motion in the direction of−y. The drift is the result of
thex−dependence of the wave amplitude, giving a PM force
Fp in thex direction, and aFp×B drift velocity. In this par-
ticular case, there is also a concurrent particle energy gain,
as seen in the gyroradius and velocity magnitude continuous
increase. For all other initial phases the characteristic feature
of they-drift is always present, but not the radius increase.

A case away from a resonance is shown in Fig. 2, with
w = 1.5. The other parameters are the same as those in
Fig. 1. Here it is seen that the orbit without gradient remains
bounded as in the resonant case, whereas the trajectory in
presence of a gradient shows a displacement along the di-
rection−y, but it is apparent only after several orbits. It is
interesting to note that the shape of orbits is not sensitive to
the relative phase of the wave and particle gyromotion, which
would be expected for a non resonant interaction. Finally, in
Fig. 3, we show the orbits for a wave resonant at the second
harmonic:w = 2, the other parameters kept equal.

FIGURE 1 Particle orbit and velocity vector in a constant background magnetic fieldB0 = B0ẑ and an electromagnetic wave with the
electric vector parallel toB0 (O-mode). On the left is the case with constant wave amplitude, and the right plot is for an amplitude varying as
e−ax with a = 1, in the regionx > 0. The wave is in resonance with the gyromotion,w = ω/Ω = 1, and has amplitude 50%B0 atx = 0.
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FIGURE 2 The same as in Figure 1 but for the non resonant situationw = 1.5.

The orbits are similar to the case of the fundamental reso-
nance in that they depend strongly on the initial phase, and
the drift in y is only present when the wave amplitude gra-
dient in included. We notice that the drifting motion is not
always steady, but it has periods of up and down motion, al-
though, on average, the guiding center moves downwards. It
is appropriate to point out that, part of the difference between
the casesa = 0 anda = 1 is due to the fact that theE-field
has an additional term proportional to sinθ, whena = 1 as it
is seen in Eq.(4). A general result is that, in all cases, wave
absorption causes the particle to drift in the same direction.

3.2. X-mode

Next we turn to the more complicated case where the electric
field is normal toB0. Here, the two components of the elec-

tric field give rise to drifts even in the absence of field gradi-
ents, which is reflected in the first order terms of Eq.(17). The
parameters used in the computations are the same as in the O-
mode. Due to the presence of the drifting motion, even in the
absence of a gradient, the orbits cannot be drawn for times
as long as in the O-mode, so only a few cycles are shown.
The case withω = Ω is depicted in Fig. 4, comparing the
situations without and with absorption. One can see that for
a = 0 the drift is in the direction of−y, which is the same
as the direction of the drift expected from the PM force. For
this reason, in the orbit fora = 1 there is no qualitative dif-
ference with the orbit without absorption, except that there is
an additional drift along the negativex-axis, coming from the
Ey component that interacts with the additional term ofBz

proportional toa [see Eq.(7)], but it has no relation with the
PM force.

FIGURE 3 Particle orbits and velocities for a wave resonant at the second harmonicw = 2, with the same conditions of Figure 1.

Rev. Mex. F́ıs. 48 (3) (2002) 239–249



246 J. J. MARTINELL

FIGURE 4 Particle orbits and velocity vectors for motion in a constant magnetic field along thez-axis and an electromagnetic wave with the
electric vector in the planex− y (X-mode). The wave amplitude varies ase−ax and it is constant forx < 0, with a magnitude of 40%B0.
The left plot corresponds to a constant amplitude (a = 0). The wave has the fundamental resonant frequency:w = 1.

The presence of the PM force can only be inferred from the
slight differences in they-drifts. In contrast, the cases for
out-of-resonance (w = 1.5) and for the second harmonic
(w = 2), shown in Figs. 4 and 5, respectively, have a drift
in the directionx, whena = 0. Therefore, the contribu-
tion from the PM force whena = 1 is quite clear, since it
changes the drift to the−y direction, in both cases (the wave
amplitude was a little weaker than before: 40% ofB0). The
reason for the difference between the cases withw = 1 and
w = 1.5, 2 for no wave absorption is that, of the twoE-field
components,Ex is the one that interacts more strongly with
the particle at the fundamental resonance, but for all other
casesEy is the most efficient component.

An interesting behavior that is noticed from the figures is
that, when absorption is included the particle energy is con-
tinuously increased, even forw = 1.5, as it can be told from
the increase in the velocity magnitude. Note that, in contrast
to the O-mode, now there is no motion alongB0 sinceE
is normal to it, so the velocity in thex − y plane is the to-
tal velocity. It then results that, while fora = 0 there is no
energy transfer for frequencies different from the main reso-
nance, the presence of a gradient amplitude allows for energy
absorption. This is due the additional term in theB-field pro-
portional toa sin θ, in Eq.(7), that contributes only fora 6= 0.

FIGURE 5 Same situation as that of Figure 4 but for a non resonant wave withw = 1.5.
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This phase-shifted contribution interacts constructively
with the fieldEy. Another worth-noting feature that is appar-
ent from the orbits presented is that, in some cases the guiding
center drift does not necessarily involve a net displacement of
the particle, since it is associated with a simultaneous gyro-
radius increase. This happens for both the O-mode and the
X-mode. Thus, it would be possible to have a mean particle
flux, represented by the guiding centers flow, with the parti-
cles still crossing through a fixed point.

4. Conclusions

It has been shown that the particle motion in a magnetized
plasma when an electromagnetic wave is injected and ab-
sorbed, reflects the presence of a ponderomotive force due to
the wave amplitude spatial decrease. The effect is manifest
by aFp × B0 drift velocity of the guiding center. This re-
sult was obtained both by an analytical procedure based on a
Lagrangian description and by a numerical solution of the tra-
jectories. The two wave polarizations (O-mode and X-mode)
were considered. The O-mode is simpler to study because the
wave electric field is parallel toB0 and plays a minor role.
For this case, a closed analytical expression for the drift ve-
locity was obtained [Eq.(11] for the fundamental resonance
(ω = Ω) which qualitatively coincided with the numerical
results for the orbits. In the case of the X-mode, we did not
find a complete analytical expression, which would include
terms up to fourth order in the wave amplitude, but found
an approximation to second order. That formula shows the
effect of the non linear PM force. As before, the numerical
results agreed qualitatively with the prediction of Eq.(17) for
the case of the second harmonic resonance (ω = 2Ω). The
numerical studies, which can be made for a wider range of
conditions than the analytical ones, have indicated that the
effect of the PM force is important for all wave frequencies.

We used very high wave amplitudes in order to make the non-
linear effects more evident: an amplitude of half the value of
B0, for the magnetic fields used in tokamaks, corresponds to
a power density of10GW/cm2. More realistic wave pow-
ers will produce the same effect but over a larger time, that
is, after more gyro-orbits. The drifting motion of the guiding
center can be quite irregular, with periods of direction inver-
sion and, for resonant frequencies, it does not always involve
particle displacement. This latter situation arises because the
gyroradius increases while the particle is drifting (e.g. Figs.
4 and 6), but nevertheless, there is an average particle flux.

The confirmation that the absorption of an electromag-
netic wave at the resonant surface of a plasma produces a
particle flux in a direction perpendicular toB0 and the wave
gradient (which is usually the direction of propagation), is an
important result since the flux can have relevant effects on
plasma dynamics. A particularly interesting consequence of
this flux is the possibility of driving plasma rotation near the
edge of a tokamak plasma, proposed in Ref. 2. That mecha-
nism is based on the injection of high-power EC waves in the
radial direction, so that the absorption scalea is of the order
of the electron gyroradius, and thus the field gradient is high
enough to produce a significant particle flux in the poloidal
direction. The flux is poloidally asymmetric and if there are
enough collisions the friction forcef , produces a radial flow
by the f × B drift, which has the same asymmetry. Under
this conditions, the plasma can start rotating due to the spin-
up mechanism proposed by Stringer [8].
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FIGURE 6 Same situation as that of Figure 4 but for resonance at the second harmonic:w = 2.
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A Appendix: Particle drifts with the Lagran-
gian method.

The orbit theory of charged particles in electromagnetic fields
is well known. The particle motion in presence of a magnetic
field is usually described with the guiding-center approxima-
tion, which separates the gyromotion, represented byu, from
the displacement of the guiding center, or drift velocityw,
resulting from the action of all the agents additional to the
constant and uniform magnetic fieldB [7]. The total particle
velocity isv = w + u. Thus, one has for instance the elec-
tric drift, wE = cE × B/B2, when there is a constant and
uniform E-field, the curvature and grad-B drift,

wB = (mc/qB4)(v2
‖ + v2

⊥/2)[B×∇(B2/2)],

or the polarization drift,

wp = (m/qB2)dE/dt,

when the electric field is time dependent. It should be re-
called that the guiding-center description is useful only when
the space and time variations of the fields are small com-
pared to the particle gyroradius and gyroperiod, respectively.
When the background B-field does not satisfy these condi-
tions, particle trajectories must be obtained directly by solv-
ing the equations of motion. On the other hand, when there is
an oscillatory electric field, a description similar to the guid-
ing center is possible, separating the motion of the center of
oscillation and the oscillations about it. In this oscillating-
center description, if the electric field varying with frequency
ω has a spatial gradient, the oscillating center is subjected to

a net force that accelerates it; the so called ponderomotive
force:

Fp = −(q2/2mω2)∇E2.

We will show here that the results of the guiding cen-
ter theory can be obtained from a Lagrangian description., as
described in Sec. 2.. For a uniformB field in thez-direction,
the relevant vector potential isA = B0xŷ. In order to al-
low space and time variations, we will use the more general
potentialA = A0(t)f(x)ŷ. For completeness, we can also
consider an electric potential given byφ = φ0(t)g(y). The
corresponding electric and magnetic fields are

E = −[f(x)Ȧ0/c + φ0g
′(y)]ŷ,

B = A0f
′(x)ẑ

(prime denotes space derivatives and over dot denotes time
derivatives). Now, we go to guiding-center coordinates, de-
fined by [5]

q = X +
u⊥
Ω

sin θx̂− u⊥
Ω

cos θŷ, (20)

u = u⊥ cos θx̂ + u⊥ sin θŷ + u‖ẑ, (21)

whereθ is the gyrophase (Ωt). As mentioned before, the time
derivative ofq is no taken to be the same asv, so we have to
get it directly from eq.(20). The variations of the fields have
to be such that the time variations are slower than the particle
gyroperiod,Ω−1, and the space variations are less than the
Larmor radiusu⊥/Ω. The Lagrangian is then averaged over
a gyroperiod:

L = 〈[mu⊥(cos θx̂ + sin θŷ) + mu‖ẑ − qA0(t)f(x)ŷ] · [Ẋ +
u̇⊥
Ω

sin θx̂

+
u⊥θ̇

Ω
cos θx̂− u̇⊥

Ω
cos θŷ +

u⊥θ̇

Ω
sin θŷ]−mc(c2 + u2

⊥ + u2
‖)

1/2〉, (22)

where〈ξ〉 = (Ω/2π)
∫ 2π/Ω

0
ξdt. The result is

L = mu‖Ż + mu2
⊥

θ̇

Ω
−mc(c2 + u2)1/2 + LA, (23)

whereLA is the field contribution. This can be expressed
in terms of Taylor expansion of the functionsf(x), g(y) etc.
about the guiding center, up to second order, as

LA = qφ0[g(Y ) + g′′(Y )
r2
L

4
]

−q

c
A0[f(X) + f ′′(X)

r2
L

4
]Ẏ , (24)

whererL = u⊥/Ω is the Larmor radius. Then, the relevant
variables arezi = (X, Y, Z, u‖, u⊥, θ). The Euler-Lagrange
(EL) equations will give the guiding-center motion and gy-
romotion. The particle drifts are obtained from the EL equa-
tions forX.

By taking the EL equation forY , it is easy to see that
when the space variations are ignored, one obtains theE×B-
drift

Ẋ = −f(x)Ȧ0 + cφ0g
′(y)

A0f ′(X)
= c

E

B
. (25)

If the space dependence is kept, finite-Larmor-radius correc-
tions arise in the previous drift, and the grad-B drift results,
when the EL equation forX is derived:

Rev. Mex. F́ıs. 48 (3) (2002) 239–249



PARTICLE MOTION NEAR THE RESONANT SURFACE OF A HIGH-FREQUENCY WAVE IN A MAGNETIZED PLASMA 249

Ẋ = −cφ0(g′(Y ) + g′′′(Y )r2
L/4) + Ȧ0(f(X) + f ′′(X)r2

L/4)
A0(f ′(X) + f ′′′(X)r2

L/4)
, (26)

Ẏ = − A0f
′′(X)θ̇r2

L/4
A0(f ′(X) + f ′′′(X)r2

L/4)
= − u2

⊥
2γΩ

B′

B
, (27)

where theB-field also contains finite-Larmor-radius corrections. These expressions agree with the standard results [7].
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