INVESTIGACION REVISTA MEXICANA DE FiSICA 48 (3) 239-249 JUNIO 2002

Particle motion near the resonant surface of a high-frequency wave in a
magnetized plasma

J. J. Martinell
Instituto de Ciencias Nucleares,
Universidad Nacional Adnoma de MNxico
A. Postal 70-543, 04510 &kico D.F.
e-mail: martinel@nuclecu.unam.mx

Recibido el 11 de enero de 2002; aceptado el 4 de febrero de 2002

The motion of single charged particles in a magnetized plasma is studied using a Lagrangian formalism, applied to the average over a gyro:
period, in the presence of an electromagnetic wave that is being resonantly absorbed by the medium. Near the resonance surface the wa
amplitude has a gradient and the resulting particle drifts are shown to be consistent with the existence of a ponderomotive force, producec
by the wave-field-gradient. The orbits are also obtained numerically to show how the drifting motion arises, and to study the case of high
field-gradients, which is not described with the formal analysis.

Keywords:Charged particle orbits; electromagnetic waves in plasmas; lagrangian mechanics.

Se estudia el movimiento de piailas cargadas individuales en un plasma magnetizado con un formalismo Lagrangiano, aplicado al prome-
dio sobre un péodo de giro, en presencia de una onda electromiagmaque es absorbida de manera resonante por el medio. Cerca de la
superficie de resonancia la amplitud de la onda tiene un gradiente y se muestra que los movimientos de deriva resultantes son consistentes ¢
la existencia de una fuerza ponderomotriz, producida por el gradiente del campo de la ondanEanalbitienen lasrbitas nunéricamente

para mostrar @mo es el movimiento de deriva y para estudiar el caso de gradientes de campo grandes, que no se describe adecuadamen
con el arlisis formal.

Descriptores: Orbitas de partulas cargadas; ondas electroméigras en plasmas; matica lagrangiana.

PACS: 52.20.Dq; 52.35.Hr; 45.20.Jj

1. Introduction The physical origin of the PM force is quite clear, when
one considers an unmagnetized plasma in presence of a rf
wave. Essentially, a field gradient parallel to the field itself,

The use of electromagnetic waves to heat a plasma has bediyes an oscillating particle a larger push in one direction than

studied for many years in relation to magnetic confinemen Eéhr?eogls/g \]:\iglgh f;ggl:]iejv:; Zf\r/(zcrgogg Qférfzr(ﬁas:aong
fusion applications. It is now clear that for a plasma to reach 9 9 ' Y P

e requred gh emperatures o nuclear fusion fo b us'°%, T1E PV ess clar en here s & b
tained, it will be necessary to inject energy in the form of 9 ' q '

radio frequency (rf) waves or energetic neutral beams, Théhe gradient does not necessarily have to be parallel to the

wave is absorbed at the resonance frequency of the charg Gaeve ;|e;df.relf tf;(ralcma_gr;::lcefrlida:]s t\r']V:ikjgt? (L)lgr;}esucgnihat
particles (electrons or ions) gyrating in the magnetic field wav quency | g Y quency

which occurs at a specific location in the plasma, since thg’ as the particles gyrate they feel the effect of the wave fields

magnetic field varies with position. At this resonant surface,?nvi:age(i ?r\]/ eirrthei(\j/\i/r?ve Oi(t:'”rét'?]ns\’/van? dex);zerletntck:‘e ad(rjigfilng
the wave amplitude decreases and therefore, in front of th eothoe rgsulteof?rt:e PI\?I ?()erceeérgssee dc\)/\l;lith fhg‘?r(l:a neetic fiel?j
surface, the wave fields have a gradient in the direction OE 9 '

wave propagation. It is known that an oscillating field with owever, wher(} is of the order of, or larger tham, the

a spatial variation produces a time-averaged ponderomotiv%ver"j“':]in.g procedure over the wave period, _interferes with the
(PM) force in the direction opposite to the field gradient, Sogyromotlon and the concept of ponderomotive force becomes

one would expect to have such a force in the vicinity of theconfused.

resonant surface. The momentum transfered to the plasma In this paper we look at the particle motion in the com-
by a PM force has been invoked as the cause of the rotatiobined fields of a rf wave and a background magnetic field,
produced in toroidal experiments, when the injected rf waveB,, under different circumstances, relevant to the problem of
is not resonant 1]]. But also, for resonant absorption of high- rf heating of a toroidal magnetized plasma, in order to elu-
frequency rf waves it is possible to have a rotation due to theidate the effect of the wave gradients on the particle fluxes.
PM force, as proposed in Ref. 2. These waves resonate witBf particular importance to us is the use of electron cyclotron
electron cyclotron (EC) frequency and their absorption is inwaves to produce a particle flux in the vicinity of the reso-
a very localized region of the plasma, which may give rise tonant surface. The situation we consider is that, an EC wave
quite high field gradients. propagating in the radial direction (perpendicular to the mag-
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netic field) arrives at the resonant surface, where it is mostlgome as a result of the Euler-Lagrange equations. It is actu-

absorbed and thus its amplitude has a radial gradient; the paaly more convenient to work with a variable= ~v, instead

ticle (electron or ion) motion in these fields is then studied,of the velocity or the momentum.

including the case of large wave amplitude] gnd for w For a uniformB field in thez-direction, the relevant vec-

equals to any harmonic ¢. The two wave polarizations, tor potential isA = Byxy. For simplicity we adopt cartesian

the ordinary (O-mode), with the wavé-field parallel toB,,  coordinates, which are valid locally. To represent O- and X-

and extraordinary (X-mode), with the wavefield perpen- modes we use the following potentials:

dicular toBy, are considered. We first adopt a Lagrangian

description of the particle orbits, using averages over the gy-

romotion. This is done in Sec. 2 where we obtain the drift A, = Bory + /Bl(m) cos(kx — wt)dzz, (2)

velocity of the guiding center, and it is identified as produced

by a ponderomotive force. Then, in Sec. 3 the equations of A« = [Box + As(z) sin(kz — wi)]g

motion are numerical_ly_solved _to o!isplay the orbits _directly — Ay (2) cos(kz — wt)E, (3)

and show how the drifting motion is actually occurring. In

this way it is also possible to consider extreme cases that agnd choose a gauge whepe= 0. For the X-mode a lon-

not possible to describe with an analytical description. It isgitudinal component is included, according to the charac-

shown that, in most resonant cases, the drifting motion of théeristic elliptic polarization of this mode. The amplitudes

guiding center is not accompanied by a matching particle orare functions ofz, the wave propagation direction. For

bit displacement, as in tHé x B drift, for instance, but rather  definiteness, here we will take an exponential dependence,

the increasing radius causes the guiding center displacemed$i (z) = B exp(—ax) and the same for; and A;. Note

This does produce an average particle flux, but it is limitedthat in order to have a spatially dependent amplitude it is nec-

by the geometrical size of the device and the gradient scaléssary to have field sources present; a plane wave in vacuum

lengths. Finally, in Sec. 4 we comment on the application ofs homogeneous. However, we do not consider the effect of

our results and give the conclusions. the plasma on the wave here. With this variation, the corre-
sponding wave fields are,

2. Lagrangian particle motion

_ w Byexp(—ax)
In order to analyze the motion of a charge patrticle in a mag- T Rt a?
qetic field, and influenced b_y the actipn_of an e_-lectromagnetic +asin(kz — wt)], (4)
field, we follow a Lagrangian description. Since the back-
ground magnetic field is assumed to be larger than the wave
field, the gyromotion of the particle in the strong field is dom-
inant and it is then possible to consider the wave as a pertur- w
bation. Thus, the Lagrangian is averaged over a gyroperiod, E1, = — exp(—ax)[A; cos(kz — wi)j
so that, the Euler-Lagrange equations resulting from the vari-
ational principle for the averaged Lagrangian, give the mo- +Assin(kz — wt)z], (6)
tion of the guiding center. The Lagrangian than we will usegq
is a phase space Lagrangian that is a function of the coordi-
natesq, velocities¢ and the momenturp, obtained froma  Bi, = A; exp(—ax)[k cos(kx — wt)

HamiltonianH (p, q,t) as H] —asin(kz — wt)]z. (7)

L(q,p,4q,t) =p-4— H(q,p, 1), 1) Here the effect of the amplitude gradient is to add an extra

h he relativistigr f icle i | . term to one component of the fields, proportionaktphase
where the relativistid? for a particle in an electromagnetic ¢y o byr /2.

field is given by

[k cos(kz — wt)

B1, = — B exp(—az) cos(kx — wt), ©)

The first step is to average the Lagrangian [Eq.(1)] over
the gyromotion, which will give the equations for the guid-
ing center. This process should give the same results as the
gtandard procedure of averaging the equations of motion, as
it was indeed shown by Littlejohn4], for the case of static
electric and magnetic fields. In the Appendix we derive the
guiding center drift velocities from the Lagrangian method,
to show that the standard drifts are recovered. Here we use
where~ is the relativistic factor. In this description, the ve- the potentials (2) and (3) to obtain the particle motion in the
locities q, and momentan~yv, are treated as independent wave field. Guiding center coordinates are used, as defined
variables, although there is a relation among them, which wilin Egs.(20) and (21) of the Appendix.

H(q,p,t) = [m*c* + *(p — q/cA)*]"/? + ¢¢.

The fields are given in terms of the electromagnetic potential
¢ and A, while the canonical momentum is

p=myv+q/cA,
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2.1. O-Mode

Starting with the O-mode, the averaged Lagrangian is

(& B123

— mui e Bz
ca?+ k2

Lo = muyz — me(c® + u)? 4 — gBOXY
¢

x Iy (%) In (%‘) [acos(kX + 1) — ksin(kX +)]e” X, (8)

where the capital letters refer to the guiding center positionperiments of EC resonance heating at perpendicular injection,
Jn(z) and Iy (x) are Bessel and modified Bessel functions,because it has the highest absorption. If we approximate for
with n = w/Q, andy = 6 — wt. As a particular, but im- small arguments of the Bessel functiong.( small gyrora-
portant case, we consider the resonance condition at the firdtus), J; (x) ~ z/2, Iy(z) ~ 1, the Lagrangian becomes
harmonicn = 1, since this is the situation most used in ex-

|

_ 24
L, = mu)z — me(c® + u?)/? 4 %

. By [k
_fpyxy - £ 2% ( vl
C

Py 2(2) e~ Xacos(kX + ) — ksin(kX + ). (9)
From this Lagrangian we can obtain the Euler-LagrangeEq.(12) that there is also a drift i which is due to the fact
equations of motion. The equation for the variabjegives  that the fieldE, felt by the particle changes magnitude as it
the conditionz = /v, as expected. The drift velocities completes one orbit, and then the positive and negative dis-
are obtained from the equations f&t Y andz, which, when  placements do not exactly cancel. The drift velocity along
combined, give By should be given by the time integral &f, which is A,
as shown in Eq.(12).
) At this point it is possible to mention some aspects of the
X =0, (10)  motion when the resonance condition= 1 is not fulfilled.
Inthat case, one has to use the corresponding Bessel function,
B (kui\? g e2X which for small argument goes Ii@n(x) ~ (z/2)"/nl.
Y =— ( O ) e cos(kX + ) x Then, whenv <« Q (n < 1) this gives a number close to
By \ 2 myca?® + one and therefore Egs.(11) and (12) are almost the same, but
with the factorkp replaced by one; the drifts are important. It
will be equivalent to the case without a magnetic field since in
a wave period the particle behaves like its guiding center. On
the other hand, when > Q (n > 1) the Bessel function is
[a cos(kX41))—k sin(kX+1)] close to zero, meaning that the drifts become negligible. This
myc 20 a? + k? is due to the fact that the fast oscillation acts as a random
q kp— forcing during a gyroperiod., and there is no net effect.
=54 (12) The remaining Euler-Lagrange equations, correspondin
myc 2 g grange eq ) p g
) ) . ] _to the variables:; and#, are related to the actual particle
yvherep is the_gyroradlus. Th_|s _teII_s us that there is no drift gyromotion, giving the perpendicular energy gain and phase
in the z-direction, and the drift iy is due to a force along  gyglution. These are important to resonance heating studies
the z-axis. This is the ponderomotive force due to the gra-s], but not for our purposes, so we do not give them here.

dient of the fields in the--direction, which is written here in - £qr the X-mode they are coupled to the other equations, so
terms of the gradient of the averaged potentiabquared. N hey will be needed as we will show in the following part.
the absence of a background magnetic field, and wheRthe

field variation has a component along its own direction, they 5 x_mode

PM force is proportional t67 E2, but in this case the wave

E-field is normal to the gradient, and thus it has no effectNext we consider the X-mode. This is more complicated
on the motion in the plane normal B,. Here, the compo- since there are more effects involved, like two field compo-
nent responsible for the PM force is the wave magnetic fieldhents and a gradient parallela The averaged Lagrangian
By, which in Eqg.(11) appears in terms df.. We see from  is now

kp)? d —
[a cos(kX+)—ksin(k X+ )] = _é;IB(OSFL)’ychAZQ’ (11)

. qBy ku;, e X
2=
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20
L, = mu 2 —me(c® + u?)/? 4 muLy

2Q

X{IO (%) [X cos(kX 4+ 1) — £V sin(kX +¥)] 4+ I, ( Q

— EBO_XPY' + EAleiaXJn (
Cc c

au |

kUJ_

Q

ULH'

R sin(kX + 1) — % cos(kX + 1/1)]}7 (13)

)E¢

where¢ = A, /A;. In this case, the important situation is for argument approximations,

the second harmonic and not the first, since that is where the
X-mode is absorbed the most. Then we can take the small

| and

20
Ly = muy s — me(c® + u?)Y? 4 A4

—mOQXY +

f{Jx-

where; = gkA;/mc is the cyclotron frequency in the

au | U
2Q)

Qluik —a

Ji(x) ~2?/8, Li(z)~x/2

obtain

X

au? 0

202

] cos(kX + 1) — S{Y - ] sin(kX + 1/1)}, (14)

wave magnetic field. The Euler-Lagrange equations of thié
Lagrangian are now coupled, so we have to derive all of them
and then solve the system of equations. Only the two equa-
tions foru; andz are decoupled from the others and these
giveu = vz = constant as in the O-mode. The other four
equations form the system

FY —byi; —c1Yp = Ry,
botiy + b + FX = 0,
—asY +cgtp+dsX = Rs, (15)
asY + byt +cap +dsX = Ry,

where the coefficients are

Mkuy . _,x . D ku
as = Zﬂlge X sin a, ag = %QLfcosoz,
3 kaf) 402 kQ
b = ui(i;lﬁ Le—aX [(a — —)cosa + ksin a}, by = UZQ3 Lee X sina,
au’
Oy kau? kaQyu
_ aX _ 00 1 _ : _ 191
by = 1663 (1 —4¢)sina, c4 3905 £cosa,
2 2
ul kS _.x auy \2 | . kau? }
= 1— (22
“ 803 {( ( 20 ) §sina+ Zros-eosal,
2 EQ kaQyu?
cy = qug Leem X cosa, c3 = ;—6[1 agéé@ e *%(2¢ — 1)sinal,
 Wkuy .y a*u? kau® .
ds = e [(1- o )cos o — 10° sin o,
kaQud 202 . k*awul B,
dy, = 65 E[kcosa— (a — fgui)smoz]7 R, = 0" By
kaQyu? kaQyud
Ry = % — w;;;_ 1+ a491;¢l te” " sinal, Ry = C;Z;ZELwa cos a,
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and the abbreviations = kx — wt and orders in the fields. To first order iy, it is

Qi kau?
A = _F2b — _ aXuii 4 L
1B =70 90 T T 80l

F =1+ (Bi./Bo)(k*u3 /80?
+ (Bio/Bo) (w1 /807 x[a(€ — 3/4)sina + k€ cosa] + O(9Q3). (16)
. . Then, any of the four variables can be solved for in terms
were used. Herepy, is the full wave magnetic field of of A. We are mainly interested in the drift velocity along

E‘,W)- The system (15) can b? solved Fn terms of th_e dEteRivhich is a cumbersome expression, but keeping only terms
minant of the system matrix which contains terms of different,; <. .0\q order if,, which is what we need to get the con-

| tribution of the non linear PM force, one has

. kud e—2X 1 kE2au® k2au® e—20X
V= A~ 1eaX Q20" (2 g Pla L 2 1
N { o To Dy o Tl L R o
atu? [ (28w  dw | 1-4E . (46 + Dw = 2
302 ((Q_Q+ 5 kcosasino — T —1—7
402 40 2k 1
xasinza—i—(g— 5— + w2 + éh)cos204+(4§—1) <w>
y au’ vy au’ avy 2y 40)

w 1

x(kcosa —asina) — L?;) + (4¢ — 1)(4— — %) sin o — (ﬁ + —)
v Y

1 k
xEsin? a + (— - %>£ cosasina
a

+ O(Qi‘)}. (17)

This expression includes various effects resulting from thdaw, but it does contribute too. One can use expression (18)
special wave electric and magnetic field properties, includingvith the fields we are considering, given by Eq.(6) and find
spatial and time dependence and the relativistic contributiongn expression consistent with Eq.(17), with small differences
The first two terms are linear in the fields and result fromdue to the aforementioned neglect of the time dependence.
standard linear drifts, while the remaining terms are the reTherefore, we can conclude that the second order terms in
sult of non linear forces along thedirection, the PM forces. EQq.(17) are the result of a PM force, as we would have ex-
In this description, they show all the explicit and long depen-pected.
dences, and thus it looks hard to characterize them in terms The remaining expressions féf, @, and are equally
of a closed expression for the force. A relatively general exinvolved as Eq.(17), but since they are not relevant for our
pression for the PM force in a plasma was derived #}, [ discussion, we do not give them here.
which for particles of species has the form,
1 ; 3. Numerical computation of trajectories
F,.= 2Re{VE: Jaw ' . ' .
w In the previous section we found analytical expressions for
. i ATt the particle drifts, which turned out to be quite complicated,
-V {Jaw ( Eo wz)] }7 (18)  putitwas possible to single out the presence of the PM force
e in the second order terms. However, although the averaged

where the current is Lagrangians (8) and (13) were derived for arbitrary wave fre-
guency, the results for the particle drifts were obtained for

Jow = Na@PE/maw, the particular resonant cases: = € (O-mode),w = 20
and (X-mode), which are the most common situations in the ex-

periments. A general expression for the drift, including off-
resonance cases, would be extremely involved making its
analysis practically impossible. Instead, in this section we
The effect of time dependence of the PM force is not includedare going to compute the detailed particle orbits by numer-
there. The contribution of the wave magnetic field is not ap4cally solving the equation of motion in the corresponding
parent in Eqg.(18) because it was eliminated using Faraday'slectromagnetic fields. In this way it will be possible, not

2 _ 2,
Wpo = 4mng; /mj.
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only to compare resonant and off-resonance cases, but alsonot show an energy gain. In Fig. 1 we show the comparison

look at the orbit differences between O- and X-modes. of the orbits and the velocity vectors of a positive particle,
The equation of motion to solve is for cases with¢ = 0) and without ¢ # 0) a field gradient.
du 1 . The magnetic field points outwards and the wave comes from
mo = q[Ey + sux (BoZ + Bu)l, (19)  the left. For the case with a gradient, the wave amplitude is

where the wave fieldE,,, B, are those given by Egs.(4)-(7) constant'forx < 0 and it has th.e exponenti'al drog;, ** for

for each mode. We use a Runge-Kutta method to obtain boti > 0. With a équal to the particle gyroradius. So, the wave
the particle orbit and the velocity. We consider the motion inStarts being absorbed at= 0. Itis seen that, for this phase,

a standing wave, so the spatial dependence in the argumeWF projection of thg orbit in the case with no gradlgnt is com-
in the sinusoidal functions is not included. This is done toPlicated, but there is no mean displacement; that is, the orbit
simplify the shape of the orbits and it is appropriate for a parSt&ys bounded. We note, in passing, that the apparent gyro-
ticle near a resonance where the wave is being absorbed. Jadius changes do not necessarily mean a change in energy,
the following, the orbits are represented by its projection or®!"C€ the orbit is just a projection in the— y plane. In con-
the z — y plane, since we are not interested in the parallefrast W|t_h th_e exponenh_al gradient one can see that there is a
motion. As one may expect, there are many different possid”ft motion in the direction of-y. Thg drift is t_he result of

ble orbits depending on the field and particle parameters anffie* —dependence of the wave amplitude, giving a PM force
their relative phases. We will show a few representative casesr IN the direction, and &, x B drift velocity. In this par-

to visualize the relevant points. ticular case, there is also a concurrent particle energy gain,
as seen in the gyroradius and velocity magnitude continuous
3.1. O-mode increase. For all other initial phases the characteristic feature

of they-drift is always present, but not the radius increase.
We first consider a case with the resonance condition A case away from a resonance is shown in Fig. 2, with
w = w/Q = 1 fora high intensity wave in which the « = 1.5. The other parameters are the same as those in
wave field amplitude is 50% of the background magneticFig. 1. Here it is seen that the orbit without gradient remains
field. The particle trajectory depends on the relative phasgounded as in the resonant case, whereas the trajectory in
with the wave,.e. the parametef used in Sec. 2. For this presence of a gradient shows a displacement along the di-
resonant case, the process of energy absorption by the partiection —y, but it is apparent only after several orbits. It is
cles takes place in a statistical way, as it has been discussed byteresting to note that the shape of orbits is not sensitive to
Tayloret al. [5]. As they have shown, the wave produces anthe relative phase of the wave and particle gyromotion, which
energy redistribution of particles over a closed contour in thavould be expected for a non resonant interaction. Finally, in
energy# space, so that, the particles, that are initially in theFig. 3, we show the orbits for a wave resonant at the second
low energy side of the contour have an average energy gaiharmonic:w = 2, the other parameters kept equal.
Since we are not interested here in the process of energy ab-
sorption, we will consider a single phase which may or may

O-mode w=1 a=0 O-mode w=1 a=1

______ Velocity — Orbit ------Velocity — Orbit
FIGURE 1 Particle orbit and velocity vector in a constant background magneticBgld= B,z and an electromagnetic wave with the

electric vector parallel tiB, (O-mode). On the left is the case with constant wave amplitude, and the right plot is for an amplitude varying as
e~ with a = 1, in the regionz > 0. The wave is in resonance with the gyromotian= w /2 = 1, and has amplitude 50%, atz = 0.
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O-mode w=1.5 a=0 O-mode w=1.5 a=1

Y

------ Velocity —— Orbit

FIGURE 2 The same as in Figure 1 but for the non resonant situatien1.5.

The orbits are similar to the case of the fundamental resatric field give rise to drifts even in the absence of field gradi-
nance in that they depend strongly on the initial phase, andnts, which is reflected in the first order terms of Eq.(17). The
the drift in ¢ is only present when the wave amplitude gra-parameters used in the computations are the same as in the O-
dient in included. We notice that the drifting motion is not mode. Due to the presence of the drifting motion, even in the
always steady, but it has periods of up and down motion, alabsence of a gradient, the orbits cannot be drawn for times
though, on average, the guiding center moves downwards. #s long as in the O-mode, so only a few cycles are shown.
is appropriate to point out that, part of the difference betweermhe case withv =  is depicted in Fig. 4, comparing the
the cases = 0 anda = 1 is due to the fact that the-field  situations without and with absorption. One can see that for
has an additional term proportional to &invhena = 1 asit o = 0 the drift is in the direction of-y, which is the same
is seen in Eqg.(4). A general result is that, in all cases, wavas the direction of the drift expected from the PM force. For
absorption causes the particle to drift in the same direction. this reason, in the orbit far = 1 there is no qualitative dif-

ference with the orbit without absorption, except that there is
3.2. X-mode an additional drift along the negatiweaxis, coming from the

E, component that interacts with the additional termif
Next we turn to the more complicated case where the electriproportional toa [see Eq.(7)], but it has no relation with the
field is normal toBy. Here, the two components of the elec- PM force.

O-mode w=2 a=0 O-mode w=2 a=1

Y Y |

...... Velocity — Orbit ------Velocity — Orbit

FIGURE 3 Particle orbits and velocities for a wave resonant at the second harmesi2, with the same conditions of Figure 1.
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X-mode w=1 a=0 X-mode w=1 a=1

...... Velocity — Orbit ------Velocity — Orbit

FIGURE 4 Particle orbits and velocity vectors for motion in a constant magnetic field alongdkis and an electromagnetic wave with the
electric vector in the plane — y (X-mode). The wave amplitude varies@s®® and it is constant for < 0, with a magnitude of 4098,.
The left plot corresponds to a constant amplitugle{0). The wave has the fundamental resonant frequemcy: 1.

The presence of the PM force can only be inferred from the  An interesting behavior that is noticed from the figures is
slight differences in they-drifts. In contrast, the cases for that, when absorption is included the particle energy is con-
out-of-resonanceu{ = 1.5) and for the second harmonic tinuously increased, even far = 1.5, as it can be told from

(w = 2), shown in Figs. 4 and 5, respectively, have a driftthe increase in the velocity magnitude. Note that, in contrast
in the directionz, whena = 0. Therefore, the contribu- to the O-mode, now there is no motion aloBg since E

tion from the PM force whem = 1 is quite clear, since it is normal to it, so the velocity in the — y plane is the to-
changes the drift to they direction, in both cases (the wave tal velocity. It then results that, while far = 0 there is no
amplitude was a little weaker than before: 40%3y). The  energy transfer for frequencies different from the main reso-
reason for the difference between the cases wits 1 and  nance, the presence of a gradient amplitude allows for energy
w = 1.5,2 for no wave absorption is that, of the twofield  absorption. This is due the additional term in fBdield pro-
componentsE,. is the one that interacts more strongly with portional toa sin 6, in Eq.(7), that contributes only far # 0.

the particle at the fundamental resonance, but for all other

casegl, is the most efficient component.

X-mode w=1.5 a=0 X-mode w=1.5 a=1

T~ O\ %,

------ Velocity — Orbit

FIGURE 5 Same situation as that of Figure 4 but for a non resonant waveuwithl .5.
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This phase-shifted contribution interacts constructivelyWe used very high wave amplitudes in order to make the non-
with the fieldE,. Another worth-noting feature that is appar- linear effects more evident: an amplitude of half the value of
ent from the orbits presented is that, in some cases the guiding,, for the magnetic fields used in tokamaks, corresponds to
center drift does not necessarily involve a net displacement ad power density ol 0GW/em?2. More realistic wave pow-
the particle, since it is associated with a simultaneous gyroers will produce the same effect but over a larger time, that
radius increase. This happens for both the O-mode and this, after more gyro-orbits. The drifting motion of the guiding
X-mode. Thus, it would be possible to have a mean particleenter can be quite irregular, with periods of direction inver-
flux, represented by the guiding centers flow, with the parti-sion and, for resonant frequencies, it does not always involve
cles still crossing through a fixed point. particle displacement. This latter situation arises because the
gyroradius increases while the particle is driftirgg. Figs.

4 and 6), but nevertheless, there is an average particle flux.

The confirmation that the absorption of an electromag-
It has been shown that the particle motion in a magnetizedetic wave at the resonant surface of a plasma produces a
plasma when an electromagnetic wave is injected and alparticle flux in a direction perpendicular B, and the wave
sorbed, reflects the presence of a ponderomotive force due gsadient (which is usually the direction of propagation), is an
the wave amplitude spatial decrease. The effect is manifesmportant result since the flux can have relevant effects on
by aF, x B, drift velocity of the guiding center. This re- plasma dynamics. A particularly interesting consequence of
sult was obtained both by an analytical procedure based onthis flux is the possibility of driving plasma rotation near the
Lagrangian description and by a numerical solution of the traedge of a tokamak plasma, proposed in Ref. 2. That mecha-
jectories. The two wave polarizations (O-mode and X-mode)ism is based on the injection of high-power EC waves in the
were considered. The O-mode is simpler to study because thadial direction, so that the absorption scalis of the order
wave electric field is parallel ti, and plays a minor role. of the electron gyroradius, and thus the field gradient is high
For this case, a closed analytical expression for the drift veenough to produce a significant particle flux in the poloidal
locity was obtained [Eq.(11] for the fundamental resonancaelirection. The flux is poloidally asymmetric and if there are
(w = Q) which qualitatively coincided with the numerical enough collisions the friction forc& produces a radial flow
results for the orbits. In the case of the X-mode, we did noby thef x B drift, which has the same asymmetry. Under
find a complete analytical expression, which would includethis conditions, the plasma can start rotating due to the spin-
terms up to fourth order in the wave amplitude, but foundup mechanism proposed by Stringed]. [
an approximation to second order. That formula shows the
effect of the non linear PM force. As before, the numerical
results agreed qualitatively with the prediction of Eq.(17) forAcknowledgments
the case of the second harmonic resonance=(2(2). The
numerical studies, which can be made for a wider range ofhis work was partially supported by research projects
conditions than the analytical ones, have indicated that th@7974-E from Conacyt and IN116200 from DGAPA-UNAM,
effect of the PM force is important for all wave frequencies. MEXICO.

4. Conclusions

X-mode w=2 a=0 X-mode w=2 a=1

Y Y|

X

______ Velocity — Orbit ------Velocity — Orbit

FIGURE 6 Same situation as that of Figure 4 but for resonance at the second harmeaig:
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A Appendix: Particle drifts with the Lagran- a net force that accelerates it; the so called ponderomotive
gian method. force:
The orbit theory of charged particles in electromagnetic fields F, = —(¢*/2mw?)VE?.

is well known. The particle motion in presence of a magnetic We will show h hat th its of th idi
field is usually described with the guiding-center approxima- he will's %W k()are_ t gtft € refu ts 0 .t edgw ing cen-
tion, which separates the gyromotion, represented,tisom ter theory can be obtained from a Lagrangian description., as

the displacement of the guiding center, or drift velocity dhescrllbed in Sec. 2. For a.ur:z)r?flgld |An trez—glrectlonl,
resulting from the action of all the agents additional to thelhe relevant vec_tor potgnt_la = Doxy. In order to al-
low space and time variations, we will use the more general

constant and uniform magnetic fieRl [7]. The total particle _ R
velocity isv = w + u. Thus, one has for instance the elec- pote|_1t|aIA - AO(?)f(m)y' .For F:ompleteness, we can also
tric drift, wg = ¢E x B/B2, when there is a constant and consider an electric potential given By= ¢o(t)g(y). The

uniform E-field, the curvature and grad-B drift, corresponding electric and magnetic fields are

E = —[f(x)Ao/c+ ¢og' ()13,
wp = (mc/qBY)(v] +v1/2)[B x V(B?/2)],
B = A()f/(l')ﬁ

(prime denotes space derivatives and over dot denotes time
w, = (m/qB?*)dE/dt, derivatives). Now, we go to guiding-center coordinates, de-

when the electric field is time dependent. It should be re—fInGd by bl
called that the guiding-center description is useful only when
the space and time variations of the fields are small com-
pared to the particle gyroradius and gyroperiod, respectively.
When the background B-field does not satisfy these condi- u = uycosfF+usindj+ )z, (21)
tions, particle trajectories must be obtained directly by solv-

ing the equations of motion. On the other hand, when there iwheref is the gyrophaselt). As mentioned before, the time
an oscillatory electric field, a description similar to the guid- derivative ofq is no taken to be the sameasso we have to

ing center is possible, separating the motion of the center dfet it directly from eq.(20). The variations of the fields have
oscillation and the oscillations about it. In this oscillating- to be such that the time variations are slower than the particle
center description, if the electric field varying with frequency gyroperiod,2 !, and the space variations are less than the
w has a spatial gradient, the oscillating center is subjected tharmor radiusu; /2. The Lagrangian is then averaged over

| agyroperiod:

or the polarization drift,

q X+ % sin 0% — % cos 07, (20)

L = ([mu_ (cos 02 4 sin 07) + muy 2 — qAo(t) f(z)g] - [ X + %‘ sin 6

uf

Q

UJ_H R Z-LJ_
——cosfr — —

9 Q

cos 0y + sin 0g] — me(c? + vl + uﬁ)1/2>, (22)

where(¢) = (/27) [2™/% ¢dt. The resultis

l/vhererL = u, /Q is the Larmor radius. Then, the relevant
variables are;; = (X, Y, Z,u),u1,0). The Euler-Lagrange
(EL) equations will give the guiding-center motion and gy-

where L 4 is the field contribution. This can be expressedr_omOtion' The particle drifts are obtained from the EL equa-

. . ; tions forX.
in terms of Taylor expansion of the functioriéx), g(y) etc. _ . -
about the guiding center, up to second order, as By taking the E_L _equatlon_ fot’, it is easy t(.) see that
when the space variations are ignored, one obtaing th&-
drift .
2 : f(x)Ao + chog’ (v) E

La= Y)+g" (V)L X =- =c—. 25

4 =a%o[g(Y) +g"(Y) ] Aof'(X) B (23)
If the space dependence is kept, finite-Larmor-radius correc-
tions arise in the previous drift, and the gr&ddrift results,

when the EL equation fok is derived:

_ . 6
L =muZ + muiﬁ —me( +u*)Y? + La, (23)

2
"L

LY. @4

~I A (X) + £1(X)
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S (g’ (V) +g"(V)ri/4) + Ao(f(X) + ["(X)ri /4) (26)
Ao(f"(X) + f"(X)ri /4) ’
v Ao f"(X)0r3 /4 Wi B 27)

CAo(f(X)+ f(X)rEj4) T 299 B’

where theB-field also contains finite-Larmor-radius corrections. These expressions agree with the standarddesults |
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