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Application of Magnus series for polarization evolution in fibers
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We apply the technique of Magnus series to build approximations for polarization evolution in fibers with varying twist and birefringence.
Conditions for trajectory mixing on Poincaré sphere are identified. The technique relates realistic perturbation parameters to the parameters
of popular coarse step method of numerical simulation. We demonstrate that liner polarization mode dispersion, if it is a dominant process,
leads for big propagation lengths to a speckle-like output pulse shape.
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La serie de Magnus se aplica para obtener las expresiones aproximadas para la evolución de la polarización de luz en una fibráoptica con
torsión y birrefrigencia aleatorias. Se identefican las condiciones para que la trayectoria cubre la esfera de Poincaré. Los paŕametros reales
de perturbacíon se relacionan con los parámetros del ḿetodo de divisiones grandes, que se utiliza para modelos numéricos. Mostramos, que
la dispersíon modal de polarización, cuando es el proceso dominante, produce el pulso del tipo speckle temporal.

Descriptores: Polarizacíon; fibrasópticas; propagación de pulsos.
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1. Introduction

Optical fibers are practically always birefringent. Typical
beat lengths range from millimeters to tens of meters, and
there are random additions to birefringence and polarization
rotations induced by fiber imperfections and strains [1]. The
usual combination of relatively strong birefrigence and ran-
dom variations of the birefringence and twist presents par-
ticular difficulties for analysis. In this case the solution for
amplitude of polarization mode is a rapidly oscillating func-
tion with slowly varying magnitude and phase. One practi-
cally important technique widely used for simulations, and
generally consistent with the experiment is called the coarse
step method [2]. It assumes that the fiber is made of pieces
with constant birefringence separated by random polariza-
tion elements. Of course, it is difficult to expect that real
perturbations in fibers have this character. In fact, fitting pa-
rameters are used to compare the theory and the experiment.
Measurements of fiber birefringence distributions have been
refined recently [3,4], and it is desirable to establish the va-
lidity range of coarse step model and relate it to the realistic
perturbation.

In this paper we suggest the perturbation method which
is well suited for the situation of strong average birefringence
with relatively small variations in birefringence and twist. It
is based on the mathematical technique investigated in de-
tail in recent publications of Iserles and Nørsett [5] devoted
to the numerical solution of differential equations. Their
work is based on the earlier article by Magnus [6]. Accord-
ingly, the authors call it the Magnus series technique. The
method permits to separate the exactly integrable part and
then to obtain successive approximation terms proportional
to the powers of perturbation. The terms are conveniently

expressed as diagrams. For the case of fibers, the series con-
verge rapidly for lengths comparable to the beat length of
perturbation, thus the behavior of solution can be predicted
for many beat lengths of the main part of birefringence. The
method, apart from its utility for numerical calculation, gives
useful insights on the factors which influence the polarization
behavior. In particular, we will obtain conditions for spread-
ing of the trajectory over Poincaré sphere and estimate the
rate of this spreading. Good analytical approximations can
be suggested for the case of periodic perturbations. We will
also show that the coarse step model can be valid for a wide
variety of perturbation types, and relate the parameters of this
model to the real parameters of perturbation. We also inves-
tigate the shape of linear pulse in a fiber with dominant po-
larization mode dispersion.

2. Outline of Magnus series technique

The polarization evolution in fibers is described by two cou-
pled ordinary differential equations

dS
dz

= A(z)S, (1)

where S is a two-component vector of complex ampli-
tudes, andA is the anti-Hermitian2 × 2 complex matrix
(AT = −A∗ , or A = iB, whereB is Hermitian). The ab-
stract solution can be written in the form

S(z) = U(z)S(0) (2)

with unitary2×2 matrixU (Jones matrix). All such matrices
form a Lie group [7], andU can be represented as the matrix
exponential

U(z) = exp(Q(z)), (3)
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where a matrixQ(z) is anti-Hermitian. The basis in the space
of Hermitian2× 2 matrices is given by Pauli matrices:

I =
[

1 0
0 1

]
,

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
(4)

Any matrixA can be represented as

A = i(g0(z)I + g1(z)σ1 + g2(z)σ2 + g3(z)σ3), (5)

with real scalar functionsgj . The commutation relations for
Pauli matrices are

[iσn, iσm] = −2iεjnmσj , (6)

with the antisymmetric tensorεjmn. The idea of the Magnus
series method is to writeQ(z) from Eq.( 3 ) in terms ofA(z).

The Magnus series is

Q(z)=
∫ z

0

A(z′)dz′ +
1
2

∫ z

0

[A(z′),
∫ z′

0

A(z′′)dz′′]dz′

+
1
4

∫ z

0

[A(z′),
∫ z′

0

[A(z′′),
∫ z′′

0

A(z′′′)dz′′′]dz′′]dz′

+
1
12

∫ z

0

[[A(z′),
∫ z′

0

A(z′′)dz′′],
∫ z′

0

A(z′′)dz′′]dz′ + . . . , (7)

i.e. the expression forQ is obtained in terms of integrals and
commutators multiplied by numeric coefficients. The exact
structure of terms can be expressed by a diagrams. The order
of term is equal to the number ofA ’s in the expression. We
will not use terms beyond the third order in this paper.

The complete series with the representation of terms as
diagrams can be found in Ref. 5. The number of terms
and their complexity grows rapidly with the order. The im-
portant theorem on the series convergence range is given in
Ref. 5 (Theorem 8). It guarantees that if the matrixA Eu-
clidian norm is less thanρ, the series converge at least for
z < 1/(8ρ). Thus, practically, the trade-off has to be found
between validity range of approximation and its complexity.

For the polarization evolution task the underlying group
is that one of unitary matricesU(2), and it can be reduced to
SU(2) (unitary matrices with the determinant equal to unity).
This is done by taking into account the phase shift common
for two polarizations. UsingS(z) = exp(i

∫ z

0
g0(z′)dz′) ·

S′(z) , we obtain forS′(z) evolution the matrixA for which
g0 = 0. For the subsequent analysis we will directly utilize
the representation Eq.(5 ) withg0 = 0 and commutation re-
lations Eq.(6) specific forSU(2) group.

The usual method to visualize polarization states is the
Poincaŕe sphere. Three real coordinatesxj = SσjS∗ are in-
troduced. It is easy to demonstrate that with a proper normal-
ization of input amplitudes,

∑
j x2

j = 1 , thus it is possible
to associate the polarization state with a point on the sphere.

The vector of coefficientsg1,2,3 in the Q representation by
Pauli matrices Eq.( 5) corresponds to an axis of rotation of
the sphere. The rotation angle is proportional to the vector
length.

We will use forQ the representation

Q(z) = i

(∑

j

κ1
j (z)σj +

∑

j

κ2
j (z)σj + ...

)
, (8)

where coefficientsκp
j (z) correspond to the diagrams of the

p-th order.

3. Application to a birefringent fiber with twist

To apply the technique successfully, it is necessary to extract
from the matrixA the big principal part. This is easily done
for example, ifA is nearly constant or if the off-diagonal ele-
ments are much smaller than the diagonal ones. Physically, it
can mean that we have, for example, nearly constant birefrin-
gence with relatively small variations in both birefringence
and twist. The trajectory on the Poincaré sphere in this case
corresponds mainly to the point rotation around the 3-rd axis,
but both simulations and experiment demonstrate that due to
the perturbations, after sufficiently big propagation length the
trajectory will cover all the sphere.

Let us consider the case when there is a birefringent fiber
with small additions to birefringence and twist. Then the
right-hand side of Eq.(1 )is [8]

A =i

[
b0 + b3(z) b1(z)
b1(z) −b0 − b3(z)

]
. (9)

Hereb0 is the main part of the birefringence, andb1,3(z) are
small real functions:|b0| >> |b1(z)| , |b3(z)|.

The direct application of Magnus series is not highly use-
ful: we will get approximations which are valid for the length
of an order of1/b0, i.e. of the order of the beatlength due to
the main part of the birefringence. But it is possible to dimin-
ish the norm of the matrix by introducing the rotating basis
S′:

S =
[

exp(ib0z) 0
0 exp(−ib0z)

]
S′ = E(z)S′. (10)

ForS′ the equation isdS
′

dz = A′(z)S′ with

A′=i

[
b3(z) b1(z) exp(−2ib0z)
b1(z) exp(2ib0z) −b3(z)

]
(11)

and now all matrix elements are small, and the Magnus se-
ries convergence is guaranteed for lengths having the order
of the beat length for perturbationl ∼= 1/ max(|b1,3|). Now,
the functions in the Eq. (5) are:g1(z) = b1(z) cos(2b0z),
g2(z) = b1(z) sin(2b0z), g3(z) = b3(z). In the first order of
perturbation,

κ1
j (z) =

∫ z

0

gj(z′)dz′
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The integrals forκ1
1,2(z) give rapidly varying and small

terms if b1(z) does not contain spatial harmonics with
wavenumber close to2b0 . ”Close” means in our context that
their spatial frequencyk must approximately fall into the in-
terval2b0 −max(|b1|) < k < 2b0 + max(|b1|). In this case
the value ofκ1

1,2(z) can approach unity in the validity range
for the approximationl. Thus, the matrixexp(Q(z)) which
describes the behavior ofS′ corresponds on the Poincaré
sphere to the combination of two movements: rapid and small
”jitter” and the relatively slow rotation for big angle. The to-
tal trajectory on the sphere for given initial polarization is
obtained by applying the matrix of Eq.( 10) to the vector
exp(Q(z))S′(0). The ”slow and big ” terms ofexp(Q(z))
act as initial conditions for the fast rotation given by Eq.(
10), thus the trajectory spreads over the Poincare sphere. The
result that the perturbation component with the spatial fre-
quency2b0 is responsible for mode coupling is well known,
mainly in its statistical formulation [1], though limits of its
application are somewhat unclear.κ1

3(z) simply gives an ad-
dition to birefringence.

The second order terms are given by

κ2
j (z) =− εjmn

∫ z

0

gm(z′)κ1
n(z)dz′

=− εjmn

∫ z

0

gm(z′)
∫ z′

0

gn(z′′)dz′′dz′, (12)

κ2
3(z) is proportional tob2

1, it is the second-order correction
to the birefringence. The termsκ2

1,2(z) include the product
b1b3, and they give the spreading on the Poincaré sphere ifb1

andb3 contain spatial frequencies that add to2b0. This factor
can be important in comparison with the first-order term if
the perturbation has the spectrum, which is small at the2b0

spatial frequency, but has strong components in low or high-
frequency domains. Thus, even if perturbations do not have
spatial frequencies close to the2b0, the spreading will occur
because of the higher order processes. The rate of spreading,

though, will be proportional for thep -th order process tobp.
For demonstration, we have performed a numerical cal-

culation of the trajectory on the Poincaré sphere for the case
when the additions to birefringence and twist have differnt
periodsb1,3(z) = β1,3 cos (k1,3z). The Eq.(11) was solved
numerically for b0 = 1, β1,3 = 0.1, propagation length
5000, and different relations between perturbation spatial fre-
quenciesk1 andk3. In general case (Fig.1a), whenk1 + k3

are not close to2b0 (we have takenk1 = 0.55, k3 = 1.3),
the dominant accumulating effect is the second-order ad-
dition to birefringence, and the trajectory does not fill the
sphere. When two frequencies add to a value close to2b0

(k1 = 0.702, k3 = 1.3), the spreading occurs (Fig.1b). The
strongest spreading is obtained when the coupling is pro-
duced by a first order term (k3 = 2.02), β1 = 0). It is pre-
sented in Fig.1c.

To compare the results obtained with the diagram tech-
nique with exact solutions we have chosen a simple exam-
ple of a periodical perturbationb1(z) = β1 exp(2ik0z). The
terms of the 1-st to 3-rd order for this case are easily obtained
analytically. The resulting expressions are rather big, so we
do not reproduce them here. We have chosen for our simula-
tion b0 = 10 , β = 0.1 and the lengthl = 10. The numerical
solution of the Eq.( 9) was calculated to the absolute exacti-
tude10−5 with a Matlab computer program, which uses the
Runge-Kutta algorithm of 4-5 order. The absolute value of
the maximal difference between the exact and approximate
solutions in this interval is presented as a function of the per-
turbation frequency. It is seen, that the worst agreement is for
the nearly resonance condition, but even there the approxima-
tion is adequate. Far from resonance, the terms of the first to
third order give an error of approximately10−4. The per-
turbation terms seemingly converge at least for the range10,
which is more than the guaranteed range of convergence. It
can be noted that the convergence theorem gives the lower
limit for the range, and the range can be bigger for particular
cases.

FIGURE 1 Examples of trajectory spreading on the Poincaré sphere. 400 points of every trajectory connected with straight lines are shown. A
- the perturbation is far from resonance conditions, B - two different spatial frequencies in the perturbation spectrum sum to the characteristic
spatial frequency of beatlength, C - one of the spatial frequencies is close to the characteristic spatial frequency of beatlength.
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FIGURE 2 Example of the maximal difference between the exact
value of the amplitude and the approximation with 4 terms of per-
turbation series. The amplitude itself has a characteristic absolute
value of an order of unity and it has about 15 periods of oscillation
in the interval. Details can be found in the text.

Trying to perform a Matlab calculation for the same
length andb0 = 100 on a modern personal computer was al-
ready resulting in difficulties - tens of minutes of calculation
time and instabilities leading to the shutdown of the program
by the operating system. Thus, the calculation with diagrams
can be highly useful if the perturbation is small in comparison
with the main birefringence.

The diagram technique justifies the widely used ”ad
hoc” method of numerical modeling of randomly birefrin-
gent fibers [3]. For modeling it is assumed that the fiber
consists of pieces with constant birefringence, but there is
abrupt random change of polarization state between two ad-
jacent pieces. Though it does not seem probable that the per-
turbation in real fibers has this character, the model can be
justified by the following argument. As the matrix, which
describes the propagation at the distance of an order of per-
turbation beatlengthl = 1/ max(|b1,3|) is given by the com-
bination

U(l) = E(l) exp(iQ(l)), (13)

the propagation at a distanceNl is given by a product of ma-
trices

U(Nl) = E(l) exp(iQN (l))...E(l) exp(iQ1(l)), (14)

whereE(l) from the Eq.(10) formally correspond to the prop-
agation in the uniformly birefringent fiber, andexp(iQj(l))
are determined by diagram terms,i.e. by the exact charac-
ter of the perturbation. Nevertheless, if the frequency de-
pendence of coefficients is taken into account (for example,
by suggesting, as in Ref. 8 thatb3(ω, z) = βω ), it is
seen that the matricesexp(iQ1(l)) are generally frequency-
dependent. It means that for the coarse steps model the polar-
ization element inserted between two pieces of birefringent
fiber performs frequency-dependent polarization transforma-
tion. More important, than the justification of the technique,
is the possibility to relate by diagrams the perturbation statis-
tics to the statistics of matricesexp(iQj(l)). If only the first

term in perturbation series is important, the main contribu-
tions to matrix elements are related to the Fourier harmonics
of perturbation with the spatial frequency2b0. If the pertur-
bation is random, and its correlation length is smaller than the
approximation validity rangel, it seems quite probable that
the matricesexp(iQj(l)) will uniformly sample the space.
They will give a random rotation around the random axis on
the Poincaŕe sphere.

4. Linear pulse propagation in a randomly bire-
fringent fiber

The influence of random birefringence on pulse behavior is
traditionally analyzed with a concept of differential delay,
introduced in works of Poole and co-workers [9,10] . A
wide pulse with limited spectrum splits in two components
with well-defined polarization states and different propaga-
tion constants. If the big frequency range is spanned, the dif-
ference in propagation constants has statistical distribution.
If the spectrum is wide, the ensemble over many realizations
of fiber is taken. The analysis gives, that after the averag-
ing for big propagation lengths the output pulse intensity has
Gaussian shape. Its width is proportional to a square root of
the propagation length.

The statistical analysis does not tell which shape individ-
ual pulses entering the statistical ensemble have. Intuitively,
one can choose between two possibilities. The first one is that
every individual pulse is nearly Gaussian. The second is that
individual pulses have complicated shapes, but average to a
smooth curve.

To anticipate the answer, we transform the Eq. (14). First,
let us choose the central frequencyω0 and the lengthl such,
thatexp(ib0l) enteringE(l) is equal to 1. Then by a simple
transformation the equation ( 14 ) is reduced to a form

U0U−1
N EδUN ...U−1

1 EδU1, (15)

whereEδ is a diagonal matrix with elementsexp (±Cδω),
with δω = ω − ω0, and unitary matricesUi are such that
U1 = exp(iQ1(l)), U2 = exp(iQ2(l))U1, etc. The Eq.(15)
gives a combination of rotations on the Poincaré sphere with
random axes given by matricesUi, but having the same ro-
tation angles proportional toδω. Thus, the total rotation will
be a realization of a “random walk”. In a limited frequency
range, whileδω is small enough, the single rotation around
a fixed axis and constant angular velocity can be associated
with a matrix product. As the rotation axis is random, the fre-
quency range for this behavior ifN is big, is inversely propor-
tional to the square root of the number of matrices multiplied,
i.e to the fiber length. Out of this range, the differential delay
and polarization state become incorrelated. The short pulse
which has a wide spectrum can be represented as a coherent
superposition of pulses, which are long enough to behave as a
whole. Since different long pulses have uncorrelated phases,
their superposition will produce a pattern which has high con-
trast. The theory of such superposition is well known for the

Rev. Mex. F́ıs. 48 (3) (2002) 250–254



254 N.KORNEEV

spatial analog of pulse propagation. It describes the optical
speckle [11]. Thus, we will refer to the general behavior as
a “speckled pulse” or “temporal speckle”. The width of in-
dividual speckle is determined by a maximal difference in
frequencies,i.e. in our content it is of an order of the initial
pulse width. The particular shape of pattern can be expected
to vary strongly with slight changes in fiber environment.

The simulation presented in Fig.3 illustrates the point.
For this, we have numerically calculated a product of the type
Eq.(15) for 300 pieces, taking a randomly chosen unitaryUi

matrix at every step. The initial pulse was chosen as having
the uniform spectrum in a limited frequency range, which
givessin(t)/t pulse amplitude in a time domain. Every in-
dividual realization has a speckled structure, but averaging
over a big number of such realizations, one gets a Gaussian-
shaped curve. Thus, if polarization mode dispersion is the
only factor (there is no normal one), for an individual pulse
one does not get a smooth curve, but a temporal speckle hav-
ing a Gaussian-shape envelope. The action of PMD on the
coherent pulse is qualitatively different from the action of
normal dispersion, though if one averages over realizations,
both types of dispersion have identical influence.

5. Conclusions

In conclusion, we have shown that the efficient perturbation
technique can be applied for polarization evolution in fibers.
The approximation validity range has an order of the beat-
length for perturbation. In birefringent fibers with random
additions to polarization and twist, spatial harmonics which
add to the spatial frequency of the beatlength of the main
part of birefringence contribute to the trajectory spreading
over the Poincaré sphere. The rest of perturbation harmon-
ics produce on the sphere a small-amplitude ”jitter”. Thus,
the spreading has clear resonance character.

FIGURE 3 Influence of polarization mode dispersion on the short
coherent pulse without taking the normal dispersion into account.
a) The dashed line is the initial pulse shape. The solid lines are
pulse shapes in two orthogonal polirization modes after propaga-
tion (normalized for better visibility). b) The average of the output
pulse shape taken over 100 random realizations of the fiber.

The diagram technique permits to relate realistic pertur-
bation statistics to the parameters of the widely used coarse
step method of modeling. We also demonstrate that a devel-
oped polarization mode dispersion results for coherent pulses
in a pulse splitting, and formation of a temporal speckle struc-
ture.
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