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We review Thomson scattering, as the low energy limit of Compton scattering, for target particles of spin 0, 1/2, 1, and 3/2 . We show how,
at the scattering amplitude level, Thomson result emerges; then, the computation of the cross section is quite simple.
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Calculamos la dispersión Thomson, como el lı́mite de bajas energı́as de la dispersión Compton, para partı́culas blanco de espines 0, 1/2, 1,
and 3/2. Mostramos como el resultado de Thomson se obtiene al nivel de la amplitud de dispersión, de donde el ćalculo de la sección de
dispersíon resulta ḿas simple.
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1. Introduction

The scattering of an electromagnetic wave by a free charged
particle was first studied by J.J. Thomson in 1904 [1], and
turn out to be the classical version of the relativistic effect
studied by A. H. Compton in 1923. The relativistic quantum
mechanical calculation of this cross section is known as the
Klein-Nishina formula.

In many books on Relativistic Quantum Mechanics, the
procedure to calculate Compton scattering is through the use
of Feynman rules obtained from the Quantum Electrodynam-
ics Theory [2]. This is done for the scattering of a photon,
the electromagnetic wave, off a free electron, a particle of
spin1/2 or from a spin-0 particle. In Figs. 1(a)-(c) we show
the Feynman diagrams contributing to Compton scattering,
where the first two corresponds to the case of a target of spin-
1/2 and spin 3/2. For the case of a target of spin-0 and spin-1
the three of them contributes to scattering. After the differ-

ential or total cross-section is computed, the low energy limit
is performed to get Thomson’s result, which is, as expected,
independent of target spin effects. In fact, the classical angu-
lar differential cross section for the scattering of an incident
wave off an electron of massm and chargee, is given by [3]

dσ

dΩ
=

(
e2

m

)2

|ε∗(k′) · ε(k)|2 , (1)

whereε(k) andε(k′) are the polarization three-vectors of the
incident and scattered waves, and the conditionω ¿ m for
the energyω of the incident wave is fulfilled.. Thus, Thom-
son squared amplitude is proportional to|ε∗(k′) · ε(k)|2.

In the next sections we show how to obtain Eq.(1) as the
low energy limit of expressions at the level of scattering am-
plitudes. Then, we calculate the differential cross-section for
targets of spins 0,1/2, 1, and3/2.

FIGURE 1 Feynman diagrams involved in Compton scattering for a spin-cero and spin-one target (a)-(c), and spin-1/2 and spin-3/2 target
(a)-(b).
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2. Spin-0 target

Electrodynamics of a spin-zero charged fieldφ is described
by the Klein-Gordon Lagrangian density

LKG = (Dµφ)∗Dµφ−m2φ∗φ, (2)

whereDµ = ∂µ − ieAµ is the covariant derivative, with
Aµ the electromagnetic 4-vector.LKG leads to the follow-
ing Feynman rules [4]

Vµ(p, p′) = −ie(p + p′)µ,

Vµν = 2ie2gµν ,

∆(q) =
i

q2 −m2 + iε
, (3)

where the first line is the interaction vertex of the photon, in-
dexµ, the incident particle of 4-momentump, and scattered
particle of momentump′. The second line is the vertex with
two photons, the incident and the scattered one, and the two
particles, and the last line is the spin-zero propagator. Adding
the three amplitudes in Fig.1, and performing some simplifi-
cations, we obtain

M = −2ie2

(
pνp′µ
p · k − pµp′ν

p · k′ − gµν

)
ε∗µ(k′)εν(k). (4)

Polarization vectors of the incident and the scattered photons
are denoted byεν(k) andεµ(k′), respectively. This ampli-
tude is gauge invariant, as can be checked by making the
substitutionsε∗µ(k′) → k′µ, εν(k) → kν , and taking into
account the relationsp+k = p′+k′ andk2 = k′2 = 0. Now,
Thomson limit means we have to dok′ → k andp′ → p, for
which Eq.(3) reduces to

M≈2ie2gµνε∗µ(k′)εν(k). (5)

At this point we have to remember that the angular differ-
ential cross-section in the elastic scatteringA+B → A+B,
considering no target recoil, is

dσ

dΩ
=

(
1

2MB

)2 〈
|M|2

〉
, (6)

where〈 〉 implies an average over spin states. For Eq.(4) the
average is over photon polarization states, then

dσ

dΩ
≈

(
e2

m

)2

|ε∗(k′) · ε(k)|2 . (7)

In laboratory system we can chooseεµ(k) = (0, ε(k)) and
εµ(k′) = (0, ε(k′)), then Eq.(7) reduces to the expression in
Eq.(1).

3. Spin-1/2 target

Electrodynamics of a spin12 field ψ is described by the Dirac
lagrangian density

LD = ψ(iγµDµ −m)ψ, (8)

where theγµ are Dirac matrices. The corresponding Feyn-
man rules are

Vµ = −ieγµ,

D(p) =
i

p · γ −m + iε
. (9)

For this case we only have two diagrams, depicted in
Fig. 1 (a) - (b). The total amplitude is

M = ie2u(p′, s′)
[
γν(p · γ − k′ · γ + m)γµ

2p · k′

− γµ(p · γ + k · γ + m)γν

2p · k
]

u(p, s)ε∗µ(k′)εν(k), (10)

whereu(p, s) is particle spinor of momentump and spins;

again the amplitude is gauge invariant. In the limitk′ → k
andp′ → p, Eq.(10) reduces to

M =
ie2

2p · ku(p′, s′) (γµγ · kγν + γνγ · kγµ)

×u(p, s)ε∗µ(k′)εν(k). (11)

Using some identities of the gamma matrices we obtain

M =
ie2

p · ku(p′, s′)γ · ku(p, s)ε∗(k′) · ε(k)

=
ie2

p · kkµΛµε∗(k′) · ε(k), (12)

with Λµ = u(p′, s′)γµu(p, s). Now, to calculate
〈
|M|2

〉
we

have to use some properties of the traces of gamma matri-
ces and of the spin projector operator. After this is done, we
arrive to

〈
|M|2

〉
= 4e2 |ε∗(k′) · ε(k)|2 . (13)

From this equation we obtain, again, Eq. (1).

The preceding two cases are usually worked examples in
books as those cited previously [2]. The less known cases of
spin-1 and spin-3/2 are described in the next sections.

4. Spin-1 target

Electrodynamics of a spin-1 vector fieldφµ is described by
the Proca lagrangian density

LP = −1
2
φ∗µνφµν + m2φ∗µφµ, (14)

with φµν = Dµφν −Dνφµ, and the Feynman rules are
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Vµαβ(p1, p2) = −ie [(p1 + p2)µgαβ − p2αgβµ − p1gαµ] ,

Vµναβ = −ie2 (2gµνgαβ − gµαgνβ − gµβgνα) ,

Dµν(p) = −i
gµν − pµpν/m2

p2 −m2 + iε
. (15)

Here, we have three diagrams as in the spin-0 case, with all
the lines attached to vector particles. The total scattering am-
plitude is [5]

M = −ie2

[
Λαβ

(a)

2p · k −
Λαβ

(b)

2p · k + Λαβ
(c)

]
εα(p)εβ(p′), (16)

whereεα(p) and εβ(p′) are the polarization vectors of the
spin-1 target particle. The second range tensors in Eq.(16)
are

Λαβ
(a) = 4 (p · ε1) (p2 · ε∗2) gαβ − 2 (p · ε1) kβ

2 ε∗α2 − 2 (p · ε1) p′αε∗β2 − 2 (p′ · ε1) kα
1 εβ

1 + (ε1 · ε∗2) kα
1 kβ

2

+(p′ · ε1) kα
1 ε∗β2 − 2 (p′ · ε∗2) pβεα

1 + (p · ε∗2) kβ
2 εα

1 + (p · p′) εα
1 ε∗β2 +

1
m2

(p · ε1) (q1 · p′) kα
1 ε∗β2

− 1
m2

(p · ε1) (p′ · ε∗2) kα
1 kβ

2 +
1

m2
(p · q1) (p′ · ε∗2) εα

1 kβ
2 −

1
m2

(p · q1) (p′ · q1) εα
1 ε∗β2 , (17)

for Λαβ
(b) we have to make the substitutionsε1 ←→ ε2, k1 ←→ −k2, and

Λαβ
(c) = −2ε1 · ε∗2gαβ + εα

1 ε∗β2 + εβ
1 ε∗α2 . (18)

Verification of gauge invariance is more involved, as is the taking of the low energy limit. For Eq.(17) we obtain

Λαβ
(a) ≈ 4 (p · ε1) (p · ε∗2) gαβ − 2 (p · ε1) kβ

1 ε∗α2 − 2 (p · ε∗2) kα
1 εβ

1

+(ε1 ·ε∗2) kα
1 kβ

1 + 2 (p ·ε1) kα
1 ε∗β2 + 2 (p ·ε∗2) kβ

1 εα
1 − 2 (p ·k1) εα

1 ε∗β2 − 1
m2

(p ·ε1) (p ·ε∗2) kα
1 kβ

1 −
1

m2
(p ·k1)

2
εα
1 ε∗β2 , (19)

similarly,

Λαβ
(b) ≈ 4 (p · ε1) (p · ε∗2) gαβ + 2 (p · ε∗2) kβ

1 εα
1 − 2 (p · ε1) kα

1 ε∗β2

+(ε1 ·ε∗2) kα
1 kβ

1 + 2 (p ·ε∗2) kα
1 εβ

1 − 2 (p ·ε1) kβ
1 ε∗α2 + 2 (p ·k1) ε∗α2 εβ

1 −
1

m2
(p ·ε1) (p ·ε∗2) kα

1 kβ
1 −

1
m2

(p ·k1)
2
ε∗α2 εβ

1 , (20)

andΛαβ
(c) remains unchanged. Substituting these expressions

in Eq.(16) we find

M = −2ie2 (ε1 · ε∗2) gαβεα(p1)ε∗β(p2). (21)

In laboratory system, where in the spheric basis the compo-
nents of the polarization vectorεα(p1) are

εα(m,±) = ∓ 1√
2
(0, 1,±i, 0),

εα(m, 0) = (0, 0, 0, 1),

and forεβ(p2) are

εβ(p2,±) = ∓ 1√
2
(0, cos θ2,±i,− sin θ2),

εβ(p2, 0) =
1
m

(p2, E2 sin θ2, 0, E2 cos θ2),

the productgαβεα(p1)ε∗β(p2) = −1, and Eq.(21) takes the
form

M = 2ie2 (ε1 · ε∗2) . (22)

Now we have to compute
〈
|M|2

〉
, for which we sum

over the massive vector boson polarizations,

∑
s1,s2

εα(p, s1)ε∗β(p, s2) = −gαβ +
pαpβ

m2
. (23)

Then, from Eq.(21) we finally obtain

〈
|M|2

〉
= 4e4 |ε1 · ε2|2 . (24)
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5. Spin-3/2 target

Electrodynamics of a spin-3/2 fieldΨµ is described by the
Rarita-Schwinger Lagrangian density

LRS = Ψ
µ

[
gµν(iγαDα −m) +

i

3
γµ(γαDα)γν

− i

3
(γµDν + γνDµ) +

m

3
γµγν

]
Ψν . (25)

The Rarita-Schwinger spin-vectorΨµ is restricted to supple-
mentary conditions

∂µΨµ = 0,

γµΨµ = 0, (26)

in order to eliminate the spin-1/2 components, which arise as
a consequence of the making ofΨµ through the product of a
spin-1/2 and a spin-1 fields. The LagrangianLRS is invariant
under contact transformations

Ψµ → RµνΨν , (27)

where

Rµν(A) = gµν +
3A + 1

2
γµγν , (28)

and the parameterA 6= − 1
2 is otherwise arbitrary. After a

contact transformation, Eq.(25) transforms to

LRS = Ψ
µ

[gµν(iγαDα −m) + iBγµ(γαDα)γν

+iA(γµDν + γνDµ) + mCγµγν ] Ψν , (29)

whereB = 3
2A2 + A + 1

2 andC = 1 + 3A + 3A2. From

Eq.(29) we can read the Feynman rules for the electromag-
netic vertex

Γα
βσ(A) = −iRµ

β(A)Γα
µνRν

σ(A),

Γα
µν =−e

[
gµνγα+

1
3
γµγαγν−1

3
(
γµgα

ν+γνgα
µ

)]
, (30)

and the spin-3/2 propagator

∆µν(A, p) = − i

p2 −m2 + iε

[
2mSµν(p)− 1 + A

6(1 + 2A)
p2 −m2

m
(

2
m

(γµpν + γνpµ)− 2γµγν − 1 + A

1 + 2A
(

1
m

γµγαpαγν − 2γµγν)
)]

,

Sµν(p) =
[
−gµν +

1
3
γµγν − 1

3m
(γµpν − γνpµ) +

2
3m2

pµpν

]
γαpα + m

2m
. (31)

Physical quantities, as the differential cross-section, must not depend on the parameterA.
Like in the case of spin-1/2 we have two diagrams only; and the total amplitude is given by [6]

M = M(a) +M(b), (32)

with

M(a) = uν(p′, s′)
(
Γβ

νσ(A)εβ(k2)
)
∆σρ(A, q)

(
Γα

ρµ(A)εα(k1)
)
uµ(p, s),

M(b) = uν(p′, s′) (Γα
νσ(A)εα(k1))∆σρ(A, q′)

(
Γβ

ρµ(A)εβ(k2)
)
uµ(p, s).

It is straightforward to show that the parameterA inM(a) andM(b) disappears using some properties of Dirac gamma matrices
and the equation of motion for the Rarita-Schwinger spinoruµ:

Rη
σ(A)∆σρ(A, q)Rω

ρ (A) = ∆ηω(q),

and Eq.(26) to find

M(a) = uν(p′, s′)O(a)
µν uµ(p, s),

O(a)
µν =

ie2

2p · k1

[
−gµνγα(2pβ + k1 · γγβ) +

2
3m2

γα(2pβ + mγβ + k1 · γγβ)k1µk1ν

− 2
3m

(γαk1µ(m + k1 · γ)gνβ + gαµk1ν(2pβ + k1 · γγβ −mγβ))− 4
3
k1 · γgαµgβν

− 4
3m2

p · k1 (gβνk1µγα − gαµk1νγβ + gαµgβν(k1 · γ −m))
]

εα(k1)ε∗β(k2), (33)
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and similarly

M(b) = uν(p′, s′)O(b)
µν uµ(p, s),

O(a)
µν = − ie2

2p · k2

[
−gµνγβ(2pα − k2 · γγα) +

2
3m2

γβ(2pα + mγα − k2 · γγα)k2µk2ν

+
2

3m
(γβk2µ(m− k2 · γ)gνα + gβµk2ν(2pα − k2 · γγα −mγα)) +

4
3
k2 · γgβµgαν

− 4
3m2

p · k2 (gανk2µγβ − gβµk2νγα + gβµgαν(k2 · γ + m))
]

εα(k1)ε∗β(k2). (34)

As in previous calculations the total amplitude is gauge
invariant. The limit of photon low energy leads to

M = uν(p′, s′)Oµνuµ(p, s),

Oµν =
ie2

2p · k1

[
2gαβgµνγ · k+

4
3
(gαµγβ+gβµγα)k1ν

+
4

3m
(gαµgνβ + gβµgαν)(p · k1 −mγ · k

]

×εα(k1)ε∗β(k2). (35)

In laboratory systemkµ
1 = (ω, 0, 0, ω), andp · ε(k1) = 0,

p · ε∗(k2) = 0, along with the use of Rarita-Schwinger equa-
tion, reducesOµν to

Oµν =
ie2

2p · k1

[
2gαβgµνγ · k

+
4
3
(gαµγβ + gβµγα)k1ν

]
εα(k1)ε∗β(k2). (36)

Notice that the first term is quite similar to Eq.(12), then the
second one must vanishes. This is so when we explicitly con-
sider the contraction of indices. Finally,

M = 2ie2 (ε1 · ε∗2)

6. Conclusions

There exist in the literature a general result for the Compton
amplitudes at strictly zero frecuency [7]. Ifs is the spin of

the target particle, the most general form of the zero-energy
amplitude matrix is

M(0) = M1(0)ε1 · ε∗2 +M2(0)s · (ε∗2 × ε1)

+M3(0)s· ((ε1 × n1)× (ε∗2 × n2)) , (37)

where the amplitudesMi(0) are given by

M1(0) =
e2

m
, (38)

which is the Thomson limit,

M2(0) = 0, (39)

which is a consequence of crossing symmetry, and

M3(0) = 0, (40)

implying the vanishing of double spin-flip.What we have
done in this work is to show how to obtain Thomson scat-
tering formula as the limit of the scattering amplitude of a
photon from target particles of spins 0,1/2, 1, and3/2 explic-
itly.

Needless to say that Thomson scattering gives no infor-
mation on particle structure, for which we need, at least, the
next order in perturbation theory, related to particle magnetic
dipole moment as stated in Low’s theorem [8].
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