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We review Thomson scattering, as the low energy limit of Compton scattering, for target particles of spin 0, 1/2, 1, and 3/2 . We show how,
at the scattering amplitude level, Thomson result emerges; then, the computation of the cross section is quite simple.
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Calculamos la disper@n Thomson, como elrhite de bajas energs de la disperéh Compton, para padulas blanco de espines 0, 1/2, 1,
and 3/2. Mostramos como el resultado de Thomson se obtiene al nivel de la amplitud de @hsplerslonde elalculo de la secéin de
dispersbn resulta ras simple.

Descriptores:Disperson; fotones; esip de paricula
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1. Introduction ential or total cross-section is computed, the low energy limit
) ) is performed to get Thomson'’s result, which is, as expected,

The scattering of an electromagnetic wave by a free chargeggependent of target spin effects. In fact, the classical angu-

particle was first studied by J.J. Thomson in 1904 [1], andgy gifferential cross section for the scattering of an incident

studied by A. H. Compton in 1923. The relativistic quantum

mechanical calculation of this cross section is known as the do 02\ 2

Klein-Nishina formula. = = () le* (k) - (k)| @)
In many books on Relativistic Quantum Mechanics, the di2 m

procedure to calculate Compton scattering is through the use , o

of Feynman rules obtained from the Quantum Electrodynamf-"’h_ereE (k) andz (k") are the polarization three-vectors of the

ics Theory [2]. This is done for the scattering of a photon,incident and scattered waves, and the conditiorc m for

the electromagnetic wave, off a free electron, a particle of '€ €nergyv of the incident wave is fulfilled.. Thus,QThom-

spin1/2 or from a spin-0 particle. In Figs. 1(a)-(c) we show SOn squared amplitude is proportional4o(k’) - £(k)[".

the Feynman diagrams contributing to Compton scattering, In the next sections we show how to obtain Eq.(1) as the

where the first two corresponds to the case of a target of spifow energy limit of expressions at the level of scattering am-

1/2 and spin 3/2. For the case of a target of spin-0 and spin-Rlitudes. Then, we calculate the differential cross-section for

the three of them contributes to scattering. After the differ-targets of spins @/2, 1, and3/2.

Y

(a) (b) (c)

FIGURE 1 Feynman diagrams involved in Compton scattering for a spin-cero and spin-one target (a)-(c), and spin-1/2 and spin-3/2 target

(a)-(b).
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2. Spin-0 target where they, are Dirac matrices. The corresponding Feyn-

. . o ) man rules are
Electrodynamics of a spin-zero charged fiélds described

by the Klein-Gordon Lagrangian density V., = —ieyu,

Lice = (Dpd)" D' — m26* 6, @) Dp) = — ©)
whereD,, = 0, — ieA, is the covariant derivative, with pry—mmeie

A, the electromagnetic 4-vectoL r¢ leads to the follow-  For this case we only have two diagrams, depicted in

ing Feynman rules [4] Fig. 1 (a) - (b). The total amplitude is
VL ’ N — g / . , . o

Viw = 22‘e2gW ,

i N Wﬂ(p7+k7+m)ﬁyuj| U(p S)E*H(k/)gy(k) (10)
Ag) = P —m?tic 3) 2p -k

where the first line is the interaction vertex of the photon, in- whereu(p, s) is particle spinor of momentum and spins;
dex u, the incident particle of 4-momentum and scattered

particle of momentump’. The second line is the vertex with again the amplitude is gauge invariant. In the likfit— &
two photons, the incident and the scattered one, and the twdndp’ — p, EQ.(10) reduces to

particles, and the last line is the spin-zero propagator. Adding 9
the three amplitudes in Fig.1, and performing some simplifi- M = ve
cations, we obtain 2p-k

a(@’,s") (Vv - ke + 9y - k)

xu(p, s)e** (k" )e" (k). (11)

. pvp/ b Lpl// * v
M = —2ie? (;; - l. I | € H(KNeY (k). (4)
p p Using some identities of the gamma matrices we obtain

Polarization vectors of the incident and the scattered photons Ly

are denoted by” (k) ande*(k’), respectively. This ampli- M= gﬂ(p/’s/h ku(p, 5)e* (K') - (k)

tude is gauge invariant, as can be checked by making the p-k

substitutions=*# (k') — k'*, ¢¥(k) — k¥, and taking into ie2

account the relations+k = p’ + &’ andk? = k2 = 0. Now, = mk“/\ug*(k/) ~e(k), (12)

Thomson limit means we have to & — k andp’ — p, for

which Eq.(3) reduces to with A, = a(p', 8')v,u(p, s). Now, to calculat |M|2> we

M =2ie? g, e (k)" (k). (5) have to use some properties of the traces of gamma matri-
) ) .. ces and of the spin projector operator. After this is done, we
At this point we have to remember that the angular d'ﬁer'arrive to
ential cross-section in the elastic scatterihgg B — A+ B,
considering no target recoil, is <|M\2> = 4?5 (k') - (k). (13)
dO' 1 2 2
do _ 6 . . . . ).
70 <2MB> <|M| > ) (6)  From this equation we obtain, again, Eq. (1)
where( ) implies an average over spin states. For Eq.(4) the The preceding two cases are usually worked examples in
average is over photon polarization states, then books as those cited previously [2]. The less known cases of
J o 2 spin-1 and spin-3/2 are described in the next sections.
g e 2
— | — (k') -ek)|”. 7
o~ (5) -0 )

In laboratory system we can choosé&(k) = (0,e(k)) and 4. Spin-1 target

et (k") = (0,e(k")), then Eq.(7) reduces to the expression in

Eq.(1). Electrodynamics of a spin-1 vector fielg, is described by
the Proca lagrangian density

. i = 1
3. Spin-1/2 target Lp— —§¢ZV¢‘“’ +m2ger, (14)
Electrodynamics of a Spi%l field ¢ is described by the Dirac
lagrangian density with ¢** = DH¢¥ — DV ¢*, and the Feynman rules are

Lp = 4(iy" Dy —m)y, (8)
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‘//Laﬁ(pl7p2) = —ie [(pl +p2)ug(xﬂ — P2a98u — plgap] 5

Ao Al
. a
Viwas = —i€® (29uv90p — Juadvs — Jupdva) M = —ie® T A calp)es(p),  (16)

g,uu pupu/m2

. 15
p2 —m?2 + e (15)

Dy (p) =
Here, we have three diagrams as in the spin-0 case, with all
the lines attached to vector particles. The total scattering anwheree, (p) andeg(p’) are the polarization vectors of the
plitude is [5] spin-1 target particle. The second range tensors in Eq.(16)
| are

A =4(p-e1)(p2-e3) g™ —2(p-e1) ks — 2(p- 1) pes” — 2(p' - 1) k§'ey + (e - 3) k'HS
ok * « ok 1 o %
+(P/'51)k152ﬂ_2(p/'52)pﬁ +(p- 52)]@551 (P'Pl)5152ﬁ+m(p'5l)(% -p/) 152[3

1 * « 1 * [e% 1 a _*
3 (p-e1) (0 - 3) KKy + W(p-ql)(p’-fz)élkzﬁ 2 (p-a) @ @) edes’, (A7)

for A?bf we have to make the substitutiofis«— ¢, k1 «—— —k», and
A?‘C) = —2; - 59%° + e’ + ePere. (18)
Verification of gauge invariance is more involved, as is the taking of the low energy limit. For Eq.(17) we obtain
A md(p-er) (p-eb) g — 2(p-e1) W™ — 2(p- <3) kel
*\ L.a1.0 a_*p3 \ 1.8 _a a_*p3 1 *\ .a1.B 1
+ (e1-€3) kT'kY +2(p-e1) kf'ey” +2(pe3) kel —2(p-k1) efey” — m2 (p-e1) (p-e3) ki'ky — m2 (p~k1) ey 52 ,» (19)
similarly,

AP~ A(p-e1) (p-e3) g™ +2(p-3) Meh —2(p- 1) hi'ey”

*Q s 1 *\ . 1 *or
+(e1-€3) kakﬁ +2(p-e3) kT 51 - 2(p~51)kf52 +2(p-k1)es 5? ) (p-e1) (p-e3) k7 kf 2 (p~k1) €9 5?7 (20)

andAo‘ﬁ remains unchanged. Substituting these expressions
in Eq. (16) we find !

M = —2ie? (g1 - €}) g“ﬁea(pl)eg(pg). (22)
In laboratory system, where in the spheric basis the compo- M = 2ie? (g1 - €3). (22)
nents of the polarization vectef(p, ) are
e¥(m, %) = ¢ﬁ(0717i%0), Now we have to computé|M|?), for which we sum
over the massive vector boson polarizations,
Ea(m’ 0) = (07 0’07 1)7
and fore?(ps) are . Dap
(p2) 1 S calps1)eh(p52) = —gas + 22 (23)
f¢] o . . 81,52
€ ,£+) = —(0, cos O, £i, — sin bs),
(p2, %) jF\/ﬁ( 2 2)
1 , .
e’ (p2,0) = —(p2, Ba5in 03,0, By cos ), Then, from Eq.(21) we finally obtain
the produc@aﬂga(pl)sg(pz) = —1, and Eq.(21) takes the <|M\2> — 4t ey e ‘2 (24)
form b
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5. Spin-3/2 target where
Electrodynamics of a spin-3/2 field,, is described by the SA+1
Rarita-Schwinger Lagrangian density Ry (A) = g + S W (28)
_ ot ; o 3 o
Lrs = V" |gu(ivaD m) + 37"(%1) ) and the parameted # —% is otherwise arbitrary. After a

i m . contact transformation, Eq.(25) transforms to
_g(’yﬂDV + ’YVDM) + g'ﬁbryu Y. (25)
Lrs = U [gu(ivaD® —m) + iBy,(vaDY)
The Rarita-Schwinger spin-vectd, is restricted to supple- f 90 (i ) W "
mentary conditions +iA(YuDy + % Dy) + mCryy | ¥Y, (29)

o', =0, whereB = 342+ A+ { andC = 1 + 34 + 3A% From

H —
7" =0, (26) Eq.(29) we can read the Feynman rules for the electromag-

in order to eliminate the spin-1/2 components, which arise agetic vertex

a consequence of the making®f, through the product of a

spin-1/2 and a spin-1 fields. The Lagrangiags is invariant '3, (4) = —iR (AT, R7(A),
under contact transformations

pr ==¢|GuY T3V ’Yu**(%tguJF'ngH) , (30)

Uy — Ry VY, (27) 3 3

| and the spin-3/2 propagator

1+A p*—m?
1+24) m

1

A,uu(Avp) =73

o [P~

2 1+A4 1 N
(m(wpu + YoPu) = 2V — (=YYl Y0 — 2%%))] ,

1+2A4"'m
1 1 2 YaP* +m
S (p) = [—gw + 3w 5 (Yupv = Yopu) + 32 PuP Y (31)
Physical quantities, as the differential cross-section, must not depend on the patameter
Like in the case of spin-1/2 we have two diagrams only; and the total amplitude is given by [6]
M = M) + My, (32)

with
My =T (1, 8") (T (A)es(ka)) A7P(A, q) (T, (A)ea(kr)) v (p, ),
My = (P, 8') (T3, (A)ea (k) A7 (A, ') (T, (A)ep(k2)) u (p, s).

Itis straightforward to show that the parametein M,y andM ;) disappears using some properties of Dirac gamma matrices
and the equation of motion for the Rarita-Schwinger spirtr

RI(A)ATP(A, q)R)(A) = A™(q),
and Eq.(26) to find
My =0 (p,8) 0w (p, 5),

: 2
@= 2 |- 25 + ki - 2 k1 - yys)k b
W Gy Ve (2P + K1 - 178) + 3—57%a(2P3 + g + k1 78 Rk
2 4
_37m (’Yozk'l;t(m + k- 7)91,3 + gwklu(ng + k1 - VB — m’Yﬁ)) — §]4;1 “YGaudsy

4 « *
7Wp Ky (gﬁuklu")/(x - gaukh/}/ﬁ + gap,gﬂu(kl Y= m)) € (k1)5 B(kQ)a (33)
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and similarly
My =u"(p', s’)OS’V)u“ (p, s),

2
2
0 = — | 05200 — k2 - 17a) + —578(2P0 + MY0 — k2 - Ve Kayikan
o 5 s 9uv15(2p 2 YVa) + 3578(2Pa + MYa = k2 - 1) k2ukz

2 4
+s, (vakou(m — k2 - V)gva + 9suk20 (2P0 — k2 - YV — MYa)) + 3k2 - V9puGar

4 *
_WP “ k2 (avk2uvs — 9pukovva + gougar (ke - v +m))| e%(k1)e ﬁ(k2)- (34)

As in previous calculations the total amplitude is gauge
invariant. The limit of photon low energy leads to he target particle, the most general form of the zero-energy
amplitude matrix is

4 / /! N
M=, &) 0w (p, ), M(0) = My (0)ey - €5+ Ma(0)s - (5 x £1)

e 4
% -k 29089 - k+§(go¢u’yﬁ+gﬂu7a)klu +M3(0)s- ((e1 x n1) X (€5 x na)), (37)

2
O =

where the amplitudes;(0) are given by

4
+%(ga/»¢gl/,3 + gﬁ,ugow)(p k1 —my -k

; (38)

6’2
m

xe® (k1) (ks). (35) Mi(0) =

which is the Thomson limit,
In laboratory systent}’ = (w,0,0,w), andp - (k1) = 0,
p-e*(k2) = 0, along with the use of Rarita-Schwinger equa- M5(0) =0, (39)
tion, reduce®,,,, to
ie?
O = 2 - ki 29apguY - k Ms(0) =0, (40)
4 N 8 implying the vanishing of double spin-flip.What we have
+3(9anrs + 9puva)kiy €% (k1)e™ (k2). (36)  done in this work is to show how to obtain Thomson scat-
tering formula as the limit of the scattering amplitude of a

Notice that the first term is quite similar to Eq.(12), then thePhoton from target particles of spins2, 1, ands/2 explic-
second one must vanishes. This is so when we explicitly contly-

sider the contraction of indices. Finally, Needless to say that Thomson scattering gives no infor-

mation on particle structure, for which we need, at least, the
next order in perturbation theory, related to particle magnetic

o2 s
M =2ie” (e1 - &3) dipole moment as stated in Low’s theorem [8].
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