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A matrix method to evaluate the angular spheroidal functions is presented as an alternative to the orthodox method.Plane waves are identified
as generating functions of the spheroidal functions showing their explicit expansions.
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Se presenta un ḿetodo matricial para evaluar las funciones esferoidales angulares como alternativa al método ortodoxo. Se identifican las
ondas planas como funciones generadoras de las funciones esferoidales, mostrando sus desarrollos explı́citos.
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1. Introduction

This work has been done in parallel to that on Mathieu func-
tions [1], which is natural taking into account the connec-
tion between the Mathieu and spheroidal functions [2]. The
methodology is applicable to both type of functions, but the
results are specific to each one of them.

Chapter 21 on spheroidal wave functions by Lowan [2]
is taken as the basic reference for the revisiting in this paper.
Additional references are books by some of the authors who
made original contributions to the mathematical understand-
ing, the physical applications and the numerical computation
of the functions themselves [3-7].

Mathieu functions and spheroidal functions have the
common property of being solutions of Helmholtz equation,
with the difference that the first ones are associated with ellip-
tical coordintes in two dimensions while the second ones are
associated with prolate/oblate spheroidal coordinates in three
dimensions. Correspondingly, the angular Mathieu func-
tions are represented as cosine or sine Fourier series in the
hyperbolic coordinate, and the angular spheroidal functions
are Legendre polynomial series in the hyperboloidal coor-
dinates. The respective expansion coefficients are shown to
satisfy three-term recurrence relations, which can be rewrit-
ten as equations involving infinite continued fractions in the
characteristic numbers or eigenvalues of the separation con-
stant. The orthodox method for the evaluation of the respec-
tive functions is implemented in two successive steps, first
the numerical evaluation of each eigenvalue, and second the
evaluation of the expansion coefficients.

The matrix method presented here as an alternative to
evaluate the Mathieu functions and spheroidal functions has
been used by our group in connection with the study of the
hydrogen molecular ion in two and three dimensions, respec-

tively [8-10] in the context of matrix quantum mechanics.
The advantage of this method in comparison with the ortho-
dox one is that in the diagonalization process the eigenvalues
and eigenvectors are simultaneously obtained, and their con-
vergence and accuracy can be tested by increasing the size of
the matrix.

The remaining of the manuscript is organized as fol-
lows. Section 2 shows the separation of the Helmholtz equa-
tion in both prolate and oblate spheroidal coordinates, ob-
taining the respective angular and radial equations for the
spheroidal functions and their corresponding connections.
Section 3 contains the matrix formulation of the eigenvalue
problem for the separation constant in the angular equation.
In Sec. 4, plane waves are identified as generating functions
of the spheroidal functions, showing the explicit expansions
in spheroidal waves. In the closing section some mathemati-
cal and physical applications are discussed.

2. Helmholtz equation in spheroidal coordi-
nates

Prolate(1 ≤ ξ < ∞,−1 ≤ η ≤ 1, 0 ≤ ϕ < 2π) and oblate
(0 ≤ ζ < ∞,−1 ≤ χ ≤ 1, 0 ≤ ϕ < 2π) spheroidal coordi-
nates are defined by the respective transformation equations
to cartesian coordinates

x = c
√

(ξ2 − 1)(1− η2) cos ϕ,

y = c
√

(ξ2 − 1)(1− η2) sin ϕ, z = cξη, (1)

x = c
√

(ζ2 + 1)(1− χ2) cos ϕ,

y = c
√

(ζ2 + 1)(1− χ2) sin ϕ, z = cζχ. (2)



278 N. AQUINO AND E. CASTAÑO AND E. LEY-KOO

Herec is the common semifocal distance andϕ is the usual
azimuthal angle. Confocal prolate spheroids are defined for
each fixed value ofξ with an eccentricity1/ξ; confocal two-
sheet hyperboloids are defined for each fixed value ofη with
an eccentricity 1/η. Confocal oblate spheroids are defined
for each value ofζ with an eccentricity1/

√
ζ2 + 1; confocal

one sheet hyperboloids are defined for each value ofχ with
an eccentricity1/

√
1− χ2, distinguishing between their up-

per and lower halves according to the intervals1 ≥ χ > 0
and0 > χ ≥ −1, respectively.

Helmholtz equation in these coordinates has the respec-
tive forms
{

1
c2(ξ2 − η2)

[
∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1− η2)

∂

∂η

+
ξ2 − η2

(ξ2 − 1)(1− η2)
∂2

∂ϕ2

]
+ k2

}
ψ(ξ, η, ϕ) = 0, (3)

{
1

c2(ζ2 + χ2)

[
∂

∂ζ
(ζ2 + 1)

∂

∂ζ
+

∂

∂χ
(1− χ2)

∂

∂χ

+
ζ2 + χ2

(ζ2 + 1)(1− χ2)
∂2

∂ϕ2

]
+ k2

}
ψ(ζ, χ, ϕ) = 0. (4)

Both equations are separable admitting factorable solu-
tions:

ψ(ξ, η, ϕ) = Ξ(ξ)H(η)Φ(ϕ), (5)

ψ(ζ, χ, ϕ) = Z(ζ)X(χ)Φ(ϕ). (6)

The azimuthal equation is common to both cases:

d2Φ
dϕ2

= −m2Φ,m = 0,±1,±2, . . . (7)

The hyperboloidal equations for the respective cases take the
forms

[
d

dη
(1−η2)

d

dη
− m2

1− η2
−k2c2η2

]
H(η)=−λH(η), (8)

[
d

dχ
(1−χ2)

d

dχ
− m2

1− χ2
+k2c2χ2

]
X(χ)=−λX(χ), (9)

differing only in the sign of the quadratic term in the hy-
perboloidal coordinate. Equation (9) may be obtained from
Eq. (8) with the transformationsη → χ andkc → ∓ikc.

The corresponding spheroidal equations are
[

d

dξ
(ξ2 − 1)

d

dξ
− m2

ξ2 − 1
+ k2c2ξ2

]
Ξ(ξ) = λΞ(ξ), (10)

[
d

dζ
(ζ2 + 1)

d

dζ
+

m2

ζ2 + 1
+ k2c2ζ2

]
Z(ζ) = λZ(ζ), (11)

differing in the signs of the binomials and of the second term.
Equation (11) may be obtained from Eq. (10) with the trans-
formationsξ → ±iζ andkc → ∓ikc.

In the above equations,m andλ are the separation con-
stants and play the role of eigenvalues for the respective oper-
ators. Equations (8) and (10) are identical, but their solutions
cover different domains−1 ≤ η ≤ 1 and1 ≤ ξ < ∞ for the
hyperboloidal and spheroidal coordinates, respectively.

Similarly, Eq. (9) becomes Eq. (11) under the transfor-
mationχ → ±iζ, and their solutions are defined in the re-
spective domains−1 ≤ χ ≤ 1 and0 ≤ ζ < ∞.

We start by focussing our attention on Eqs. (8) and (9)for
the angular spheroidal functions. The first two terms corre-
spond to the Legendre operator, and all the terms are even
in the hyperboloidal coordinate. This suggests solutions ex-
pressed as expansions of Legendre polynomials or Legendre
functions of the second kind, which for the prolate spheroidal
functions take the forms for the respective kinds:

S(1)
mn(kc, η) =

∞∑
r=0,1

′dmn
r (kc)Pm

m+r(η), (12)

S(2)
mn(kc, η) =

∞∑
r=−∞

′dmn
r (kc)Qm

m+r(η). (13)

The summations extend over even or odd values ofr.
The substitution of Eq. (12) in Eq. (8) leads to three-term

recurrence relations for the expansion coefficients Eq. 21.7.3
in Ref. 2. Like in the case of Mathieu functions, these rela-
tions can be transformed into an infinite continued fraction
equation for the eigenvaluesλmn, Eqs. 21.7.4 in Ref. 2. The
orthodox method to evaluate the eigenvalues and expansion
coefficients of the spheroidal functions of Eq. (12) is the
adaptation of the method introduced by Ince for the Mathieu
functions [11], involving the refinement of approximate nu-
merical values of each eigenvalue, the evaluations of the ra-
tios of consecutive expansion coefficients, and the evaluation
of the coefficients themselves taking into account the adopted
normalization convention, Eqs. 21.7.7–21.7.16 in Ref. 2.

The angular oblate spheroidal Eq. (9) has also solutions
of the type of Eqs. (12) and (13) with the replacements
η → χ andkc → −ikc discussed after Eqs. (8) and (9). The
corresponding expansion coefficients satisfy the same recur-
rence relations with the change of sign ink2c2.

The radial prolate spheroidal Eq. (10) has also solutions
of the type of Eqs. (12) and (13) with the substitutionη → ξ
and corresponding change of domain. It is recognized that
Eq. (10) has a regular singular point atξ = 1, which can
be removed through a factor(ξ2 − 1)m/2 in the solution
Ξ(ξ).Then the remaining factor can be represented in terms
of series of radial spherical Bessel functions. As an illustra-
tion, here we simply quote 21.9.1. from Ref. 2:

R(p)
mn(kc, ξ)=

{ ∞∑
r=0,1

′ (2m+ r)!
r!

dmn
r

}−1(
ξ2−1
ξ2

)m/2

×
∞∑

r=0,1

′ir+m−n (2m + r)!
r!

dmn
r Z

(p)
m+r(kcξ), (14)
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where

Z
(1)
l (z) = jl(z), Z

(2)
l (z) = yl(z) (15)

are spherical Bessel functions of orderl = r + m, of the first
and second kinds, respectively. The expansion coefficients in
Eq. (14)dmn

r are the same as in Eqs. (12) and (13).
The radial oblate spheroidal functions, solutions of

Eq. (11) can be obtained in two alternative ways. The first
one is through the substitutionχ → −iζ in the angular so-
lution of Eq. (9). And the second one is thorugh the sub-
stitutionsξ → iζ andkc → −ikc in the radial solutions of
Eq. (10).

3. Matrix evaluation of angular spheroidal
functions

Here we formulate the matrix solutions of both
Eqs. (8) and (9) following the standard methods of quan-
tum mechanics. We adapt the expansion of Eq. (12) to the
normalized basis of associated Legendre functions:

|lm〉 =

√
(2l + 1)(l − |m|)

2(l + |m|)! Pm
l , (16)

with l = r + m. The new expansion is

|mn〉 =
∞∑

l=|m|

′cmn
l |lm〉 (17)

differing from that of Eq. (12) in the use of orthonormalized
bases. The connection between the expansion coefficients in
Eqs. (12) and (17) is

dmn
r = cmn

l

Nlm

N̄mn
, (18)

whereNlm is the normalization coefficient of the Legendre
polynomials in Eq. (16) and̄Nmn is the normalization coef-
ficient of the angular spheroidal functions for which there are
several conventions [1-7]. In particular, that of Meixner and
Scḧafke [5] is such that

∫ 1

=1

∣∣∣∣S(1)
mn(kc, η)

∣∣∣∣
2

dη =
2

2n + 1
(n + |m|!)
(n− |m|)! . (19)

Then the normalization constant̄Nmn has the same form as
that ofNlm with the replacement ofl by n.

The quadratic term in Eqs. (8) and (9) can be written as
the combination(2P2 + P0)/3, with the result that its ma-
trix elements in the basis of Eq. (16) have the selection rules
l′ = l − 2, l + 2 andl, respectively. The other terms in both
equations are diagonal. Then the corresponding matrices are

[
l(l + 1)± k2c2 (2l + 3)(l + m)(l −m) + (2l − 1)(l + m + 1)(l −m + 1)

(2l + 1)(2l − 1)(2l + 3)
− λ

]
δl′,l

±k2c2

[
1

2l − 1

√
(l + m)(l + m− 1)(l −m)(l −m− 1)

(2l + 1)(2l − 3)
δl′,l−2

+
1

2l + 3

√
(l + m + 1)(l + m + 2)(l −m + 1)(l −m + 2)

(2l + 1)(2l + 5)
δl′,l+2

]
= 0, (20)

where the upper (lower) sign in thek2c2 terms are for the
prolate (oblate) cases. Therefore, the matrix is tridiagonal
and symmetric involving only even or only odd values ofl
or r. Its contents are equivalent to the three-term recurrence
relation between thedmn

r coefficients Eqs. 21.7.3 in Ref. 2.
The advantage of using the normalized basis of Eq. (16) is
the symmetry of the matrix of Eq. (20). The diagonaliza-
tion of such a matrix produces both the eigenvaluesλmn and
the eigenvectorscmn

l simultaneously. This can be contrasted
with the successive steps for their individual determination in
the orthodox method.

For c = 0 the spheroids become spheres, the matrix is
diagonal, the eigenvalues areλ = l(l + 1) and the spheroidal
functions become Legendre polynomials. For small values of
kc, quantum perturbation theory can be applied to obtain

power series expansions for the eigenvalues Eqs. 21.7.5 in
Ref. 2, and eigenvectors.

The size of the matrix is chosen according to the size of
kc. The tabulations for the eigenvaluesλmn(kc) in [2] cover
the ranges of(kc)2 from 0 to 16 and for(kc)−1 from 0.25 to
0, and form = 0, 1, 2 andn = m,m+1,m+2, m+3,m+4.
For the first range of(kc)2 matrices of 10×10, and for the
second range of(kc)−1 from 0.25 to 0.01, matrices of 60×60,
using the Jacobi diagonalization routine, produce eigenvalues
matching and improving those tabulated in Ref. 2. The eigen-
vectors obtained in the corresponding diagonalizations also
lead to reliable and accurate angular and radial prolate/oblate
spheroidal functions.

Rev. Mex. F́ıs. 48 (3) (2002) 277–282



280 N. AQUINO AND E. CASTAÑO AND E. LEY-KOO

4. Plane waves as generating functions of
spheroidal functions

Plane waves

ψ(x, y, z) = ei~k·~r = ei(kxx+kyy+kzz) (21)

and spherical waves

ψ(r, θ, ϕ) = jl(kr)Ylm(θ, ϕ) (22)

are regular solutions of Helmholtz equation in three dimen-
sions,satisfying orthogonality and completeness properties
in their common domain(−∞ < x < ∞,−∞ < y <
∞,−∞ < z < ∞) and (0 < r < ∞, 0 ≤ θ ≤ π, 0 ≤
ϕ ≤ 2π). These properties make possible the expansion of a
plane wave in spherical waves, Eq. 10.1.47 in Ref. 2,

ei~k·~r =
∞∑

l=0

il(2l + 1)jl(kr)Pl(k̂ · r̂)

=
∞∑

l=0

iljl(kr)4π

l∑

m=−l

Y ∗
lm(θk, ϕk)Ylm(θ, ϕ), (23)

where the addition theorem of the spherical harmonics is used
in going between the last two lines. Equation (23) can also
be interpreted as giving a generating function for the spheri-
cal Bessel functions.

As in the case of the Mathieu functions [1], there are not
explicitly recognized generating functions for the spheroidal
functions, [3-7]. Since the spheroidal waves

ψ(ξ, η, ϕ) = R(1)
mn(kc, ξ)S(1)

mn(kc, η), (24)

ψ(ζ, χ, ϕ) = R(1)
mn(−ikc, iζ)S(1)

mn(−ikc, χ), (25)

are regular solutions of Helmholtz equation forming com-
plete orthogonal sets in the common domain shared with the
waves from Eqs. (21) and (22), we expect the existence of
generating functions for the spheroidal functions as well.

Next, we proceed to justify such an expectation by find-
ing the expansions of some plane waves in spheroidal waves.
Eqs. (1) and (2) for the coordinate transformations, the as-
sociations of polar angles to the hyperboloidal coordinates
η = cos θη andχ = cos θχ, and Eq. (23) are the basis to
construct some of the expansions.

The wave propagating in the direction of thez axis can
be written as

eikz = eikcξ cos θ =
∞∑

l=0

il(2l + 1)jl(kcξ)Pl(η). (26)

Since both the Legendre polynomials and the angular
spheroidal functions form orthogonal complete sets of func-
tions, the inverse transformation of Eq. (12) is

Pm
m+r(η) =

∞∑
n=0,1

d̄mr
n (kc)S(1)

mn(kc, η). (27)

The respective expansion coefficients are related through the
common overlap integral and the respective normalization in-
tegrals:

dmn
r (kc) =

2(r + 2m)!
(2m + 2r + 1)r!

×
∫ 1

−1

Pm
m+r(η)S(1)

mn(kc, η)dη, (28)

d̄mr
n (kc) =

1
Īmn

∫ 1

−1

S(1)
mn(kc, η)Pm

m+r(η)dη (29)

∴ d̄mr
n (kc) =

Im
m+r

Īmn
dmn

r (kc) (30)

In Eq. (26)m = 0, so that substituting this value in Eqs.
(30), (27) and (26) successively, the result is

eikcξη =
∞∑

l=0

′il(2l + 1)jl(kcξ)

×
∞∑

n=0,1

I0
l

Ī0n
d0n

l (kc)S(1)
0n (kc, η). (31)

The order of the summations can be exchanged, the ex-
plicit values of the normalization integralsI0

l = 2/(2l + 1)
and Ī0n = 2/(2n + 1) can be substituted, and Eq. (14) is
taken into account anticipating the identification of the radial
spheroidal functions, leading to

eikcξη =
∞∑

n=0

in(2n + 1)S(1)
0n (kcη)

×
∞∑

l=0,1

′il−n d0n
l (kc)jl(kcξ)

=
∞∑

n=0

in(2n + 1)S(1)
0n (kc, η)

×
{ ∞∑

l=0,1

′d0n
l (kc)

}
R

(1)
0n (kc, ξ). (32)

The corresponding expansion in oblate spheroidal wave
function is

eikz = eikcζχ =
∞∑

n=0

in(2n + 1)S(1)
0n (−ikc, χ)

×
{ ∞∑

l=0

′ d0n
l (−ikc)

}
R

(1)
0n (−ikc, iζ). (33)

Next, we consider a plane wave propagating in the direc-
tion of thex axis(θk = π/2, ϕk = 0), which can be written
in prolate spheroidal coordinates as

Rev. Mex. F́ıs. 48 (3) (2002) 277–282
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eikx = eikc
√

ξ2−1 sin θχ cos ϕ =
∞∑

l=0

iljl(kc
√

ξ2 − 1)4π

l∑

m=−l

Y ∗
lm(

π

2
, 0)Ylm(θη, ϕ). (34)

The spherical harmonic function in the angular spheroidal
coordinatesθχ andϕ can be written in terms of the associ-
ated Legendre polynomials and in turn in terms of the angular
spheroidal functions

Ym+r,m(θχ, ϕ) =
eimϕ

√
2π

Nm+r,mPm
m+r(η)

=
eimϕ

√
2π

Nm+r,m

∞∑
n=m

′d̄mr
n (kc)S(1)

mn(kc, η)

=
eimϕ

√
2π

Nm+r,m

∞∑
n=m

′ Im
l

Īmn
dmn

r (kc)S(1)
mn(kc, η), (35)

where Eqs. (27) and (30) have been used in the successive
steps. The spherical harmonic in the angles of the propaga-
tion vector is also written

Y ∗
r+m,m(

π

2
, 0) =

Nm+r,m√
2π

Pm
m+r(0). (36)

The product of the normalization constants and the nor-
malization integral associated with the Legendre polynomials
in Eqs. (35) and (36) reduces to unity, when substituted in Eq.
(34), which becomes

eikc
√

(ξ2−1)(1−η2) cos ϕ = 2
∞∑

m=−∞

∑
n=m

eimϕS(1)
mn(kc, η)

∑′
r
im+r dmn

r (kc)
Īmn

Pm
m+r(0)jm+r(kc

√
ξ2 − 1). (37)

When the normalization integral of the angular spheroidal functions, Eqs. (19) are used, Eq. (37) can be written as

eikc
√

(ξ2−1)(1−η2) cos ϕ

=
∑

n

∑
m

in(2n + 1)
(n− |m|)!
(n + |m|)!S

(1)
mn(kc, η)eimϕ

∑′
r
im+r−nPm

m+r(0)dmn
r (kc)jm+r(kc

√
ξ2 − 1) (38)

In this case the expansion of the plane wave has served to
generate a representation of the radial spheroidal wave func-
tion R

(1)
mn(kc, ξ) via the last sum over the indexr as a super-

position of the spherical Bessel functions with the argument

kc
√

ξ2 − 1, as an alternative to that of Eq. (14). They are
equivalent up to a normalization factor.

The corresponding expansion in oblate spheroidal func-
tion is

eikx = eikc
√

(ζ2+1)(1−χ2) cos ϕ =

∑
n

∑
m

in(2n + 1)
(n− |m|)!
(n + |m|)!S

(1)
mn(−ikc, χ)eimϕ

∑′
r

im+r−nPn
m+r(0)dmn

r (−ikc)jm+r(kc
√

ζ2 + 1) (39)

5. Discussion

In Sec. 2 the separation of the Helmholtz equation in prolate
and oblate spheroidal coordinates and some of the proper-
ties of the radial and angular spheroidal wave functions and
their evaluation via the orthodox method have been briefly
reviewed. Then in Sec. 3 the matrix evaluation of the
spheroidal wave functions was formulated through the con-
struction of the eigenvalue matrix Eq. (20). Its diagonaliza-
tion provides the numerical values of the eigenvaluesλmn

and the eigenvectorscmn
l of Eq. (16). The standard coeffi-

cientsdmn
r of Eq. (12) can be obtained by using Eq. (17). In

Section 4 plane waves along the z-axis and along the x-axis
have been identified as generating functions of the spheroidal
wave functions, withm = 0 Eqs. (32) and (33), and with
m 6= 0 Eqs. (38) and (39), respectively.

As an illustration of a mathematical application of the
generating functions, Eq. (31) can be used as the start-
ing point to obtain integral representations of the radial
spheroidal functions. By separating its real and imaginary

Rev. Mex. F́ıs. 48 (3) (2002) 277–282
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parts and using the orthogonality of the angular spheroidal
functions, the following representations are obtained:

R
(1)
0,2s(kc, ξ) = (−)s2

{ ∞∑

l=0

′d0,2s
l (kc)

}−1

∫ 1

−1

dηS
(1)
0,2s(kc, η) cos(kcξη), (40)

R
(1)
0,2s+1(kc, ξ) = (−)s2

{ ∞∑

l=1

′d0,2s+1
l (kc)

}−1

∫ 1

−1

dηS
(1)
0,2s+1(kc, η) sin(kcξη). (41)

Similar integral representations forR(1)
mn(kc, ξ) can be

obtained from Eq. (38):

∑
r

im+r−nPm+r(0)dmn
r (kc)jm+r(kc

√
ξ2 − 1)

=
in

2π

∫ 1

−1

∫ 2π

0

dηdϕS(1)
mn(kc, η)

×e−imϕeikc
√

(ξ2−1)(1−η2) cos ϕ. (42)

Also the counterparts of Eqs. (40) – (42) for the cor-
responding oblate spheroidal functions can be constructed,
either by analytical continuation or starting from Eqs. (33)
and (39).

Spheroidal wave functions are useful to describe acous-
tic and electromagnetic waves radiated by sources with
spheroidal shapes, and to describe the scattering of plane
waves of either type by spheroidal obstacles [4]. Our group
is presently investigating electron scanning tunnelling mi-
croscopy by modelling the tip and sample surfaces as confo-
cal hyperboloidal electrodes and using spheroidal electronic
wave functions [12].
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