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Shift of saddle-node bifurcation points in modulated Henon map
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We study the influence of a harmonic parametric modulation on the positions of critical points in the low-dissifatom tHap with

coexisting period-1 and period-3 attractors. The shift of the saddle-node bifurcation and crisis points depends strongly on the modulation
frequency and amplitude. Resonance phenomena play a significant role in the displacement of the attractor boundaries as well as in attractor
annihilation due to boundary crisis.
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Se estudia la influencia de la modulatparangtrica arndnica sobre la posion de los puntos @icos en el mapa de&hon de baja disipatn

con atractores coexistentes de periodo-uno y periodo-tres. El corrimiento en la biardacgaddle-node y de los puntos de crisis depende
fuertemente de la frecuencia y amplitud de moddlacil feromeno de resonancia juega un papel significativo en el desplazamiento de las
fronteras del atractor asomo en la aniquilaéin deéste debido a crisis de frontera.

Descriptores:Dinamica no lineal; moduladh parangtrica; atractores coexistentes; crisis.

PACS: 05.45.Ac, 05.45.Gg

1. Introduction trol of bifurcations. As known from the theory of bifurcation
[15], bifurcations may be classified into continuous and dis-

Many nonlinear systems exhibit two or more dynamical equi_continuous (catastrophic) bifurcations depending on whether

librium states for a given set of parameters; some of thal'€ System states vary continuously or discontinuously as
states are regular (periodic) and other are chaotic. This phébe bifurcation parameter gradually varies through its crmc_al
nomenon known as “generalized multistability’1] fis at-  v&lue- Although both of them can affect the system behavior
tracted much attention because it is general and appears §fié discontinuous bifurcation is much dangerous because it
variety systems, such as electronic circuity, [asers §], can rgsult in unbounde_d bifurcated s_olutlon_s as well as the
geophysical models4], and mechanical systems][in ad- sltuatlpn Whereby the bifurcated solutl_onS ex_lst only on some
dition to some standard models liké&hbn map ¢] and Duff- fixed time |nt‘erva.l.. The problem of b|fu.rcat|or.1 control can
ing oscillator [F]. Multistability has been also found in many P& Posed asiXshifting or removing the bifurcation points in
biological systems &, 9], including neurons 10], the hu- the parameterspace or)(changlngthe nature of bifurcation
man proprioceptive system 1], and visual perception1p]. [16]. In this work we deal with the former type of the control.
The organization of the basins of attraction in such systemsis  The shift of the SNB point has been already observed in
governed primarily by the ordering of homoclinic and hete-5 co, jaser when a control parameter is linearly increased or
roclinic connections of regular saddles3]. When a control  yecreased in the vicinity of the SNB point 7 18] and also
parameter is varied, the system cha_nges t_he basin of attragmnen a parameter is periodically modulateth][ The goal
tion normally through @addle-node bifurcatioSNB). The 4 this work is to illustrate the applicability of our approach
SNB is fundamental in the study of nonlinear systems sincg,, the control of discrete-time system with two coexisting at-
this is one of the most basic processes by which a pair of p&actors. Here we illustrate the method by the example of
riodic orbits are created; one of them is always unstable (thge Henon map. In particular, we study how the SNB and
saddle), while the other periodic orbit is always stable (theisis points can be moved when a periodic modulation is ap-
node) [14]. plied to the control parameter. Theehon map is a popular

In this paper we offer a method to control bifurcation in example of two-dimensional quadratic mapping which pro-
a bistable system. In particular, we investigate how boundduces a discrete-time system with chaotic behavior. Recently
aries between coexisting attractors change their positions ioontrol and synchronization algorithms for th&mbdn map
the parametrically modulatedddon map. This control can have been utilized for secure communicatior2$)] and for
be realized by shifting or removing the critical points. As- control of pathological rhythms in some models of cardiac
sume that a system operates at some points in the phase spaaetivity [21]. The study of the l@non map is very important
As the system parameters slowly vary, it can undergo sombecause it is one of the simplest dynamical systems allowed
bifurcations. Due to some reasons these bifurcations may bepexistence of attractors, and therefore the results obtained
undesirable for the system performance and in this case with the Htnon map can be generalized to other more com-
is convenient to state the control problem in terms of conplex systems.



SHIFT OF SADDLE-NODE BIFURCATION POINTS IN MODULATED HENON MAP 291

The paper is organized as follows. In Sec. 2 we describe ]J. b !’l’f
our approach to control the position of the critical points in
the parametrically modulated low dissipativéitbn map in 1.5¢ period 3
which period-1 and period-3 attractors coexist. In Sec. 3,
we present the results of calculation and discuss the physica ]
mechanism of dynamical behavior of the system under the 1.0t
parametrical modulation. Finally, the main conclusions are

given in Sec. 4. period 1
0.5}

2. Method >

The Henon map is described by the following difference 0.0¢
equations 22]:

) 0.5}
Tny1 = 1—pa; +yn, 1)

Yns1t = —Jam, ) 0.8 0.9 10 11 12 1.3

wherez,, andy,, are the scalar state variables which can be ,u

melasured as tllrne Sert:%LS the parameter to V\,/hlcr; the con- FIGURE 1. Bifurcation diagram of the #hon map with coexisting
trol can be applied. The Jacobidr(0 < J < 1) is related to period-1 and period-3 attractors without modulatipn & 0). The

dissipation. The dynamics of theson map is well studied  yertical lines indicate the positions of the backward and forward
(see, for instance, Ref. 23) and its fixed points are given by critical points, ., andy;.

—J —144/(J+ 1)2 +4pu The method uses the following control algorithm:

(xlayl) = 2# 7_Jx1 9 (3)

= po{1£0.50.[1—cos(2nfn)]}, (6)

wherey. and f. are the amplitude and frequency of the con-

2
—J 1=/ (J+1)" +4du trol, o is the initial control parameter without modulation

(w2,y2) = 24 e @) (i.e, wheny, = 0 or f, = 0), andn is a number of the iter-
ation or time. We use the sign (+) for searching the position
and the corresponding eigenvalues are of the FB point and the sign (-) for the BB point.
The application of the parametrical modulation Eq. (6)
Mo = —px £/ (uz)? — J. (5) results in dynamical deformation of the basins of attraction

of coexisting attractors 2p] that reveals itself as a shift in

The position of the critical points so that the period-3 branch
in the bifurcation diagram in Fig. 1 can be prolonged or re-
stricted. The new position of the FB is found when we in-

period-1 and period-3 attractors coexists in the paramete(l[rease the control parametes while the system stays on

range Of.0'92 S KOS 1.18. . Th's diagram is calculated by the period-3 branch until this attractor is destroyed by the
taking different initial conditions that allows us to plot two b

. . ndary crisis. The maximum val fat which th -
stable attractors in the same diagram (shown by the open anc?u dary crisis € maximum vajue pfat which the pe

closed dots). The period-3 branch ultimately destroyed b%%dpiii)t(fisim;z;.u 'IqﬁlleZhlffct)e dy::(l)iiiz)hne02(1?1'20;80:):)?;

g?upn;gé’_g”;;’ d?éeijhn;iﬁzzis%ér;irgﬂz 'clmlng;]g]ev\sggu'pan be found by de_cr_easir/l@ until the peri_od 3 i_s destroyed
increase the controll parameter while the syétem stays on tﬁg the SNB. The minimal value qf at which this happens,
. ! L min = to(1 — ue), indicates the new position of the BB
period-3 branch. This point indicates the upper boundary of ™ -
the coexistence of the attractors. We call this bifurcation e{:)omwb = Hmin.
forward bifurcation (FB). Whenu decreases, the SNB ap- . .
pears atu ~ 0.92. This point indicates the position of the 3. Results and discussions
lower boundary of the period - 3 attractor. We call this bi- The control modulation changes radically the range of coex-
furcation abackwardbifurcation (BB). The application of a istence of the attractors. The position of the critical points
periodic modulation to the control paramejeican change depends on the control frequency and amplitude. Figures
radically the position of these critical points. Now consider2 and 3 show the three-dimensional surface of the shifted
how these bifurcation points are shifted when the parametripositions of the BB and FB points in the parameter space of
cal modulation is added.

In our simulations we consider low dissipative case whe
J=0.9.
In Fig. 1 we show the bifurcation diagram where the
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FIGURE 2. Shifted position of the saddle-node bifurcation point
versus modulation frequengy and amplitude..

fe andu.. One can see that for certain modulation parame-
ters the system can remain on the period-3 branch even if thBiGURE 3. Shifted position of the crisis point versifisand ..
parametey. during its variation becomes out of the stability
range for the uncontrolled systeirg. wheny, < 0.92 and  tractor annihilationhave been recently demonstrated in the
pys > 1.18. Thus, the parameter modulation allows one toHénon map 24], in coupled Duffing oscillators 26], and in
spread the attractor boundaries by shifting the critical pointsx loss-modulated COlaser P7]. As we shall show below,
to the new positions. this phenomenon results from boundary crisis of the period -
As seen from Figs. 2 and 3 the dynamics of the FB is more3 attractor due to a resonant interaction of the modulation
complex than the dynamics of the BB, because wheis in- frequency with the relaxation oscillation frequency of the at-
creased not only crisis but also supercritical period-doublingractor.
bifurcations are involved in the dynamics. The latter bifur-  In order to understand the complex behavior of the criti-
cations are also shifted when the modulation is applied andal points, we study the relaxation oscillations in thenidn
their positions depend on the modulation parameteg. [ map in the range of bistability. In Fig. 4 we show the relax-
Let us analyze first the dynamics of the BB shown ination oscillations in one branch of the bifurcation diagram of
Fig. 2. One can distinguish three regions in the figure: (i) Atthe period 3 without the control modulatiop(= 0). The
very low frequenciesf. < 0.06) and amplitudes;(. < 0.1) frequency of relaxation oscillations depends on the parame-
the position of the BB point is almost independent on theter 1o as seen from Fig. 5 where we plot the period of the
modulation parameters (quasi stationary modulation); (ii) afelaxation oscillations in the units of the number of iterations
high modulation frequencieg’{ > 0.1) the BB point is dis- 7. The frequency of the relaxation oscillatigh = 1/(3n).
placed linearly withu.; and (iii) at low frequenciesfi < One can see that the periaddecreases exponentially when
0.2) and high amplitudesi{. > 0.15) the period-3 attractor o approaches the boundary of the period-3 branch.
is destroyed. The plane regions on the bottom of Figs. 2and 3 Now consider how the relation between the modulation
represent the area where the period 3 does not exist and henftequency and the frequency of the relaxation oscillations in-
the system becomes monostable. At the boundary of this ardluences on the position of the FB point. In Fig. 6 we plot
(the sudden fall of the surfaces to the plane area) crisis of thhe parameter, at which crisis of the period-3 attractor ap-
attractor is observed. Two peaks in Fig. 2 at srpaltorre-  pears versus the modulation frequerfeyat fixedp,. = 0.15
spond to the contraction of the period-3 attractor wligis  (crosses). In fact, this plot is the section of the 3D graphs of
close to the frequency of relaxation oscillatiorfs & 0.05) Fig. 3, butinstead of ; we usey, as an ordinate. The crosses
and its second harmonic for the average value of modulatenh Fig. 6 indicate the boundary between the bistable (period 1
parametey:. For largeru. the attractor undergoes crisis and + period 3) and monostable (only period 1) states. As for the
disappears. The disappearance of one of the coexisting aBB point, one can distinguish three ranges in the dynamics
tractors in a system with parameter modulation knowatas of the FB point: ) At low f. (f. < 0.04) the position of this
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FIGURE 5. Period of relaxation oscillations in one branch of the
' T ' ' ' ' ' ' ‘ period 3 versugio.

FIGURE 4. Relaxation oscillations in transients in one branch of 1 1? ]
the period 3 afup = 0.926. Periodn = 12 corresponds to the 112 ]
third subharmonic of the relaxation oscillation frequency. e
1.06 4
point is almost independent gi; (i:) at highf. (f. > 0.075) 1.04 4
the crisis point is moved to the right side of the bifurcation di- u, ] Eé ]
agram shown in Fig. 1 with increasirfg, so that the period-3 0.98 4
branch is expanded fgf. > 0.13; and §i:) the intermediate o
range (.04 < f. < 0.07) where the FB point is moved to 0.92 4
the left side of the bifurcation diagram, so that the period-3 -
branch is retracted. Af. = 0.075 the crisis point jumps to 086 1, ‘ ‘ .

T T T
0.00 0.05 0.10 015

the new position due to the sudden contraction of the period-3 o

attractor. In the same figure we plot the frequency of relax,gygre 6. Bifurcation parameter, at which crisis of period-3
ation oscillations,f,., as an abscissa for correspondiag attractor appears versys at u. = 0.15 (crosses) angd, (dots).
We find that the jump occurs whefa coincides withf, for  Above the crosses the only period-1 attractor exists while below
the average value of the modulated paramgteiThus, we  the crosses two attractors coexist.

may conclude that the optimal condition for crisis is fulfilled
whenf, ~ f,. tance of our approach to the problem of control of oscilla-

tions. The traditional approach to the control is to stabilize
the existing, perhaps unstable, solutions of the system. Here
the problem can be also stated as to prevent the system from
In this work we have studied the influence of a harmonicthe birth of undesirable solution at the bifurcation points. It
parametrical modulation on positions of the critical points inShould be noted that the approach is rather generic; the same
the Henon map with coexisting period-1 and period-3 attrac-Methodology has been employed in Refs. 24, 26, 28-31 to
tors. We have shown that these positions depend strongly diPntrol a period-doubling bifurcation. We believe that our
the frequency and amplitude of modulation. Depending ori"€thod may be applied to other nonlinear systems with co-
the modulation parameters the period-3 branch can be eith&XISting attractors.

expanded or retracted. The crucial factor in deterministic dy-

namics of the bifurcation points is the relationship betweenacknowledgments

the modulation frequency and the frequency of relaxation os-

cillations. One of the coexisting attractors can undergo crisiShis work has been supported by Consejo Nacional de
and disappear when the modulation frequency is close to th€iencia y Tecnolom de Mexico (CONACYT) (project
frequency of relaxation oscillations. We underline the impor-No. 33769-E).

4. Conclusions
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