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Shift of saddle-node bifurcation points in modulated H́enon map
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We study the influence of a harmonic parametric modulation on the positions of critical points in the low-dissipative Hénon map with
coexisting period-1 and period-3 attractors. The shift of the saddle-node bifurcation and crisis points depends strongly on the modulation
frequency and amplitude. Resonance phenomena play a significant role in the displacement of the attractor boundaries as well as in attractor
annihilation due to boundary crisis.
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Se estudia la influencia de la modulación paraḿetrica arḿonica sobre la posición de los puntos crı́ticos en el mapa de H́enon de baja disipación
con atractores coexistentes de periodo-uno y periodo-tres. El corrimiento en la bifurcación de saddle-node y de los puntos de crisis depende
fuertemente de la frecuencia y amplitud de modulación. El feńomeno de resonancia juega un papel significativo en el desplazamiento de las
fronteras del atractor ası́ como en la aniquilación deéste debido a crisis de frontera.

Descriptores:Dinámica no lineal; modulación paraḿetrica; atractores coexistentes; crisis.

PACS: 05.45.Ac, 05.45.Gg

1. Introduction

Many nonlinear systems exhibit two or more dynamical equi-
librium states for a given set of parameters; some of that
states are regular (periodic) and other are chaotic. This phe-
nomenon known as “generalized multistability” [1] is at-
tracted much attention because it is general and appears in
variety systems, such as electronic circuits [2], lasers [3],
geophysical models [4], and mechanical systems [5], in ad-
dition to some standard models like Hénon map [6] and Duff-
ing oscillator [7]. Multistability has been also found in many
biological systems [8, 9], including neurons [10], the hu-
man proprioceptive system [11], and visual perception [12].
The organization of the basins of attraction in such systems is
governed primarily by the ordering of homoclinic and hete-
roclinic connections of regular saddles [13]. When a control
parameter is varied, the system changes the basin of attrac-
tion normally through asaddle-node bifurcation(SNB). The
SNB is fundamental in the study of nonlinear systems since
this is one of the most basic processes by which a pair of pe-
riodic orbits are created; one of them is always unstable (the
saddle), while the other periodic orbit is always stable (the
node) [14].

In this paper we offer a method to control bifurcation in
a bistable system. In particular, we investigate how bound-
aries between coexisting attractors change their positions in
the parametrically modulated Hénon map. This control can
be realized by shifting or removing the critical points. As-
sume that a system operates at some points in the phase space.
As the system parameters slowly vary, it can undergo some
bifurcations. Due to some reasons these bifurcations may be
undesirable for the system performance and in this case it
is convenient to state the control problem in terms of con-

trol of bifurcations. As known from the theory of bifurcation
[15], bifurcations may be classified into continuous and dis-
continuous (catastrophic) bifurcations depending on whether
the system states vary continuously or discontinuously as
the bifurcation parameter gradually varies through its critical
value. Although both of them can affect the system behavior
the discontinuous bifurcation is much dangerous because it
can result in unbounded bifurcated solutions as well as the
situation whereby the bifurcated solutions exist only on some
fixed time interval. The problem of bifurcation control can
be posed as: (i) shifting or removing the bifurcation points in
the parameter space or (ii) changing the nature of bifurcation
[16]. In this work we deal with the former type of the control.

The shift of the SNB point has been already observed in
a CO2 laser when a control parameter is linearly increased or
decreased in the vicinity of the SNB point [17, 18] and also
when a parameter is periodically modulated [19]. The goal
of this work is to illustrate the applicability of our approach
to the control of discrete-time system with two coexisting at-
tractors. Here we illustrate the method by the example of
the H́enon map. In particular, we study how the SNB and
crisis points can be moved when a periodic modulation is ap-
plied to the control parameter. The Hénon map is a popular
example of two-dimensional quadratic mapping which pro-
duces a discrete-time system with chaotic behavior. Recently
control and synchronization algorithms for the Hénon map
have been utilized for secure communications [20] and for
control of pathological rhythms in some models of cardiac
activity [21]. The study of the H́enon map is very important
because it is one of the simplest dynamical systems allowed
coexistence of attractors, and therefore the results obtained
with the H́enon map can be generalized to other more com-
plex systems.
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The paper is organized as follows. In Sec. 2 we describe
our approach to control the position of the critical points in
the parametrically modulated low dissipative Hénon map in
which period-1 and period-3 attractors coexist. In Sec. 3,
we present the results of calculation and discuss the physical
mechanism of dynamical behavior of the system under the
parametrical modulation. Finally, the main conclusions are
given in Sec. 4.

2. Method

The H́enon map is described by the following difference
equations [22]:

xn+1 = 1− µx2
n + yn, (1)

yn+1 = −Jxn, (2)

wherexn andyn are the scalar state variables which can be
measured as time series,µ is the parameter to which the con-
trol can be applied. The JacobianJ (0 ≤ J ≤ 1) is related to
dissipation. The dynamics of the Hénon map is well studied
(see, for instance, Ref. 23) and its fixed points are given by

(x1, y1) =


−J − 1 +

√
(J + 1)2 + 4µ

2µ
,−Jx1


 , (3)

(x2, y2) =


−J − 1−

√
(J + 1)2 + 4µ

2µ
,−Jx2


 (4)

and the corresponding eigenvalues are

λ1,2 = −µx±
√

(µx)2 − J. (5)

In our simulations we consider low dissipative case when
J = 0.9.

In Fig. 1 we show the bifurcation diagram where the
period-1 and period-3 attractors coexists in the parameter
range of0.92 < µ < 1.18. This diagram is calculated by
taking different initial conditions that allows us to plot two
stable attractors in the same diagram (shown by the open and
closed dots). The period-3 branch ultimately destroyed by
boundary crisis, presumably by the collision with the regu-
lar period-3 saddle. The crisis occurs atµ ≈ 1.18 when we
increase the control parameter while the system stays on the
period-3 branch. This point indicates the upper boundary of
the coexistence of the attractors. We call this bifurcation a
forward bifurcation (FB). Whenµ decreases, the SNB ap-
pears atµ ≈ 0.92. This point indicates the position of the
lower boundary of the period - 3 attractor. We call this bi-
furcation abackwardbifurcation (BB). The application of a
periodic modulation to the control parameterµ can change
radically the position of these critical points. Now consider
how these bifurcation points are shifted when the parametri-
cal modulation is added.

FIGURE 1. Bifurcation diagram of the H́enon map with coexisting
period-1 and period-3 attractors without modulation (µc = 0). The
vertical lines indicate the positions of the backward and forward
critical points,µb andµf .

The method uses the following control algorithm:

µ = µ0 {1± 0.5µc [1− cos (2πfcn)]} , (6)

whereµc andfc are the amplitude and frequency of the con-
trol, µ0 is the initial control parameter without modulation
(i.e., whenµc = 0 or fc = 0), andn is a number of the iter-
ation or time. We use the sign (+) for searching the position
of the FB point and the sign (-) for the BB point.

The application of the parametrical modulation Eq. (6)
results in dynamical deformation of the basins of attraction
of coexisting attractors [25] that reveals itself as a shift in
the position of the critical points so that the period-3 branch
in the bifurcation diagram in Fig. 1 can be prolonged or re-
stricted. The new position of the FB is found when we in-
crease the control parameterµ0 while the system stays on
the period-3 branch until this attractor is destroyed by the
boundary crisis. The maximum value ofµ at which the pe-
riod 3 exists,µmax = µ0(1 + µc), yields the position of the
FB pointµf = µmax. The shifted position of the BB point
can be found by decreasingµ0 until the period 3 is destroyed
in the SNB. The minimal value ofµ at which this happens,
µmin = µ0(1 − µc), indicates the new position of the BB
pointµb = µmin.

3. Results and discussions
The control modulation changes radically the range of coex-
istence of the attractors. The position of the critical points
depends on the control frequency and amplitude. Figures
2 and 3 show the three-dimensional surface of the shifted
positions of the BB and FB points in the parameter space of
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FIGURE 2. Shifted position of the saddle-node bifurcation point
versus modulation frequencyfc and amplitudeµc.

fc andµc. One can see that for certain modulation parame-
ters the system can remain on the period-3 branch even if the
parameterµ during its variation becomes out of the stability
range for the uncontrolled system,i.e. whenµb < 0.92 and
µf > 1.18. Thus, the parameter modulation allows one to
spread the attractor boundaries by shifting the critical points
to the new positions.

As seen from Figs. 2 and 3 the dynamics of the FB is more
complex than the dynamics of the BB, because whenµ0 is in-
creased not only crisis but also supercritical period-doubling
bifurcations are involved in the dynamics. The latter bifur-
cations are also shifted when the modulation is applied and
their positions depend on the modulation parameters [28].

Let us analyze first the dynamics of the BB shown in
Fig. 2. One can distinguish three regions in the figure: (i) At
very low frequencies (fc . 0.06) and amplitudes (µc . 0.1)
the position of the BB point is almost independent on the
modulation parameters (quasi stationary modulation); (ii) at
high modulation frequencies (fc & 0.1) the BB point is dis-
placed linearly withµc; and (iii) at low frequencies (fc .
0.2) and high amplitudes (µc & 0.15) the period-3 attractor
is destroyed. The plane regions on the bottom of Figs. 2 and 3
represent the area where the period 3 does not exist and hence
the system becomes monostable. At the boundary of this area
(the sudden fall of the surfaces to the plane area) crisis of the
attractor is observed. Two peaks in Fig. 2 at smallµc corre-
spond to the contraction of the period-3 attractor whenfc is
close to the frequency of relaxation oscillations (fr ≈ 0.05)
and its second harmonic for the average value of modulated
parameterµ. For largerµc the attractor undergoes crisis and
disappears. The disappearance of one of the coexisting at-
tractors in a system with parameter modulation known asat-

FIGURE 3. Shifted position of the crisis point versusfc andµc.

tractor annihilationhave been recently demonstrated in the
Hénon map [24], in coupled Duffing oscillators [26], and in
a loss-modulated CO2 laser [27]. As we shall show below,
this phenomenon results from boundary crisis of the period -
3 attractor due to a resonant interaction of the modulation
frequency with the relaxation oscillation frequency of the at-
tractor.

In order to understand the complex behavior of the criti-
cal points, we study the relaxation oscillations in the Hénon
map in the range of bistability. In Fig. 4 we show the relax-
ation oscillations in one branch of the bifurcation diagram of
the period 3 without the control modulation (µc = 0). The
frequency of relaxation oscillations depends on the parame-
ter µ0 as seen from Fig. 5 where we plot the period of the
relaxation oscillations in the units of the number of iterations
n. The frequency of the relaxation oscillationfr = 1/(3n).
One can see that the periodn decreases exponentially when
µ0 approaches the boundary of the period-3 branch.

Now consider how the relation between the modulation
frequency and the frequency of the relaxation oscillations in-
fluences on the position of the FB point. In Fig. 6 we plot
the parameterµ0 at which crisis of the period-3 attractor ap-
pears versus the modulation frequencyfc at fixedµc = 0.15
(crosses). In fact, this plot is the section of the 3D graphs of
Fig. 3, but instead ofµf we useµ0 as an ordinate. The crosses
in Fig. 6 indicate the boundary between the bistable (period 1
+ period 3) and monostable (only period 1) states. As for the
BB point, one can distinguish three ranges in the dynamics
of the FB point: (i) At low fc (fc < 0.04) the position of this
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FIGURE 4. Relaxation oscillations in transients in one branch of
the period 3 atµ0 = 0.926. Periodn = 12 corresponds to the
third subharmonic of the relaxation oscillation frequency.

point is almost independent onfc; (ii) at highfc (fc > 0.075)
the crisis point is moved to the right side of the bifurcation di-
agram shown in Fig. 1 with increasingfc, so that the period-3
branch is expanded forfc > 0.13; and (iii) the intermediate
range (0.04 < fc < 0.07) where the FB point is moved to
the left side of the bifurcation diagram, so that the period-3
branch is retracted. Atfc = 0.075 the crisis point jumps to
the new position due to the sudden contraction of the period-3
attractor. In the same figure we plot the frequency of relax-
ation oscillations,fr, as an abscissa for correspondingµ0.
We find that the jump occurs whenfc coincides withfr for
the average value of the modulated parameterµ. Thus, we
may conclude that the optimal condition for crisis is fulfilled
whenfc ' fr.

4. Conclusions

In this work we have studied the influence of a harmonic
parametrical modulation on positions of the critical points in
the H́enon map with coexisting period-1 and period-3 attrac-
tors. We have shown that these positions depend strongly on
the frequency and amplitude of modulation. Depending on
the modulation parameters the period-3 branch can be either
expanded or retracted. The crucial factor in deterministic dy-
namics of the bifurcation points is the relationship between
the modulation frequency and the frequency of relaxation os-
cillations. One of the coexisting attractors can undergo crisis
and disappear when the modulation frequency is close to the
frequency of relaxation oscillations. We underline the impor-

FIGURE 5. Period of relaxation oscillations in one branch of the
period 3 versusµ0.

FIGURE 6. Bifurcation parameterµ0 at which crisis of period-3
attractor appears versusfc at µc = 0.15 (crosses) andfr (dots).
Above the crosses the only period-1 attractor exists while below
the crosses two attractors coexist.

tance of our approach to the problem of control of oscilla-
tions. The traditional approach to the control is to stabilize
the existing, perhaps unstable, solutions of the system. Here
the problem can be also stated as to prevent the system from
the birth of undesirable solution at the bifurcation points. It
should be noted that the approach is rather generic; the same
methodology has been employed in Refs. 24, 26, 28–31 to
control a period-doubling bifurcation. We believe that our
method may be applied to other nonlinear systems with co-
existing attractors.
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