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We consider dimensional crossover for @QN) model on ad-dimensional layered geometry of thickngssin the o-model limit, using
“environmentally friendly” renormalization. We show how to derive critical temperature shifts, giving explicit results to one loop. We also
obtain expressions for the effective critical exponeéintsand S« that interpolate between their characteristic fixed point values associated
with ad and(d — 1)-dimensional system in the limits — T.(L), with L(T — T.(L))” — oo, andT' — T.(L) for L fixed respectively,
whereT. (L) is the L-dependent critical temperature of the system.
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Se considera entrecruzamiento dimensional para un modelo dO{iyg sobre una pétula delgada dé dimensiones, en elrhite del
modelocs, usando renormalizamn "ambientalmente amigable. Se muestra como calcular cambios de la tempeititaadabido al efecto
de taméo finito, dando resultados expitos a un lazo. Ade#s, se obtienen expresiones para los exponeritasrefectivoSes Y Ses
que interpolan entre los valores caraidécos de punto fijo asociados con un sistemd géd — 1) dimensiones en lo$rhitesT — T, (L),
conL(T —T.(L))” — oo,y T — T.(L) para L fijo respectivamente, dond@g(L) es la temperatura itica del sistema confinado.

Descriptores:Grupo de renormalizagn; entrecruzamiento dimensional; fenenos dticos; modelar no lineal.
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1. Introduction such as finite sizé. By so doing one can access several fixed
points of one globally defined RG, and what is more, one may

Crossover behavior — the interpolation between qualitativelyachieve this perturbatively using one uniform approximation
different effective degrees of freedom of a system as a funcscheme.

tion of scale — is both ubiquitous and extremely important.
Calculation of scaling functions associated with crossover be- The main gist of the approach is based on the simple in-
havior is, generally speaking, much more difficult than thetuition that, viewed as a coarse graining procedure, a “good”
calculation of more standard universal quantities, such as cricoarse graining will be one that when effected to a length
ical exponents, the latter being calculable in an approximascale comparable to any length scale set by the environment
tion scheme suitable for the asymptotic region around onevill reflect the influence of the latter by changing continu-
critical point. ously as a function of scale the type of effective degree of
An important, non-trivial and experimentally accessiblefreedom being coarse grained. However, and this is a point to
example is seen in the context of confined systems and thelre emphasized, although the intuition is grounded in a coarse
analysis via finite size scaling. As far as the fluctuations in agraining procedure the actual mechanics are totally different
system are concerned there is, in principle, a very marked difto that of a Kadanoff/Wilson type coarse graining. Instead the
ference between an “environment” consisting of infinite threeformalism is based on the notion of a RG as describing the in-
dimensional space and a three dimensional box of “size” variance under reparametrization of a system, an idea which
A general formalism for studying such crossover systems usgoes back to the original formulation of the field theoretic RG
ing renormalization group (RG) methods is that of “environ-back in the '50’s. Just as there are good and bad coarse grain-
mentally friendly” renormalization 1. To access the sen- ings so there are good and bad reparametrizations. An “en-
sitivity to environment implicit in such a system it is neces- vironmentally friendly” reparametrization is one that tracks
sary to implement a renormalization programme which is exthe qualitatively changing nature of the effective degrees of
plicitly dependent on the relevant environmental parameterdreedom of a crossover system. As has been emphasized pre-
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viously a necessary condition for an enviromentally friendlyconductors. Given the close analogy betwedd & 1)-di-
RG to satisfy is that the number of fixed points of the RG, de-mensional layered system with periodic boundary conditions
fined globally on the space of parameters, be diffeomorphiand ad-dimensional quantum system it is certainly of inter-
to the number of points of scale invariance of the systemest from this point of view to investigate further dimensional
Unfortunately, favourite forms of field theoretic renormaliza- crossover in the context of the non-lineamodel.
tion, such as minimal subtraction, manifestly do not satisfy  In this paper we will consider dimensional crossover of
this criterion and therefore are of only limited use in describ-a ferromagnet wittO(N) symmetry in the broken phase us-
ing crossover behavior. ing as starting point the non-linearmodel and utilizing the

Previously [], we have considered crossover behaviortechniques of environmentally friendly renormalization to ac-
for an O(N) model in the context of a Landau-Ginzburg- cess the full universal crossover behavior. One of the benefits
Wilson representation of the underlying lattice model baseaf doing so is a better understanding of how environmentally
on a\y? theory. Given that for a dimensional crossovexx-  friendly renormalization functions in the context of a low
pansion methods cannot work a fixed dimension expansiotemperature expansion as opposed to an expansion around
was used to access the crossover, the essential charactetise critical point.
tics of the perturbation theory being based on an expansion In Sec. 1 we briefly outline some important features of
around the gaussian fixed point. As is well known, whenthe non-lineaw-model. In Sec. 2 we consider some formal
anO(N) symmetry is spontaneously broken massless Goldrenormalization results leaving explicit one loop answers for
stone modes give singularities at large distances for any valuge case of dimensional crossover in a film geometry to Sec.
of the temperature. The thermodynamics of these spin wave® In Sec. 4 we calculate the shift in critical temperature due
is described in the long distance limit by a Landau-Ginzburg+o finite size effects while in Sec. 5 we derive one-loop ex-
Wilson Hamiltonian which is that of the field theoretic non- pressions for some relevant effective critical exponents in the
linears-model P]. The appropriate expansion parameter inbroken phase. Finally, in Sec. 6 we draw some conclusions.
this case is the temperatuf@, and hence perturbation theory
corresponds to a low temperature expansion.

Crossover behavior in the context of the non-linear

o-model has bgen considered pre\{iqusly. In particular,'AmiRNe begin with the Landau-Ginzburg-Wilson Hamiltonian for
and Goldschmidt extended their original treatment of b|cr|t|-a Heisenberg model wit)(N') symmetry in ther-model

cal systems above the critical temperature using Generalized . : ; : :
Minir¥1al Subtraction $] to below the critical temperaturet] fitmit on a d-dimensional ¢ < 4) film geometry of thick-
thus describing the crossover between a system exhibiting an

O(N) symmetry to that of aW (M) symmetry. In this case

methods were perfectly feasible due to the fact that the upper 1 (L g (1 ; ; ; ;

critical dimension of the two fixed points was the same. In H[‘PB]:E/ /d z (QV;L‘PBVMDBHB(@SDB> (1)
the context of finite size scaling 8zin and Zinn-Justin de- 0

scribed crossover of the non-lineaimodel in the context of wherei € [1, N], u € [1,d], T is proportional to the tem-
a box or a cylinder ] by treating the lowest infra-red modes perature of the system agd ; is subject to the constraint

of the system non-perturbatively while treating other modes o

in a perturbative expansion. However, this method does not Ypep =1 )
work in the context of a dimensional crossover such as in a

thin film where the reduced dimension system also exhibits ¥Ve will restrict our attention here to the case of periodic
non-trivial fixed point. boundary conditions.

More recently, the quantum version of the non-linear The partition functionZ is obtained by performing the
model [] has generated a great deal of attention as it cafath integral over the order parameter fielg$,, with the
describe the long-wavelength, low-temperature behavior of lamiltonian (1) subject to the constraint (2). Choosing the
two-dimensional quantum Heisenberg ferromagnet which irflirection of symmetry breaking to be along tNeh direction
turn has been proposed as a model of high-temperature sup&e definep” = ¢ andy’ = 7', (i # N). The constraint

implies thato (z) = +(1 — 7r2)%. Thus the partition function
| becomes

2. The non-linear c-model

. . . 1
)}~ Tpmp—Hp(l-}")2

[

. R 1 P ) ]
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Clearly this theory is highly non-polynomial. The non-trivial and renormalized parameters is
measure term, which ensures théN) invariance of the the-

ory, can of course be exponentiated and expanded in powers
of 2. These terms are necessary to cancel corresponding
O(N) non-invariant terms that arise in perturbation theory.
We will assume that such terms have been cancelled in th& preserve the rotational invariance of the renormalized con-
rest of this paper and not consider them further. Rotations aréfraint the fields must renormalize in the same way @s
implemented linearly in théN —1)-dimensionak-subspace ~ Invariance of the ternti oz /T thereby yields the renor-
and non-linearly in ther! — o directions. A rotation by an Malization of

infinitesimalw? induces the changes

Tp = 20T, = 75 ni, )

Hp = 7072 2 H. (10)
ori(z) = (1 - *(z)) @) . | |
) The bare and renormalized vertex functions are related via
§(1— 7 ()7 = —win'(z). (5)
As long as|7¢| < 1 the symmetry will remain broken. As N NN
T —0,0(x) — 1. U (ks T, H, Ly k) = Z2 T (ki Tp, Hp, L, A), - (12)

From the way in whicHl" appears in Eq. (3) we can see

that an expansion in terms of temperature is equivalent to 8yare . is an arbitrary renormalization scale adn ultra-

expansion in the number of loops, the only subtlety being thag;g|et cutoff. The RG equation, which is a consequence of
the measure term is then linearinand therefore contributes the  invariance of the bare theory, follows immediately on

to an higher order iff" than the other two terms. The free differentiating Eq. (11) with respect ia
propagator for ther field in the absence of a magnetic field
is

0 0 0 N
:%. ©) (’faﬁ +ﬁtat+ﬂHaH—2%r>

(N) (L. _

The magnetic field coupled to thefield acts as an IR cutoff. < ki, T, H, L, k) = 0, (12)
This can be seen by expanding the teffp (1 — 7r§92)% in
powers ofr. The resulting two-point vertex function is where we have introduced a dimensionless temperature
t = Tk%?andy, = (dInZ,)/(dInk) is the anomalous

Grr(k)

2
k) = k;iHB. (7)  dimension of the field. The twg-functions are
B
From the form of the Hamiltonian, in terms of an expan-
sion inm, there are interactions of arbitrary order. However, dln Zr
interactions with more than four powers sfcontribute at Pr=(d-2)t -t dinr (13)
hlghe_r than one loop ordeitge., more powers of the “small dinZ. dlnZr
couplingT. Consequently to first order ifr, i.e. one loop, By = (14)

one need only consider the four-point interaction dlnk dink
The two renormalization constants must be fixed by
(k2 + HB)W%(’ﬁ)W%(’f — k1) normalization conditions. The essence of environmentally
kykok friendly renormalization is that in order to obtain a pertur-
, , batively well defined description of the crossover the renor-
X (—ko)wh (ke — k). (8) e L
B B malization procedure must depend explicitly bnThe nor-
malization conditions we will use are

1
8Tp

In this paper we will restrict our attention 10(7) results
and therefore will not consider higher order interactions any
further.

TTP (k = 0,t(k, Lr), H(k, Lk) = 1, L, k) = #%, (15)

3. Renormalization 0
WTFS)(k,t(n,LH), H(k, Lk)=r%L,K)|ieo=1. (16)
In spite of the fact that the theory is non-polynomial, as is
well known [2], it is renormalizable using only two renor-
malization constant&r and Z,. associated with the temper- Note thatTl“f) is just the inverse susceptibility associated

ature and the field respectively. The relation between the bangith the r field.
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4. Explicit results .
We now proceed to examine the crossover perturbatively. To 0.8
one loop,
0.6 h
Hg (N —1)Hg
% (k=0 =L
5( )= Ty ) L 0.4
d=1p 1
Xn;m/ 271'd 1p T Hp +4w2n2' (17) 0.2
) o » ) Ln kL
Using the normalization conditions expressed in Egs. (15) _s 5 10 15

and (16) one finds

FIGURE 1. Graph of separatrix solution of (21) as function of

InkL.
N-1) & di1y 1
er:].—(QLK:)t Z /(27T)d_1 2+1+4ﬂ2n2’ (18)
n=—co y L2k? In terms of the floating coupling one finds
and
dh
Koo =e(Lk)h — h?, (21)
KR
d?=1y 1
Zp=1- / — - (19)
= 2LKJ Z 2m)d- 1 y2 4+ 14 4522,222 where
The s-function 3, is thus given by
o0 dd71 47?n?
2N — 2 Lo
Bi(t, Lk) = (d — 2)t — AN =2) n_Z_:J(2w)d L(y2 14403
Lk e(Lk) = d—3+4"— T=m . (22)
dily 1 ZJ
. (20 d— 1 4m2n?2
g n_z_oo/ 271' = 1 y + 1 + 4522:22 )2 ( ) n=-— (27‘[’) (y +1+ L2k2 )

There are three different fixed points associated with Eq. (20)_|_ ) )
ad-dimensional ultraviolet fixed point in the limitx — oo, he quantityder = 2 + e(L«) can be interpreted as a mea-
% — oo; a(d — 1)-dimensional ultraviolet fixed point in the sure of the effective dimension of the system interpolating

limit Lx — 0, x — oo; and finally, a zero temperature in- Peweend andd — 1 in the limits Lk — oo andLx — 0,

frared fixed point in the limit: — 0. However, the approach €SPectively, where in both cases we are considering oo,
tot = 0 depends on whether we consider 0 for fixed . -€- the behavior near the critical point.
or Lk — oo, k — 0. The corresponding fixed points farare: d — 2, d — 3
Because the couplingwas made dimensionless with a and0. In Fig. 1 we see a plot ok as a function ofin <L
factor k%~2, in the limit L& — 0, x — oo one finds that for d = 3. In this case, as the theory is asymptotically free
t — O(Lk). However, as emphasized in Ref. 1, this doesin two dimensions, the coupling goes to zero in the dimen-
not imply that in the dimensionally reduced limit that fluctu- sionally reduced limitj.e., the (d — 1)-dimensional ultravi-
ations are unimportant, as loops enter with a fa¢for)~!, olet fixed point and the trivial infrared fixed points coincide.
which diverges. The issue is made more transparent in thiShis dimensional crossover in the coupling is controllable in
limit by passing to a more appropriate coupliig= ¢/Lx.  the low temperature expansion. It is in fact the solution to
In the dimensionally reduced limit — O(d’ — 2), where Eq. (21) that we use as a “small” parameter in the pertur-
d’ = d — 1, while in the bulk limit¢ — O(1/Lx). Thust’  bative expansion of all other quantities. It is the fact that
looks more natural in the dimensionally reduced limit &@nd captures the crossover between the different fixed points that
in the bulk limit. Of course, these simple changes of variablegjives us a uniform expansion parameter and therefore pertur-
cannot affect the results for physical quantities, they just helfpative control of the crossover. Of course when 2 is not
make more transparent what is going on. A coupling that ismall one really needs to work to higher order and attempt
natural across the entire crossover, the floating coupling, casome resummation method. It should be clear however that
be introduced T1]. It is defined viah = ast in the present there is no impediment to continuing this calculation to arbi-
case, whera, is the coefficient of? in Eq. (20). trary order in the loop expansion.
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FIGURE 2. Graph of separatrix solution of (21) as function of FIGURE 3. Graph ofg; = - on the separatrix solution of (21) as
InkL. a function ofln x L.

In Fig. 2 we see the corresponding result for= 3.5. In the largeA limit, N — oo, note thaty, — h = d,

Here, the “double” crossover between the different fIXedwhered is the effective dimension that was found in con-

_pomts_ IS mar_ufest. Asympitotically in the ultraviolet there S|derat|ons of dimensional crossover in the lafgdimit of a
is a fixed point ath = 1.5 that corresponds to th&.5- Ag* theory [7]

dimensional critical point. In the intermediate regién
asymptotes to the critical point of tRe5-dimensional dimen-
sionally reduced theory while, finally, in the infraréd— 0

corresponding to behavior controlled by the zero-temperatur®-  Critical temperature shift
fixed point that controls the coexistence curve.

. . . i The g function equation is easily integrated to find
Turning now to the anomalous dimension of the field, h q y g

we find K 1
t(;aLKJ) _1 d—2 d—2 gr ( 5)
dd 1 1 ! t ( ) +f f ( ) K’
b ZZOO/ 2m)d- 1 (y2+ 14422 (23) wherex; andt; are the initial arbitrary renormalization scale
and temperature . The functighis
or in terms of the floating coupling AN —9) & oo .
fiom) = 22§~ / I
N-—-1 -
Vo = (NQ) h. (24)  Inthe limit L — oo Eq. (25) becomes

K 1

. . o . . t(77 OO) _ d—2 d—2 (27)
The anomalous dimension also exhibits a dimensional £ 7t (E)TT 4 fn f(o0) (£) d’:,
crossover, as can be seenin Fig. 3, for the dase3, N = 3,
4, 5, interpolating between the values where f(co) simply picks out thex = 0 term in the sum in

f(Lk). Choosing the initial temperature and initial scale in
N -1 N -1

Egs. (25) and (27) to be the same one obtains:
1 _ 1 o ® no_ rd— 2d:‘<6
- . (71~ )= 00 = rloonw 22 (28
in the limits Lx — oo and Lk — 0 respectively, where once ‘

again we are considering the behavior near the critical pointwhere a factor o2~ has been absorbed into the dimension-
Note that in contrast to the case of an expansion around tHess temperature. The interpretation of Eq. (28) is that given
critical point using ap* Landau-Ginzburg-Wilson Hamilto-  a particular renormalization scalein two systems of size
nian-y, isn’t simply the critical exponenj. Thisis duetothe [ and of infinite size then the corresponding temperatures in
fact that the canonical dimension of the fieldando hereis  the two systems are related as above. Given that the limit
zero. The bulkL — oo, value ofy, isv,(c0) = (d—2+1m)  k — oo corresponds to the approach to the critical point we
where the critical exponemt= (d—2)/(N —2). Inthelimit  can take this limit in Eq. (28) to find

Lk — 0, Kk — oo we see that,, — (d' — 2+ ') where ) ) )

d =d—1andy = (d' —2)/(N —2) is the critical exponent - - )=z A

of the dimensionall§/ redu)cia(d syst()am. (TC(L) Tc(OO)) g (L) = f(c0))- (29)
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Taking the limitx; — 0 corresponds to choosing the ini- 98
tial dimensionless temperature to be zero. The shift then be-
comes 0.4
1 1 ba
— = 30
(75~ 7) = e G0 0.3
where the dimension dependent constaris g
N-2)_,d-2
b= D2y @
212 2 0.1
The result in Eq. (30) is fully in agreement with the ex-
pectations of finite size scaling8][with the exponent =

. . . —3 5 10 15 20
1/(d — 2). Inthe limitd — 3 by — oo as there is a diver-

gence in the function atd = 2. This corresponds to the fact g gyre 4 Graph ofl /d = 1/8. on the separatrix solution of (21)
that the the shift is ill defined due to the non-existence of ays function ofin k..

critical point in two dimensions as discussed by Barber and

Fisher P].

6. Effective exponents v=1/(d=2), n=(d-2)/(N-2), v =1/(d-2)

A useful set of universal scaling functions are defined by ef- , , ,

fective critical exponents that interpolate between those char- n=(d~-2)/(N-2), and d'=d-1.

acteristic of the end points of the crossover of interest. Here,

given that the non-linear-model is restricted to the broken Similarly, one finds fod.g that

phase we concentrate on the two effective exponéntand

oo defined as 5531 _ Y (34)
(2d -V — 2715)7

—1_ dlno g = dlno (32) o B he limi

eff din H (D) ) dln(tc(L) _ t) H:O7 wnerevy; = (6t/t) In the limit

whered g is defined along the critical isotherm of the finite
size system anf.g on the coexistence curve of the finite size
system. To derivg.; we solve the RG equation for the mag-
netization,p with initial conditiong(x = 0) = 1. We then
substitute the anomalous dimension expressed in Eq. (24he hasy, — (d — 2 + 1) andv, — 0. Hence, we see that
and consider the limiLx — oo to find

(te(L) —t) — 0,  LY"(to(L) —t) — o0

. . St — (d+2—1n)/(d—2+mn).
=0 (1) - 0% (5 [ e ™). @ H ?7 ?7

whereg = v(d — 2 + n)/2 is the bulk exponent and In the limit

In the limit
one finds thaty. — (d' — 2+ n’) andy; — 1. Thus, in this
(te(L) —t) = 0,  L%(t(L) —t) — o0 limit

one finds thal.g — v(d — 2 + 1)/2, while in the limit
deft — (d' +2—n")/(d —2+7),

(te(L) =t) =0, LI72(t(L) —t) = 0 .
whered’ andn’ are as above. At the one-loop levgl is as
one obtaingl.g — v/(d’ — 2+ 1n')/2. At one-loop order, us- given by Eq. (24) and; = (Lx) — h. In Fig. 4 we see a
ing Eq. (24),5.¢ interpolates between the above asymptoticgraph of(Se‘ff1 as a function ofn Lk ford = 3 and N = 3, 4,
values, where now 5 where the full dimensional crossover is evident.
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7. Conclusions Finally, we derived one-loop expressions for the two ef-
fective critical exponentgl.g¢ and d.¢ showing how they
In this paper we have used environmentally friendly renorinterpolated between the asymptotic expressions associated
malization to consider dimensional crossover in the contex{yith the corresponding and(d — 1)-dimensional critical ex-
of a non-linears-model on ad-dimensional film geometry yonents. Evidently there is much more that could be done,
with periodic boundary conditions. Using an expliciflyde-  gych as deriving the full equation of state etc. Of particu-
pendent renormalization we derived one loop formulas foljgr jnterest will be to adapt the results to that of a quantum
the anomalous dimension of the Goldstone field and for th,gn-linears-model and apply them to the case of a high-
f-function, describing the flow of the temperature as a functemperature superconductor. The same mathematical model,
tion of RG scale. We found that there were three fixed pointghough with a quite different physical interpretation, will also
exhibited in the one differential equation. Adimensional  gescribe al-dimensional relativistic, quantum field theoretic

critical point, a(d — 1)-dimensional critical point and & zero non-jinears-model. We hope to return to these interesting
temperature infra-red fixed point. Thefunction when inte-  jssyes in a future publication.

grated described the global flow between all three of these

fixed points. Critical temperature shifts are a particularly

interesting consequence of finite size behavior. Here, w&cknowledgements

showed how such shifts could explicitly be calculated find-
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