
RESEARCH Revista Mexicana de Fı́sica63 (2017) 12–18 JANUARY-FEBRUARY 2017

An estimation method of fractal dimension of self-avoiding roughened interfaces
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∗e-mail: kryvko@gmail.com

Received 27 June 2016; accepted 30 August 2016

Two kinds of methods (graphical and statistical) commonly used for the estimation of fractal dimension of self-avoiding interfaces were
investigated. It was determined that the current methods of both kinds have significant errors for this type of profiles. In the present work a
novel efficient method for the estimation of fractal dimension of self-avoiding curves embedded in the spaceR2 based on the Box-count and
Hall-Wood estimators is developed. Some physical implications are discussed.
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1. Introduction

The term “fractal” defines irregular, rough or complicated
shapes that cannot be described by the Euclidean geome-
try [1]. The fractal dimension,D, can be defined as a mea-
sure of the complexity or roughness of this kind of shapes
and can be treated as the degree to which a set “fills” the Eu-
clidean space in which it is embedded [2]. Due to the above
mentioned properties the value ofD is fractional. The frac-
tal dimension has a large number of applications in different
areas of science and engineering, such as: modeling of forest
fires [3], flow in porous media [4], imbibition in disorder me-
dia [5], percolation [6], electroosmotic in porous media [7],
which can have scaling behavior of self-avoiding walks [8].
In many of these cases, it is necessary to estimate the fractal
dimension of bitmap images of rough self-avoiding curves
embedded inR2 captured by different devices, depending on
research area. Currently, there are a lot of estimators ofD
obeying different power laws [9–11], which are divided into
graphical (image) and statistical (data) estimators.

In practice, the estimation of fractal dimension of a rough
interface from an image is challenging [12] and there are two
types of procedures for the estimation. The first type is im-
plemented with the use of estimators (graphical) that operate
binary images of interfaces and estimateD directly. For ex-
ample, software Benoit 1.3 [13] and FracLac [14] perform
such routines based on the Box-count [1] estimations, among
others. In the second kind of procedures the binary image
of a roughened interface, which can be represented as a self-
avoiding walk [8], is transformed into a single-valued series,
and the estimation ofD is performed using the numerical in-
formation from this transformed profile [4] choosing an ade-
quate estimator for time series. This kind of methods results
in a modification of profile information due to the cutting or
filling of the ridges and valleys formed, which leads to an er-
ror in the estimation of the fractal dimension of the original
interface profile (an example of this procedure is presented
below in the Sec. 3).

In this work we demonstrate that both kinds of actual
methods do not provide reliable estimates for self-avoiding
profiles. The aim of the work is the development of a novel
method of estimation of fractal dimensionD based on the
generalization of the estimators of Box-count and Hall-Wood
for self-avoiding rough interfaces embedded inR2 without
transforming them into a series of single-valued profile and
demonstration of its efficacy in comparison with the tradi-
tional methods.

2. Methods of fractal dimension estimation

Essentially, all the methods designed for the estimation ofD
are based on a common scheme in whichD is induced as a
function of scale governed by a power law and the estimate
is obtained using a linear regression fit with least squares
method. It should be noted that not all the estimators are
applicable to the same kind of data [15], therefore in order to
obtain a reliable estimate it is necessary to perform a careful
choice of estimation method in dependence on the data type
and its representation (statistical data series or image).

2.1. Box-count estimator

Box-count estimator is one of the most popular and com-
monly used estimators, and it is motivated by the following
scaling law:

DBC = lim
ε→0

log N(ε)
log(1/ε)

(1)

whereDBC is the Box-counting dimension,N(ε) denotes the
smallest number of boxes of widthε in the Euclidean space
with dimensiond, which can cover the point set:

X = {(t,Xt) ∈ R× Rd : t ∈ T, Xt ∈ Rd} ⊂ Rd+1 (2)

i.e. graph of time series or spatial dataXt observed at finite
time setT ⊂ R.
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The main idea of this method is that initially the series
graph is covered by a single bounding box, which is divided
in four quadrants. This process is repeated subsequently with
each of the quadrants until the resulting box width matches
the resolution of the data recording the number of boxes re-
quired at each step. Thus, ifN(ε) is the number of boxes
required at scaleε, Box-count estimator equals the slope in
an ordinary least squares regression fit oflog N(ε) on log ε.
This method can be used to quantify the fractal dimension
of any set of points in the plane and, particularly, for single-
valued interfaces or time series data.

Some authors identified problems with the original Box-
count estimator, which includes all scales in the least squares
regression fit oflog N(ε) on log ε, and proposed modifica-
tions that allow obtaining reliable estimations ofD for some
kinds of data [15].

2.2. Hall-Wood estimator

Peter Hall y Andrew Wood [16] introduced a Box-count es-
timator modification for fractal dimensionDHW , which op-
erates to the smallest observable scales. LetA(ε) be the total
area of the boxes with scaleε that intersect with the linearly
interpolated graph ofX, then if N(ε) is the total number of
such boxes, hence

A(ε) ∝ N(ε)ε2, (3)

which results in a reformulation of definition (1) being:

DHW = 2− lim
ε→0

log A(ε)
log(ε)

(4)

On scaleε` = `/n , wheren is the total number of data
series and̀ = 1, 2, ..., n, Hall-Wood estimator works simi-
larly to Box-count estimator, but the main difference is that
the scale application operates only over the “columns” and
countsA(`/n).

This estimator has better accuracy as compared to the
original method of Box-count [15], but its disadvantage is
that it can only be applied to the case in which the set of
points X is a single-valued profile (interface) of form (2),
that is, the time series graph or spatial data observable on a
finite setT ⊂ R of times or equally spaced points [10].

2.3. Madogram and Variogram estimators

In the case when the data is given as a time series data or spa-
tial data observed on a finite setT ⊂ R of times or equally
spaced points, the best results for the estimation ofD are pro-
vided by the variational estimators, particularly Madogram
and Variogram estimators [15], and, potentially, their use can
be extended to anisotropic and non-stationary processes.

If {Xt : t ∈ T, Xt ∈ Rd} is a Gaussian process with sta-
tionary increments whose variogram or structure function is:

γ2(t) =
1
2
E(Xu −Xu+t)2

whereγ2(t) is the average value of the squared difference of
the values in two points separated by a distance or spacet
andE(.) denotes the mathematical expectation, then it holds:

γ2(t) = |C2t|α + O
(|t|α+β

)
, as t → 0,

whereα ∈ (0, 2], β ≥ 0, y C2 > 0. Hereα is the fractal
index, β is roughness exponent,| · | denotes the Euclidean
norm, so, a sample’s path graph, has the fractal dimension:

D = d + 1− α

2
. (5)

The Variogram estimator is obtained using the classical
method of moments estimator forγ2(t). In the publication
of Bez and Bertrand [17] it was suggested that the Mado-
gram estimator, that is, variational estimator obtained from
the Variogram of orderp > 0 of the form:

γp(t) =
1
2
E(Xu −Xu+t)p

for p = 1, is more efficient and the relation (5) between the
fractal dimensionD and the fractal indexα is more robust as
compared to the default casep = 2 due to the fact that

γp(t) = |Cpt|αp/2 + O
(
|t|(α+β)p/2

)
, as t → 0.

Generally, the lower is the value of roughness exponentβ,
the harder is the estimation of fractal indexα, and is more
pronounced the finite sample bias of estimators of the fractal
index or fractal dimension [15].

3. Results

To compare the efficiency of common methods of fractal di-
mension estimation of both kinds (graphical and statistical)
the degrees of variation of the estimates obtained by the both

FIGURE 1. Comparison of standard deviations of estimates for
same data series obtained by two types of estimators: graphical
(image) and statistical (data).
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FIGURE 2. Transformation from self-avoiding walk to a single-valued series: a) Original image from a rough imbibition profile, b) Binary
image of the rough imbibition profile, c) Self-avoiding profile, d) Self-avoiding profile transformed into a single-valued series.

kinds of estimators were investigated. For this aim, synthetic
samples data series with a knownD value were generated in
MatLab [18]. All the samples had 1500 fractional values and
were divided into three groups, with theD values of1.2, 1.5
and1.8. Thereafter the fractal dimensions of the data samples
were numerically estimated byfractaldim package [19], us-
ing Box-count, Hall-Wood and Variogram statistical estima-
tors. Furthermore, the data samples were also transformed in
graphical bitmaps, binarizing the image, and after that their
fractal dimensions were estimated using thefractaldimpack-
age in the same procedure for the data essays.

The results of the estimates from the two sources of in-
formation (data series and graphical bitmaps) of the samples
were compared. In Fig. 1 the mean variances obtained for
the 4500 samples of both kinds of estimators are shown.

Note that, for the same data series a simple transforma-
tion from numerical data to an image results in a notable vari-
ance in estimates. Namely, in Fig. 1 it can be seen that the
estimates of fractal dimensions for images of data series have
a wider range of results (white box), as compared to the esti-
mates obtained by the statistical estimators for the original
numerical data samples (grey box) and therefore the statisti-
cal estimators provide more reliable estimates for the single-
valued profiles (data series).

However, these statistical estimators cannot be used di-
rectly for the estimation of fractal dimension of self-avoiding
curves embedded inR2 obtained from an interface image. To
apply statistical estimators ofD for self-avoiding profiles, at
first, it is necessary to transform them into a single-valued
profiles. An example of the steps of this transformation is
presented in Fig. 2 obtained for an image from imbibition in
disordered media experiments.

Nevertheless, below we show that for the Koch
curve [20], which has a self-avoiding profile, this transforma-
tion leads to a significant error in the estimation ofD. There-
fore, there is a need to develop an efficient graphical method
of fractal dimension estimation for self-avoiding profiles.

In what follows we propose a method of estimation ofD
for self-avoiding profiles calledFractionating estimator, and
demonstrate its efficiency applying it to the classic examples
of such curves: Koch curve, modified Koch curve [21],G2

Modified Koch curve [22] and Weierstrass curve [23].

3.1. Fractionating estimator (FE)

Using as reference the Hall-Wood estimator with scale
ε` = `/n adjusted equidistantly to a data series of form (2),
namely, single valued profiles, we developed a procedure,
which allows estimating the fractal dimension from a self-
avoiding curve embedded inR2 obtained from an interface
image. This method, calledFractionating estimator(FE),
consists in the following. At the first step the self-avoiding
curve is covered by a bounding box and after that at the k-th
step, wherek = 2, 3, . . . ,m, this box is divided intok2 equal
boxes, with this goal in mind each side of the bounding box
is divided intok equal segments (Fig. 3a). Then the intersec-
tion points between the self-avoiding curve and the obtained
grid are determined and a broken line is constructed by join-
ing consecutively the intersection points (Fig. 3b). There-
after, the segments of the broken line are covered by individ-
ual bounding rectangles with consecutive vertices in break
points (Fig. 3c) and the number of such rectanglesÑ(k) at
stepk is counted, and so on (Fig. 3d). TheFE estimation
of fractal dimension is obtained as the linear regression fit
from the log-log plot, ofÑ(k) vs. k−1, for k = 1, 2, . . . , m.
Here the number of stepsm is an unbounded natural number,
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FIGURE 3. Operation ofFE on a self-avoiding curve: a) grid (k = 6), b) adjusted broken line (k = 6), c) the box cover of the adjusted broken
line (k = 6), d) the box cover of the adjusted broken line (k = 10).

FIGURE 4. a) Koch curve generated with 4200 nodes, b) Single-valued transformation of Koch curve, c) modified Koch curve generated
with 3200 nodes, d)G2 modified Koch curve generated with 6680 nodes, e) Weierstrass curve generated with 1571 nodes.

which depends on the image resolution and computational
capacity, the greater the numberm the greater the accuracy
of the estimate ofD.

Note that meanwhile the number of stepk increases the
broken line ofFE approaches the interface curve. Further-
more,FE splits the rough self-avoiding curve not equidis-
tantly, and in this way, it takes into account as much informa-
tion from the rough curve both in rows and columns, “break-
ing it down” into fractional straight segments, preserving the

Hall-Wood scale idea but counting boxes as in the Box-count
estimator.

3.2. Fractal dimension estimation of Koch curve, modi-
fied Koch curves and Weierstrass curve

To verify the efficiency ofFE, proposed above, a routine in
Visual Basic for Applications for Corel Draw X3 was devel-
oped. The developed program was used for the estimation of
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fractal dimension byFE of the Koch curve (Fig. 4a) with
theoreticalD = 1.2619, single-value transformation of Koch
curve (Fig. 4b), modified Koch curve (Fig. 4c) with theo-
reticalD = 1.1609, G2 modified Koch curve (Fig. 4d) with
theoreticalD = 1.2924 and the Weierstrass curve (Fig. 4e)
of the form:

w(x) =
∞∑

k=0

ak cos(πbkx)

for a = 0.5, b = 33 and theoreticalD = 1.8017.

In addition the Box-count estimator included in software
Benoit 1.31 and the plug-in forImage Jsoftware of Fra-
cLac 1.48, and the estimators Box-count, Hall-Wood, Vari-
ogram and Madogram offractaldim package of softwareR,
where used for the estimations ofD for the considered frac-
tals curves.

TheFE routine was performed directly to the generated
curve without transforming it to a single-valued profile, and
the original vector graphic image was exported to.bmpfor-
mat for Benoit 1.31 and FracLac 1.48, where theD was also
estimated directly from the image using the Box-count esti-
mator.

As the softwareR works only with numerical data the
Koch curve was transformed into a single-valued curve
(Fig. 4b) in .png format. After that the binarized image was
interpreted as a matrix of ones and zeros, each column of

TABLE I. Average values of fractal dimension estimation for the
single-valued Koch curve.

Estimation method Estimate ofD

Box-count 1.1811

Hall-Wood 1.2181

Variogram 1.3195

Madogram 1.1893

FIGURE 5. Fractal dimension estimations from the transformed
single-valued Koch curve.

FIGURE 6. Hall-Wood relation (3) of Koch curve.

FIGURE 7. Fractal dimension estimation for Koch curve obtained
by FE method.

ones are accounted to get a series of single-valued profile,
from whichD was estimated by Box-count, Hall-Wood, Var-
iogram and Madogram estimators.

The results of the estimates of the single-valued Koch
curve (Fig. 4b), are presented in a synthesized way by Box-
plot graph in Fig. 5, where the theoretical and expected di-
mensionD = 1.2619 of the Koch curve is marked with dot-
ted horizontal line.

Numerical results of the average estimates for a single-
valued profile generated from the Koch curve obtained using
thefractaldimpackage are presented in Table I.

From Table I it can be seen that the Hall-Wood estimator
has the best performance, followed by Variogram, but none
of the considered estimators gives a reliable estimate. Above
mentioned results confirm the fact that the transformation of
the original Koch curve into a single-valued profile leads to a
significant errors in fractal dimension estimation.

Now, performing the estimation ofD for the original
Koch curve byFE, it was observed, as expected, that for self-
avoiding interfaces the basic proportionality of Hall-Wood
method (3) does not hold (Fig. 6).
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TABLE II. Fractal dimension estimates of theoreticall self-avoiding
curves: Koch curve, modified Koch curve,G2 modified Koch curve
and Weirstrass curve.

Estimation Koch Modified G2 Modified Weierstrass

method curve Koch curve Koch curve function

FE 1.2609 1.774 1.2782 1.7847

Box-count (Benoit) 1.9424 1.9715 1.8778 1.9524

Box-count (FracLac) 1.3019 1.2391 1.3401 1.4533

At the same time, from Fig. 7, one can observe a power
law behavior with the coefficient of determination R2 very
close to 1 and the estimated value ofD obtained by the pro-
posedFE method is 1.2609 and approximates the theoretical
D = 1.2619.

In Fig. 7 the points indicated as triangles correspond to
outliers and were not taken into account for the linear re-
gression fit, as the value of the coefficient of determination
R2 in that case reduces to R2 = 0.9873. The fractal di-
mension of the original Koch curve was also estimated by
the Box-count estimator using the software Benoit and Fr-
acLac. The same estimators were used for modified Koch
curve (Fig. 4c),G2 modified Koch curve (Fig. 4d) and Weier-
strass curve (Fig. 4e).

The values of estimates of fractal dimensions of the Koch
curve, modified Koch curve,G2 modified Koch curve and
Weierstrass curve obtained byFE, Benoit and FracLac meth-
ods are presented in Table II.

As it can be seen from Tables I and II, the developedFE
method gives significantly better estimates for both curves
studied as compared to the commonly used methods of esti-
mation.

Furthermore, as the scaling behavior of a profile with
overhangs (Fig. 2), can lead from self-affinity to multi-
affinity by the removal of overhangs in the representation
of real interface by single-valued profile [24], the proposed
method avoid this problem and there is no need of fur-
ther study scaling and universality for a varied self-avoiding
curves.

4. Conclusions

In this work a study of graphical and statistical estimators
such as Box-count, Hall-Wood, Variogram, and Madogram
for self-avoiding curves embedded inR2 was performed. It
was determined that both types of actual methods have a sig-
nificant error and do not give a reliable estimate for this kind
of fractals.

A new method for the estimation of fractal dimension
for self-avoiding rough interfaces based on the efficiency of
Hall-Wood estimator was developed and evaluated. The esti-
mates of fractal dimensions obtained by the proposed method
of Fractionating Estimatorfor the considered fractal curves
closely approximate the theoretical dimension of the fractals
and give more precise estimations as compared with the com-
monly used estimators. Results obtained validate the appli-
cation and use of the proposed method for the calculation of
D for the rough interfaces as well as time series.
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