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We study the quantum dynamics of theSU(2) quasiprobability distribution (“Wigner function”) for the simple nonlinear Hamiltonian (finite
analog of the Kerr medium,H = S2

z ). The quasiclassical approximation for the Wigner function and the corresponding evolution of mean
values are considered and compared with the exact and classical solutions.
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Se estudia la dińamica cúantica de la funcíon de distribucíon de cuasiprobabilidad del grupoSU(2) (función de Wigner) para un simple
hamiltoniano no lineal (el ańalogo finito del medio de KerrH = S2

z ). Se consideran la aproximación cuasicĺasica para la función de Wigner
y la evolucíon correspondiente de los valores medios. Se comparan las soluciones exacta, clásica y cuasiclásica.
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1. Introduction

The advantage of the phase-space description of a quantum
system in terms of Wigner quasiprobability function consists
in that reflecting all quantum features, the Wigner function
keeps the closest correspondence with its classical counter-
part [1, 2]. The dynamical equation for the Wigner function
related to the Heisenberg-Weyl group has the form

∂tW (p, q, t) = [H(p, q),W (p, q, t)]M , (1)

whereH(p, q) = p2/2m + V (q) is the system Hamiltonian
and the Moyal bracket

[H(p, q),W (p, q, t)]M

=
2
~

sin
[
~
2

(
∂(H)

q ∂(W )
p − ∂(H)

p ∂(W )
q

)]
H(p, q)W (p, q, t)

reduces to the classical Poisson bracket in the limit~ → 0
(here∂(H) and∂(W ) act to the factorsH andW correspond-
ingly). For quadratic Hamiltonians Eq. (1) coincides with the
equation for the classical distribution function, meanwhile in
general case it can be expanded in powers of~:

∂tW (p, q, t) = − p

m
∂qW + ∂qV ∂pW

− (~/2)2

3!
∂3

qV ∂3
pW + . . . (2)

The third term in this case gives the quantum correction to
the classical dynamics.

To provide the phase space description for spin systems
Stratonovich [3] in 1956 introduced the quasiprobability
distribution function on the sphere(θ, φ) ∈ S2 (see also
Refs. 4, 5 and 6). This function is naturally related to the
SU(2) dynamical group and we will later call it theSU(2)
Wigner function. This function was proved to be very useful

to visualize nonclassical properties of a collection of two-
level atoms [7] and polarization optics [8]. Note that a
rather general construction of a covariant Wigner function
for exponential-type Lie groups was introduced in Refs. 9
and 10. In the particular case of theSU(2) group it can be
reduced to the Stratonovich definition [11].

TheSU(2) Wigner function is defined as follows:

Wρ(θ, φ) = Tr (ρŵ(θ, φ)) , (3)

where ρ is the system density matrix and̂w(θ, φ) is the
Wigner operator

ŵ(θ, φ) =
2
√

π√
2S + 1

2S∑

L=0

L∑

M=−L

Y ∗
L,M (θ, φ) T̂

(S)
L,M , (4)

such that

Tr [ŵ(θ, φ)] = 1,
2S + 1

4π

∫

S2

dΩŵ(θ, φ) = I (5)

In Eq. (4) we use the spherical harmonics

YL,M (θ, φ) = (−1)MY ∗
L,−M (θ, φ)

and the irreducible tensor operatorŝT (S)
L,M (Ref. 12,

Eq. 2.4 (6)),

T̂
(S)
L,M =

√
2L + 1
2S + 1

S∑

m,m′=−S

CS,m′

S,m;L,M |S, m′〉 〈S, m|, (6)

Here CS,m′

S,m;L,M are the Clebsch-Gordan coefficients which
couple two representations of spinS andL (0 ≤ L ≤ 2S)
to a total spinS. The functionWρ(θ, φ) is covariant under
rotations and provides the overlap relation

2S + 1
4π

∫

S2

dΩWρ(θ, φ)WA(θ, φ) = Tr (ρA) . (7)
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HeredΩ = sin θ dθ dφ is the invariant measure on the sphere
andWA(θ, φ) is the Wigner symbol of the operatorA,

WA(θ, φ) = Tr
(
Âŵ(θ, φ)

)
, (8)

the density matrix can be reconstructed from the Wigner
function (3) through the obvious relation

ρ =
2S + 1

4π

∫

S2

dΩ ŵ(θ, φ)Wρ(θ, φ). (9)

In this paper we will consider the dynamics of theSU(2)
Wigner function for the simplest nontrivial example of the fi-
nite level analog of the Kerr Medium [10, 13, 14]. We will
show that the leading order of the expansion in the inverse
powers of2S + 1 (the representation dimension) leads to the
classical evolution of the initial distribution on the sphere.
(As in the case of phase plane and the Heisenberg-Weyl dy-
namical group, one may distinguish between the classical
evolution which obeys the classical Poisson bracket and the
initial state which may be a quantum one.) This approxima-
tion describes well the initial stage of the dynamics (when
one can neglect the self-interference). It allows us to calcu-
late mean values of the spin operators and gives the results
which are drastically better then the “naive” solution of the
Heisenberg equations of motion with decoupled correlators.
On the other hands, the quantum phenomena which follow
from the self-interference (like Shcrödinger cats [10, 13]) are
clearly beyond the scope of this semiclassical approximation.

We start in Sec. 2.1 with the case of linear dynamics.
The Wigner function dynamics under Kerr Hamiltonian is
discussed in Sec. 2.2. The evolution of mean values and
the comparison with the classical dynamics from the decou-
pled correlators in the Heisenberg equations are considered
in Sec. 3. The article ends up with Conclusions in Sec. 4. We
give the proof of the dynamical equation for the Wigner func-
tion in Appendix A. The useful integral representation for the
SU(2) Wigner function is briefly described in Appendix B.

In the rest of paper we will consider only integer values of
S, which corresponds to theSO(3) group rather thanSU(2).

2. Wigner function dynamics

2.1. Linear dynamics

Let us consider the dynamics of the Wigner function
Wρ(θ, φ) under the action of a Hamiltonian from the uni-
versal enveloping algebra ofsu(2). First of all we note that
due to thecovarianceof the Wigner function with respect to
rotations, its evolution under a linear Hamiltonian

H = ω0Sz + g1Sx + g2Sy (10)

is equivalent to a rotation round some axis. In other words,
the equation of motion for a linear Hamiltonian (10) can be
reduced to a diagonal Hamiltonian

H → Hd = U†HU = ωSz, ω =
√

ω2
0 + g2

1 + g2
2 , (11)

whereU is the rotation from theSU(2) group.
Substituting the density matrix in terms of Wigner func-

tion (9) to the equation of motion,

i∂tρ = [H, ρ] ,

we obtain

i

∫

S2

dΩ ŵ(θ, φ)∂tWρ(θ, φ)

=
∫

S2

dΩ [H, ŵ(θ, φ)] Wρ(θ, φ). (12)

Taking into account that
[
Sz, T̂

(S)
L,M

]
= MT̂

(S)
L,M ,

we get

[Sz, ŵ(θ, φ)]=
2
√

π√
2S+1

2S∑

L=0

L∑

M=−L

MY ∗
L,M (θ, φ) T̂

(S)
L,M

= −i∂φŵ(θ, φ). (13)

Replacing the above equation into (12) and integrating by
parts we obtain the following equation of motion for the
Wigner function

∂tWρ(θ, φ) = −ω∂φWρ(θ, φ).

Its solution is

Wρ(θ, φ|t) = Wρ(θ, φ− ωt|t = 0),

which, of course, corresponds to the above mentioned pro-
priety that under the action of a linear Hamiltonian the initial
Wigner function rotates with respect to some axis (the direc-
tion of this axis depends on the coefficients of the Hamilto-
nian in Eq. (10)) [4].

2.2. Kerr dynamics

Now let us consider the simplest non-linear Hamiltonian

H = χS2
z , (14)

which, in spite of its simplicity, leads to a number of inter-
esting features, such as, for example, generation of squeezed
atomic states [13] and atomic Shcr̈odinger cats [14]. Also,
the Hamiltonian in Eq. (14) gives the simplest example when
the quantum dynamics differs essentially from the corre-
sponding classical one [10].

To find an approximate dynamical equation for the
Wigner function under the action of the Hamiltonian (14) we
use the expansion in the powers of small parameter

ε =
1

2S + 1
,
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(the inverse dimension of representation). Neglecting terms
of orderε2 one can obtain the following equation (see Ap-
pendix A):

∂tWρ(θ, φ) = −χ

ε
cos θ∂φWρ(θ, φ)

+
χε

2
[cos θ∂φWρ(θ, φ) + sin θ ∂φ∂θWρ(θ, φ)

+ cos θ∂φL2Wρ(θ, φ)
]
, (15)

whereL2 is a differential operator (Casimir operator on the
sphere):

L2 = −
[

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
. (16)

In the zero-order approximation we arrive at the following
quasiclassical equation for the distribution function,

∂tWρ(θ, φ) = −χ

ε
cos θ∂φWρ(θ, φ), (17)

with the solution,

Wρ (θ, φ|t) = Wρ

(
θ, φ− χt

ε
cos θ

∣∣∣∣ t = 0
)

. (18)

This quasiclassical Wigner function describes well the evolu-
tion for timesχt ≤ 1. Note that Eq. (17) corresponds to the
classical evolution equation that involves the Poisson brack-
ets on the sphere (expressed in terms of the anglesθ, φ, see.
e.g., [15]) between the classical Hamiltonian function and
the classical distribution function.

One observes that the Wigner function suffers the max-
imum deformation close to the poles of the sphere (in the
opposite directions at the south and north poles), meanwhile
the equator zone does not evolve at all. Of course, the poles
themselves do not evolve because they corresponds to the
eigenstates of the operatorSz, | ± S, S〉. The Wigner func-
tion of an arbitrary eigenstate|k, S〉 of the operatorSz has a
stationary form

Wk(θ, φ|t) = Wk(θ, φ|t = 0)

=
2
√

π√
2S + 1

2S∑

L=0

√
2L + 1
2S + 1

Y ∗
L,0(θ, φ)CSk

Sk, L0 ,

which does not depend onφ. In the limit of large represen-
tation dimensions,S À 1, and for the values of|k| ∼ S,
Wk(θ, φ) can be approximated as follows (see Appendix B),

Wk(θ, φ) ' (−1)k+SdS
kk(2θ)

[
1 +

k

S
cos θ

]
,

wheredS
kk(ϑ) = 〈k, S| exp (−iϑSy) |k, S〉 is thed-function.

In particular, the Wigner function corresponding to the state
|S, S〉 takes the following simple form

Wk=S(θ, φ|t) = Wk=S(θ, φ|t = 0) ' cos2S θ [1 + cos θ] .

On the other hand, starting from the atomic coherent state
initially located along thex-direction,|θ=π/2, φ=0〉,

Sx|π/2, 0〉 = (S/2)|π/2, 0〉,

such that

|π/2, 0〉 =
1
2S

S∑

k=−S

√
(2S)!

(S + k)!(S − k)!
|k, S〉, (19)

(this is an eigenstate of theSx operator) we obtain from
Eq. (18)

Wρ(θ, φ|t) =
2
√

π√
2S + 1

2S∑

L=0

√
2L + 1
2S + 1

×
L∑

M=−L

Y ∗
L,M (θ, φ) e−iτM cos θ

S∑

k,n=−S

CSn
Sk, LM αkn,

where

αkn =
(2S)!

22S
√

(S + k)!(S − k)!(S + n)!(S − n)!
, τ =

χt

ε
.

In the limit S À 1, the Wigner function for the initial coher-
ent state in Eq. (19) takes the following approximate form

Wρ(θ, φ|t = 0) ' (sin θ cosφ)2S−1 (1 + sin θ cos φ) ,

leading to the evolution

Wρ(θ, φ|t) '
(

sin θ cos
(

φ− χt

ε
cos θ

))2S−1

×
[
1 + sin θ cos

(
φ− χt

ε
cos θ

)]
. (20)

It is worth noting that the above equation can be rewritten as
follows:

Wρ(~n (θ, φ) |t) ' f2S−1(~n, t) [1 + f(~n, t)] ,

where

f(~n, t) = nx cos
(

χt

ε
nz

)
+ ny sin

(
χt

ε
nz

)
.

Then, from the covariance of the Wigner function one can
easily recover the evolution of an arbitrary initial coherent
state [3, 4],

Wg·ρ(~n (θ, φ) |t) = Wρ(g−1 · ~n (θ, φ) |t).

Hereg · ρ = T (g)%T−1(g), T (g) is the operator of finite ro-
tation in the2S + 1 dimensional representation of thesu(2)
algebra, which transforms coherent states among themselves;
T (g)|ξ〉 = eiϕ|ξg〉, and~n = (cos φ sin θ, sin φ sin θ, cos θ).
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In the same manner, we can find evolution of the Wigner
function for the initial superposition of atomic coherent
states. For instance, for the state

|ψ〉 =
1√
2

(
|θ =

π

2
, φ = 0〉+ |θ =

π

2
, φ = π〉

)
,

(the Schr̈odinger cat state on the sphere [14]), the Wigner
function takes the form

Wρ (θ, φ|t)=f(θ, φ|t)2S −Re(f(θ, φ+π/2|t) + i cos θ)2S
,

wheref(θ, φ|t) = sin θ cos(φ− ε−1χt cos θ).
The rest of the terms in Eq. (15) (diffusion-like terms) de-

scribes quantum corrections to the quasiclassical motion in
analogy to the quasiclassical expansion in Eq. (2). Precisely
that terms are responsible for the formation of Schrödinger
cats on the sphere.

It is worth noting that the term describing first quantum
correction in Eq. (15) vanishes whenε → 0 (S → ∞).
This property is specific for the Wigner-like quasidistribu-
tion functions (for the Heisenberg-Weyl group as well as for
theSU(2) group) and does not take place for other types of
quasidistributions (see, for example, [16] for analysis of the
Q-function evolution for theSU(2) group). This is the main
reason why the Wigner function is the most suitable tool for
the analysis of quantum-classical correspondence.

3. Evolution of average values

Using the overlap relation in Eq. (7) and the “classical”
Eq. (17) we can determine the evolution of average values
of angular momentum operators:

d

dt
〈A〉 =

2S + 1
4π

∫

S2

dΩWA(θ, φ)
d

dt
Wρ(θ, φ). (21)

For this purpose we first obtain the Wigner symbols of
Sj , j = x, y, z. Taking into account the following relations:

Sx = AS (T1−1 − T11) ,

Sy = iAS (T1−1 + T11) ,

Sz =
√

2AST10, (22)

where

AS =

√
S (S + 1) (2S + 1)

6
,

one can easily obtain

Tr [SxTLM ] = AS [δL1δM−1 − δL1δM1] ,

T r [SyTLM ] = −iAS [δL1δM−1 + δL1δM1] ,

T r [SzTLM ] =
√

2ASδL1δM0.

Substituting the above expressions into Eq. (8) one gets

WSj (θ, φ) =
√

S (S + 1)nj , (23)

wherenj are the components of the unitary vector

~n = (sin θ cos φ, sin θ sin φ, cos θ).

In the same way we find

W 1
2{Sj ,Sk}+(θ, φ)

=
1
2

√
(2S + 3) (2S − 1) S (S + 1)njnk, j 6= k, (24)

WS2
j
(θ, φ) =

1
2

√
(2S + 3) (2S − 1)S (S + 1)

×
(

n2
j −

1
3

)
+

S (S + 1)
3

. (25)

Replacing Eq. (23) into Eq. (21) and using the “quasiclas-
sical” evolution Eq. (17) for the Wigner function we obtain
after integration by parts over the angleφ (25):

d

dt
〈Sz〉 =0,

d

dt
〈Sx〉 =− χ

2ε

2S + 1
4π

√
S (S + 1)

×
∫

S2

dΩsin 2θ sin φWρ(θ, φ|t),

d

dt
〈Sy〉 =

χ

2ε
2S + 1

4π

√
S (S + 1)

×
∫

S2

dΩsin 2θ cos φWρ(θ, φ|t).

Comparing with the relations in Eq. (24) one can obtain

d

dt
〈Sz〉 = 0,

d

dt
〈Sx〉 = −χαS〈{Sy, Sz}+〉,

d

dt
〈Sy〉 = χαS〈{Sx, Sz}+〉,

αS =
2S + 1√

(2S + 3) (2S − 1)
. (26)

The equations for the second order correlators can also be
found. They involve the third order correlators. The solution
of this infinite chain of equations can be obtained directly
from Eq. (18), giving, for example, for the first order mo-
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ments:

〈Sz(t)〉 =
2S + 1

4π

√
S (S + 1)

×
∫

S2

dΩcos θWρ(θ, φ− χt

ε
cos θ|t = 0))

=
2S + 1

4π

√
S (S + 1)

×
∫

S2

dΩcos θWρ(θ, φ|t = 0)) = 〈Sz(t = 0)〉,

〈Sx(t)〉 =
2S + 1

4π

√
S (S + 1)

×
∫

S2

dΩsin θ cos φWρ(θ, φ− χt

ε
cos θ|t)),

〈Sy(t)〉 =
2S + 1

4π

√
S (S + 1)

×
∫

S2

dΩsin θ sin φWρ(θ, φ− χt

ε
cos θ|t)).

In particular, for the initial coherent state, Eq. (19), (the
eigenstate ofSx operator) the above solution leads to the fol-
lowing expression for the average values:

〈Sx(t)〉 =
√

S (S + 1)Γ(S + 3/2)
(

2
z

)S+1/2

JS+1/2(z),

〈Sy(t)〉 = 0,

z = χt (2S + 1) . (27)

We show in Fig. 1 the quasiclassical result (27) together with
the exact quantum solution for the mean value ofSx,

FIGURE 1. Evolution of the normalized average value〈Sx(t)〉/S
from exact formula (28) (solid line); form quasiclassical approx-
imation (27) (dashed line); from classical expression (30) (dotted
line); χ = 1, S = 30.

〈Sx(t)〉 = S cos2S−1 χt (28)

One may observe the good agreement between these two
curves up to timesχt ∼ 1.

It is easy to see that Eqs. (26) coincide with the corre-
spondent averaged quantum Heisenberg equations

d

dt
〈Sz〉 = 0,

d

dt
〈Sx〉 = −χ〈{Sy, Sz}+〉,

d

dt
〈Sy〉 = χ〈{Sx, Sz}+〉, (29)

except the factorαS , which in the limitS À 1 tends to unity
αS = 1+O(S−2). It is interesting to note that the quasiclas-
sical evolution equation for the Wigner function does not lead
to the classical equations of motion for the average values of
the angular momentum operators (in the sense that we do not
arrive at equations with decoupled correlators). This means
that even in the limit of large dimension of representationS,
the evolution under the Kerr Hamiltonian conserves some of
its quantum features (though, the evolution equation for the
Wigner function has a simple solution shown in Eq. (18)).

The difference between quasiclassical, Eq. (18), and clas-
sical solutions is apparent at the level of average values. In-
deed, after averaging the system of Eqs. (29) over some state
and decoupling the correlators one obtains the classical sys-
tem

d

dt
〈Sz〉 = 0,

d

dt
〈Sx〉 = −2χ〈Sy〉〈Sz〉,

d

dt
〈Sy〉 = 2χ〈Sx〉〈Sz〉.

(This system can also be obtained form the classical Hamil-
tonian H = χS2

z with the Poisson brackets{Si, Sj} =
Sk, i, j, k = x, y, z.) The classical equations have a solu-
tion,

〈Sx(t)〉cl =〈Sx(0)〉 cos 2〈Sz(0)〉χt

− 〈Sy(0)〉 sin 2〈Sz(0)〉χt,

〈Sy(t)〉cl =〈Sx(0)〉 sin 2〈Sz(0)〉χt

+ 〈Sy(0)〉 cos 2〈Sz(0)〉χt. (30)

These solutions are usually called parametric approximation.
Note, that if the correlators are decoupled not at the level of
the Heisenberg Eqs. (29) but in the nonlinear equation of mo-
tion for the operatorSx(t), it leads just to a small change in
the frequency of oscillations in Eq. (30).) One can see that
the “classical” solution diverges from the exact one, Eq. (28);
even for very small times. Indeed, the Taylor expansion of
the exact solution of Eq. (28) gives:

〈Sx(t)〉 ≈ S − S(S − 1/2)(χt)2 + O
(
t4

)
,

Rev. Mex. F́ıs. 48 (4) (2002) 317–324
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while the classical solution, Eq. (30), has quite different be-
havior for the initial coherent state, Eq. (19), just maintains
constant

〈Sx(t)〉cl = S.

On the other hand, the classical solution (30) can be
rewritten in terms of spherical angles,Sz = S cos θ,
Sx = S sin θ cos φ, Sy = S sin θ sin φ,

θ = const, φ(t) = φ(0) + 2Sχt cos θ

and we see, that the quasiclassical evolution of the Wigner
function, Eq. (18), corresponds to the motion of every point
of the initial (quantum) distribution on the sphere along the
classical trajectory (compare with the Heisenberg-Weyl case,
[17-19]).

4. Conclusions

In summary, we have considered the evolution of theSU(2)
Wigner quasiprobability function on the sphere under the ac-
tion of the simplest nonlinear Hamiltonian - the “finite Kerr
medium”. We obtained the exact equation of motion for the
Wigner function and solved it for the case of large representa-
tion dimensions. In this “quasiclassical” limit different parts
of the initial distribution rotate with different velocities (de-
pending of the angleθ) which leads to a deformation of the
initial distribution (without self-interference). This “quasi-
classical” Wigner function leads to the results which are es-
sentially different from what follows from the classical equa-
tions of motion for mean values (parametric approximation).
The quasiclassical Wigner function describes well the system
dynamics up to timesχt ∼ 1 (while the parametric approxi-
mation fails for these times).

Appendix A: Derivation of the dynamical equa-
tion for the Wigner function

Here we will derive the dynamical equation for the Wigner
function for the case of the finite Kerr medium. Firstly, we
note that due to Eq. (13)

[
S2

z , ŵ(θ, φ)
]

= {Sz, [Sz, ŵ(θ, φ)]}+
= i∂φ{Sz, ŵ(θ, φ)}+. (31)

(Here,{. . . , . . .}+ stands for anticommutator.) Taking into
account that

Sz = AS T̂
(S)
1,0 , AS =

√
S(S + 1)(2S + 1)

3

and using the definition (4) we represent{Sz, ŵ(θ, φ)}+ in
the following form

{Sz, ŵ(θ, φ)}+ = AS
2
√

π√
2S + 1

×
2S∑

L=0

L∑

M=−L

Y ∗
L,M (θ, φ)

{
T̂

(S)
1,0 , T̂

(S)
L,M

}
+

. (32)

The anticommutator of two irreducible tensor operators can
be presented as a linear form in irreducible tensor operators,

{
T̂

(S)
1,0 , T̂

(S)
L,M

}
+

=
√

3 (2L + 1)
∑

Ĺ

[(−1)Ĺ − (−1)L]

×CĹM
LM10

{
L 1 Ĺ
S S S

}
T̂

(S)
ĹM ,

where

{
L 1 Ĺ
S S S

}
is a 6j-symbols. The values of the

Clebsch-Gordan coefficients are

CL+1M
LM10 =

[
(L + M + 1) (L−M + 1)

(2L + 1) (L + 1)

]1/2

,

CL−1M
LM10 = −

[
(L + M) (L−M)
(2L + 1) (L + 1)

]1/2

,

and we get

{
T̂

(S)
1,0 , T̂

(S)
L,M

}
+

= 2
√

3(−1)L+1




√
(L + 1)2 −M2

L + 1

×
{

L 1 L + 1
S S S

}
T̂

(S)
L+1M

−
√

L2 −M2

L

{
L 1 L− 1
S S S

}
T̂

(S)
L−1M

]
.

Substituting the above equation into Eq. (32) and taking into
account the values of6j-symbols

{
L 1 L + 1
S S S

}
=

(−1)L+1

2

×
[

(2S + L + 2) (2S − L) (L + 1)
(2L + 1) (2L + 3)S (S + 1) (2S + 1)

]1/2

,

{
L 1 L− 1
S S S

}
=

(−1)L

2

×
[

(2S + L + 1) (2S − L + 1) L

(2L + 1) (2L− 1)S (S + 1) (2S + 1)

]1/2

,
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we obtain after some algebra

{Sz, ŵ(θ, φ)}+ =
2
√

π√
2S + 1

2S∑

L=0

L∑

M=−L

T̂
(S)
L,M

×




√√√√ (L2 −M2)
(
(2S + 1)2 − L2

)

(2L + 1) (2L− 1)
Y ∗

L−1,M

+

√√√√ ((L+1)2−M2)
(
(2S+1)2−(L+1)2

)

(2L + 3) (2L + 1)
Y ∗

L+1,M


 .

Using the recurrence relations for the spherical harmonics

YL+1,M (θ, φ)
√

((L + 1)2 −M2)

= [sin θ ∂θ + (L + 1) cos θ]

√
2L + 3
2L + 1

YL,M (θ, φ),

YL−1,M (θ, φ)
√

(L2 −M2)

= [− sin θ ∂θ + L cos θ]

√
2L− 1
2L + 1

YL,M (θ, φ),

we get

{Sz, ŵ(θ, φ)}+=
2
√

π√
2S + 1

2S∑

L=0

L∑

M=−L

1
2L + 1

T̂
(S)
L,M

×{fS(L + 1) [sin θ ∂θ + (L + 1) cos θ]

−fS(L) [sin θ ∂θ − L cos θ]}Y ∗
L,M (θ, φ), (33)

where

fS(L) =
√

(2S + L + 1) (2S − L + 1) =
1
ε

√
1− ε2L2,

ε =
1

2S + 1
.

After some algebra, Eq. (33) can be rewritten as follows

{Sz, ŵ(θ, φ)}+ =
(

cos θ

2ε
F̂ (ε) + ε

[
cos θ

2

+ sin θ∂θ

]
F̂−1(ε)

)
ŵ(θ, φ), (34)

where the operator function̂F (ε) depends on the operator of
the total angular momentumL2,

L2YL,M (θ, φ) = L(L + 1)YL,M (θ, φ),

and

F̂ (ε)=
[
2−ε2

(
2L2+1

)
+2

√
1−ε2 (2L2+1)+ε4L4

]1/2

.

In the limit of large representation dimensions,S → ∞, we
can expand square roots in the above equation in powers of a
small parameterε,

F̂ (ε) ' 2− ε2

(
2L2 + 1

)

2
,

which gives

{Sz, ŵ(θ, φ)}+ '
[
1
ε

cos θ − ε

2

(
sin θ ∂θ

+ cos θ(L2 + 1)
)

+ O(ε3)
]
ŵ(θ, φ).

Substituting the above equation into Eq. (31) and then into
Eq. (12), and integrating by parts (using the fact thatL2 is a
self-adjoin operator on the sphere) we obtain the equation of
motion in Eq. (15) for the Wigner function.

Appendix B: Approximate Wigner functions for
some special states

In this Appendix we obtain approximate expressions for the
Wigner functions for the angular momentum coherent state
andS z operator eigenstates. For this purpose we use the inte-
gral representation for the Wigner-Stratonovich operator, Eq.
(4) [20],

ŵ(θ, φ) =
∫ 2π

0

dωe−iω ~n·~Sf(ω), (35)

where the weight functionf(ω) is defined as follows

f(ω) =
1
2π

2S∑

L=0

iL
2L + 1
2S + 1

χS
L(ω) . (36)

Making use the integral representation (35) one can find
simple expressions forSU(2) Wigner function for different
states of angular momentum in the limit of large dimension
of representationS À 1.

a)Eigenstate of the operatorSz,

Sz|k, S〉 = k|k, S〉.

The density matrix has the form

ρ = |k, S〉〈k, S|.

Then from Eqs. (8) and (35) we get

Wk(θ, φ) =
∫ 2π

0

dω dS
kk (β) e−i(α+γ)f(ω), (37)

where

dS
kk (β) = 〈k, S|e−iβSy |k, S〉

is the Wigner SU(2) representation function and the Euler
anglesα, β, γ are related to the set of parameters(ω, θ, φ)
according to

sin
β

2
= sin θ sin

ω

2
, tan

α + γ

2
= cos θ tan

ω

2
.
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As expected, the Wigner function (37) does not depend on
the angleφ.

b) SU(2) coherent state|ξ〉.
For simplicity we consider a coherent state located on the

equator|ξ = 1〉. The density matrix has the form

ρ =
S∑

k,n=−S

ckc∗n|k, S〉〈n, S|,

ck =
1
2S

√
(2S)!

(S − k)!(S + k)!
.

The Wigner function takes the form

WCS(θ, φ) =
∫ 2π

0

dωI(θ, φ, ω)f(ω), (38)

where

I(θ, φ, ω) =
S∑

k,n=−S

ckc∗n〈n, S|e−iβSy |k, S〉e−iαn−iγk

=
(

cos
β

2
cos

α + γ

2
+ i sin

β

2
sin

α− γ

2

)2S

,

and(α, β, γ) are the Euler angles which can be expressed in
terms of polar angles according to

cos
β

2
cos

α + γ

2
= cos

ω

2
, tan

α + γ

2
= cos θ tan

ω

2
,

α− γ

2
= φ− π

2
,

giving

I(θ, φ, ω) =
(
cos

ω

2
− i sin

ω

2
sin θ cosφ

)2S

.

The representations in Eqs. (37) and (38) are much simpler
that corresponding expressions given in Ref. 7.

One can show that the functionf(ω) in the limit case of
large representation dimensions,S À 1 takes the following
asymptotic form [20] (see also Ref. 21),

f(ω) → (−1)S

[
δ(ω − π)− i

S

∂

∂ω
δ(ω − π)

]
,

S →∞, (39)

where the limit is understood in a weak sense. This allows
us to find approximate expressions for the Wigner functions
WD(θ, φ) andWCS(θ, φ) giving

Wk(θ, φ) = (−1)S+k dS
kk (2θ)

[
1 +

k

S
cos θ

]
,

WCS(θ, φ) = (sin θ cos φ)2S−1 [1 + sin θ cos φ] .
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