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A periodic fibre-reinforced two phase material is considered here. The material properties of the constituents are anisotropic and may be
specified by either the thermal, electrical conductivity, dielectric or magnetic permeability tensor. The orientation of each of the characteristic
directions of the material is not parallel to the axis of geometric symmetry. The asymptotic homogenization method is used to study this
doubly periodic composite. The interface between fibres and matrix must conform with the periodicity, but otherwise is arbitrary and may
be disjoint in the periodic cell. A connection is found among the solutions of the three local problems that appear in the implementation of
the method. This relation is basic for the elementary derivation of three universal relations for this three dimensional scalar problem. Several
examples show how to relate the structure of the material tensor considered in this paper to that provided by the material data.

Keywords: Universal relations; asymptotic homogenization method; thermal and electrical conductivity; dielectric properties; magnetic
permeability.

Se considera un material periódico de dos fases reforzado por fibras. Las propiedades materiales de las componentes son anisótropas y
pueden especificarse por el tensor, ya sea térmico, de conductividad eléctrica, de permeabilidad dieléctrica o magńetica. La orientacíon de
cada una de las direcciones caracterı́sticas del material no es paralela al eje de simetrı́a geoḿetrica. Se usa el ḿetodo de homogeneización
asint́otica para estudiar este compuesto doblemente periódico. La intercara entre fibras y matriz debe cumplir con la periodicidad, pero por
lo deḿas es arbitraria y puede ser disjunta en la celda periódica. Se encuentra una conexión entre las soluciones de los tres problemas locales
que aparecen en la instrumentación del ḿetodo. Esta relación es b́asica para la derivación elemental de tres relaciones universales para este
problema tridimensional escalar. Varios ejemplos muestran cómo relacionar la estructura del tensor material considerado en este trabajo con
los datos del material.

Descriptores:Relaciones universales; método de homogeneización asint́otica; conductividad t́ermica y eĺectrica; propiedades dieléctricas;
permeabilidad magńetica.

PACS: 65; 75; 77.84.L

1. Introduction

The asymptotic homogenization method is a useful mathe-
matical tool for dealing with partial differential equations that
have rapidly oscillating coefficients [1–2]. The presence of
two characteristic lengthsl (fast) andL (slow) in the ratio
ε = l/L allows the use of the two-scale asymptotic method,
when ε is a small parameter. The original boundary value
problem is transformed into one with constant coefficients,
so-called effective or homogenized. An explicit formula is
obtained for the coefficients, which depends on the periodic
solution of certain cell problems (local). There are a few ex-
act solutions of these local problems, some obtained very re-
cently [3–9]. Otherwise the main thrust of the implementa-
tion of the method is numerical. (See references in Refs. 6
and 7]). New theoretical results within the frame of this
method were obtained in [5–9]. One result relates three solu-
tions of the local problems. The other one is a new derivation
of a series of universal relations which reproduce well known
results: those of Hill [10] and Dvorak [11] in elasticity and
Benveniste and Dvorak [12] and Schulgasser [13] in piezo-
electricity. The equation that connects the solution of sev-
eral local problems is the key to derive the universal relations

for the effective coefficients, besides the symmetry consid-
erations of the latter. It was pointed out in the four papers
already mentioned that this new derivation of universal rela-
tions may be useful to derive other new ones, which is indeed
the case here, where the problem considered is the simplest
that can be thought of. A related question is that of exact
relations. Nowadays the field of exact relations is plentiful.
The search for necessary and sufficient conditions for exact
relations is currently under way [14-17] using complicated
algebraic methods. The methods used here to obtain univer-
sal relations, however, are elementary. More references to
recent developments in composites can be found in Ref. 18.

2. Universal relations

A two-phase uniaxial reinforced material is considered here,
with parallel cylindrical fibres embedded in a matrix mate-
rial. Both media may have anisotropic properties. The cross-
section of the fibres lies in thex1x2-plane, none of the axes
of the characteristic material properties directions coincides
with the fibre direction, which is taken as theOx3 axis. The
fibres are periodically distributed without overlapping in two
non-parallel directions in thex1x2-plane. Either the square
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or hexagonal symmetry may be considered. Moreover, within
the periodic cell, the fibre cross-section shape has square or
hexagonal symmetry and is otherwise arbitrary and it may be
disjoint.

The overall properties of the above periodic medium are
sought by means of the well-known asymptotic homogeniza-
tion method. Appendix A has a brief outline of the technique
leading to (A.4) and (A.5) which are the equations to be con-
sidered here at the outset. Then, it follows that, in terms of
the fast variabley, the appropiate periodic cellY (per unit
length) is taken in they1y2-plane so thatY = Y1 ∪ Y2 with
Y1 ∩ Y2 = ∅, where the domainY1 is occupied by the ma-
trix and its complementY2 is filled up with the fibre, which
may be disjoint. The common interface betwen the matrix
and the fibre is denoted byΓ, and it is arbitrary as long as it
conforms with the symmetry. The thermal conductivity ten-
sorsk(1)

ij andk
(2)
ij refer to the properties of the matrix and the

fibre, respectively.

A connection among the solutions of the local problems
pL in (A.5) can now easily be found. Among all possible
tensors, letk(Υ)

11 = k
(Υ)
22 andk

(Υ)
13 = k

(Υ)
23 , Υ = 1, 2 (the

properties relative to directionsOx1 andOx2 are the same).
Then it is easy to get

‖ k
(Υ)
13 ‖ (1Θ(Υ) + 2Θ(Υ)) =‖ k

(Υ)
11 + k

(Υ)
12 ‖ 3Θ(Υ). (1)

Relations among the overall material properties can next
be obtained. Take the expression (A.5), seti = 1, p = 1, 2, 3,
then

k̄11 = 〈k11 + k11 1Θ,1 + k12 1Θ,2 + k13 1Θ,3〉, (2a)

k̄12 = 〈k12 + k11 2Θ,1 + k12 2Θ,2 + k13 2Θ,3〉, (2b)

k̄13 = 〈k13 + k11 3Θ,1 + k12 3Θ,2 + k13 3Θ,3〉. (2c)

The addition of (2a) and (2b), the substitution of (1) and
the elimination of the common term with (2c) leads to

k̄11 + k̄12 − 〈k11 + k12〉
k̄13 − 〈k13〉

=
‖ k

(Υ)
11 + k

(Υ)
12 ‖

‖ k
(Υ)
13 ‖

, (3)

a universal relation amonḡk11, k̄12 and k̄13 in terms of ma-
terial properties contrast‖ k

(Υ)
11 + k

(Υ)
12 ‖ and‖ k

(Υ)
13 ‖ and

matrix and fibre area fractionsV1 andV2, respectively since,
say,

〈k13〉 = V1k
(1)
13 + V2k

(2)
13 (4)

is the arithmetic or Voigt mean ofk(Υ)
13 . Note that Eq. (3) was

derived without solving any local problem.

Two similar expressions to Eq. (3) can similarly be de-
rived, which yields

k̄21 + k̄22 − 〈k21 + k22〉
k̄23 − 〈k23〉

=
k̄31 + k̄32 − 〈k31 + k32〉

k̄33 − 〈k33〉

=
‖ k

(Υ)
11 + k

(Υ)
12 ‖

‖ k
(Υ)
13 ‖

, (5)

another two universal relations with similar characteris-
tics as Eq. (3). The knowledge of three of the properties can
fix the other three. Note that the right hand side of Eqs. (3)
and (5) is the same. These relations were derived for a three-
dimensional case.

3. Relation to data

Anisotropic data are usually given as the characteristic (two
or three) values of the material (see, for instance, Refs. 19
and 20). These values, which are denotedK11,K22 andK33,
relate to the components of the tensorkij of Sec. 2 by means
of simple expressions as will be shown below. The corre-
sponding characteristic directions are given by the set of or-
thogonal vectorse1, e2, ande3, respectively. None of these
particular directions is parallel to the axis of geometric sym-
metry, theOx3 axis.

4. Three- and two-parameter families

(a) Let the thermal conductivity tensorkij of the matrix be
isotropic and that of the fibre have the form, consistent with
the structure of Sec. 2,




k m l
m k l
l l k


 , (6)

wherek, l, m are three nonzero parameters. This is a
three-parameter family. The characteristic values and direc-
tions of (6) can easily be found. They are given by the ex-
pressions

K11 =k + 2lS−, (4.7a)

K22 =k + 2lS+, (4.7b)

K33 =k −m, (4.7c)

e1 =(S−, S−, 1), (4.7d)

e2 =(S+, S+, 1), (4.7e)

e3 =(−1, 1, 0), (4.7f)

where

4lS± = m± (m2 + 8l2)1/2. (8)

Moreover, the following simple expressions follow from
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Eqs. (7a, b, c):

k = (K11 + K22 + K33)/3,

m = (K11 + K22 − 2K33/3,

l =
[
9(K11 −K22)2

− (K11 + K22 − 2K33)2
]1/2

/(6 · 21/2). (9)

Given the dataK11,K22 and K33, two real solutions
k, l, m are possible, whenever the radicand is positive. This
means that, for this composite, there exist two possible ge-
ometric directions (that of the fibre) for which the universal
relations (3, 5) hold.

(b) A two-parameter family is obtained from (6) setting
m = l, thus

K11 = K − l,

K22 = K − 2l,

K33 = K − l,

e1 = (−1/2,−1/2, 1),

e2 = (1, 1, 0),

e3 = (−1, 1, 0). (10)

Also, it is easily obtained that

k = (2K11 + K33)/3,

l = (K22 −K33)/3. (11)

Many more examples of this type could be shown by con-
veniently choosing the elements ofkij in accordance to the
limitations of Sec. 2. For the sake of brevity, the above ex-
amples suffice to show that there exists particular directions
for which universal relations in three dimensions hold in the
case of a fibre-reinforced composite.

5. Concluding remarks

The method of asymptotic homogenization is used to give a
simple derivation of three universal relations. The applica-
tion of the method, in general, leads to an equation for the ef-
fective or homogenized parameters of the concerned periodic
medium, which depends on the solution of certain cell prob-
lems, the so-called local problems. Here there are three such
problems. A relation among their solutions is found, which
is instrumental in deducing the above mentioned connec-
tions. Although the geometry of the periodic fibre-reinforced
medium is two dimensional, the fact that none of the charac-
teristic directions of the material properties is parallel to the
axis of geometric symmetry makes the studied problem three-
dimensional. It is also shown in two examples, that two and
three parameter families of the thermal conductivity tensor
can be related to the two or three measured values of certain

materials. The elementary method used in this paper to de-
rive universal relations may be applicable to other problems
where new results of this nature may be found. The universal
relations may be useful for checking numerical codes, exper-
imental data and the range of validity of certain approxima-
tions.

Appendix A

A periodic medium is considered which occupies a bounded
regionΩ ⊂ R3 with a smooth boundary∂Ω and diameterL.
A rapid variation of material properties over the small scalel
is taking place withinΩ, so thatε = l/L is a small parameter
andε << 1. For the sake of argument, a temperatureθ(ε) is
sought such that

− ∂
∂xi

[
kij (x/ε) ∂θ(ε)

∂xj

]
= f in Ω,

θ(ε) = 0 on ∂Ω,
(12)

wheref is the heat source,kij is the thermal conductivity
tensor, the summation convention is understood, where the
indices run from1 to 3. The material properties show the
dependence onε and they obey the symmetrykij = kji.

The method of asymptotic homogenization can be ap-
plied to find an asymptotic solution of Eq. (12). Due to the
rapidly oscillating properties, the temperature is assumed to
depend on two independent spatial variablesx andy = x/ε,
the so-called slow and fast variables, respectively, and the
method of two scales is used; the following ansatz is posed:

θ(ε) = θ(0)(x,y) + εθ(1)(x,y) + O(ε2) (13)

The substitution of Eq. (13) into the boundary-value prob-
lem in Eq. (12), the application of the chain rule of differen-
tiation and the comparison of similar powers ofε yields a
sequence of problems to seekθ(0)(x), which is found to de-
pend only onx, andθ(1). (For details, see, [21], 59–62). A
product solution is found forθ(1) as follows:

θ(1)(x,y) = pΘ(y)
∂θ(0)(x)

∂xp
, (14)

where the set ofp-functionspΘ(y), which depend only on
y, are the unique solution of the so-calledp-local problems,
denoted bypL, over the periodic cellY . For the case where
two materials of different properties are contained inY , for
which the temperature and heat flux across the common in-
terfaceΓ ⊂ Y are continuous, thep-local problem is

kij pΘ,ij = 0 in Y,

‖ pΘ ‖ = 0 on Γ,

‖ kij pΘ,jni ‖ = − ‖ kip ‖ ni on Γ,

〈pΘ〉 = 0, (15)

where the comma notation is used to denote differentiation
with respect to theyi coordinate,i.e., pΘ,i ≡ ∂pΘ/∂yi, the
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outward unit normal vector to the interfaceΓ is n, the double
bar notation defines the jump of the function across the inter-
faceΓ and the angular brackets represent the volume average
of the function over the cell.

The homogenized thermal conductivitesk̄ip = k̄pi are
then given by the expression

k̄ip = 〈kip + kij pΘ,j〉. (16)

It should be noted that the boundary value problem (12)

also describes phenomena related to dielectrics, electrical
conductivity and magnetic permeability [19].
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