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A periodic fibre-reinforced two phase material is considered here. The material properties of the constituents are anisotropic and may be
specified by either the thermal, electrical conductivity, dielectric or magnetic permeability tensor. The orientation of each of the characteristic
directions of the material is not parallel to the axis of geometric symmetry. The asymptotic homogenization method is used to study this
doubly periodic composite. The interface between fibres and matrix must conform with the periodicity, but otherwise is arbitrary and may
be disjoint in the periodic cell. A connection is found among the solutions of the three local problems that appear in the implementation of
the method. This relation is basic for the elementary derivation of three universal relations for this three dimensional scalar problem. Several
examples show how to relate the structure of the material tensor considered in this paper to that provided by the material data.

Keywords: Universal relations; asymptotic homogenization method; thermal and electrical conductivity; dielectric properties; magnetic
permeability.

Se considera un material pedico de dos fases reforzado por fibras. Las propiedades materiales de las componente$tsopaanys
pueden especificarse por el tensor, ya geaico, de conductividad &ttrica, de permeabilidad desitrica 0 magatica. La orientadin de

cada una de las direcciones cardstizas del material no es paralela al eje de simafeongtrica. Se usa el &iodo de homogeneizaci
asinbtica para estudiar este compuesto doblementédied. La intercara entre fibras y matriz debe cumplir con la periodicidad, pero por
lo demas es arbitraria y puede ser disjunta en la celdadm@. Se encuentra una coraxientre las soluciones de los tres problemas locales
que aparecen en la instrumentatidel nétodo. Esta reladi es lasica para la deriva@n elemental de tres relaciones universales para este
problema tridimensional escalar. Varios ejemplos muesivaroaelacionar la estructura del tensor material considerado en este trabajo con
los datos del material.

Descriptores:Relaciones universales;atodo de homogeneizaxi asinbtica; conductividadérmica y ekctrica; propiedades digttricas;
permeabilidad maggtica.

PACS: 65; 75; 77.84.L

1. Introduction for the effective coefficients, besides the symmetry consid-

) o ) erations of the latter. It was pointed out in the four papers
The asymptotic homogenization method is a useful mathesjeady mentioned that this new derivation of universal rela-

matical tool for dealing with partial differential equations that 45,5 may be useful to derive other new ones, which is indeed
have rapidly oscillating coefficients [1-2]. The presence ofihe case here, where the problem considered is the simplest
two characteristic lengthi(fast) andL (slow) in the ratio  yhat can be thought of. A related question is that of exact
¢ = I/L allows the use of the two-scale asymptotic methodygations, Nowadays the field of exact relations is plentiful.
whene is a small parameter. The original boundary valuéthe search for necessary and sufficient conditions for exact
problem is transformed into one with constant coefficients,g|ations is currently under way [14-17] using complicated
so-called effective or homogenized. An explicit formula is gepraic methods. The methods used here to obtain univer-
obtained for the coefficients, which depends on the periodigy) relations, however, are elementary. More references to

solution of certain cell problems (local). There are a few ex-gcent developments in composites can be found in Ref. 18.
act solutions of these local problems, some obtained very re-

cently [3-9]. Otherwise the main thrust of the implementa-2, Universal relations

tion of the method is numerical. (See references in Refs. 6

and 7]). New theoretical results within the frame of this A two-phase uniaxial reinforced material is considered here,
method were obtained in [5-9]. One result relates three soluwith parallel cylindrical fibres embedded in a matrix mate-
tions of the local problems. The other one is a new derivationial. Both media may have anisotropic properties. The cross-
of a series of universal relations which reproduce well knownsection of the fibres lies in the, zo-plane, none of the axes
results: those of Hill [10] and Dvorak [11] in elasticity and of the characteristic material properties directions coincides
Benveniste and Dvorak [12] and Schulgasser [13] in piezowith the fibre direction, which is taken as thecs axis. The
electricity. The equation that connects the solution of sevdibres are periodically distributed without overlapping in two
eral local problems is the key to derive the universal relationson-parallel directions in the; z,-plane. Either the square
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or hexagonal symmetry may be considered. Moreover, within
the periodic cell, the fibre cross-section shape has square or _ _ _ _
hexagonal symmetry and is otherwise arbitrary and it may be k21 + ka2 — (ka1 + kag) _ ka1 + kso — (ka1 + kso)
disjoint. kg — (ka3) k33 — (k33)

The overall i iodi i I kY + k3 I

properties of the above periodic medium are _ P11 12 1 (5)
sought by means of the well-known asymptotic homogeniza- I kg) |
tion method. Appendix A has a brief outline of the technique
leading to (A.4) and (A.5) which are the equations to be con-  another two universal relations with similar characteris-
sidered here at the outset. Then, it follows that, in terms ofics as Eq. (3). The knowledge of three of the properties can
the fast variabley, the appropiate periodic cefl (per unit  fix the other three. Note that the right hand side of Egs. (3)
length) is taken in thg, y2-plane so thal” = Y; U Ys with and (5) is the same. These relations were derived for a three-
Y1 NYs = 0, where the domairy; is occupied by the ma- dimensional case.
trix and its complemeny is filled up with the fibre, which
may be disjoint. The common interface betwen the matrix3 Relation to data
and the fibre is denoted Wy, and it is arbitrary as long as it
CO”fO(flfT;S W|th(2t)he symmetry. The thermal conductivity ten- anisotropic data are usually given as the characteristic (two
sorsk;;" andk;;” refer to the properties of the matrix and the or three) values of the material (see, for instance, Refs. 19
fibre, respectively. and 20). These values, which are dendt&d, K, andKss,
_ ) relate to the components of the tenggrof Sec. 2 by means

A connection among the solutions of the local problemsy¢ gimple expressions as will be shown below. The corre-
»L i (A.5) can now gasny beTfound. TAmong all possible gponding characteristic directions are given by the set of or-
tensors, let{;) = ki, andk{;’ = ki3, T = 1,2 (the  thogonal vectors:, ey, andes, respectively. None of these
properties relative to directior@z; andOxz> are the same). particular directions is parallel to the axis of geometric sym-
Then it is easy to get metry, theOz5 axis.

T T T
14571 O™ +,00) = K + 813 1367, () 4. Three- and two-parameter families
Relations among the overall material properties can ne
be obtained. Take the expression (A.5),isetl,p = 1,2, 3,
then

)?a) Let the thermal conductivity tenség; of the matrix be
isotropic and that of the fibre have the form, consistent with
the structure of Sec. 2,

ki = (k11 + k11101 + k12102 + k1310 3), (28) Eom 1
ki = (k12 + k11 201 + k12 202 + k13 203), (2b) m k 1], (6)

_ I 1 k
kiz= (ki + ki1 301 +ki2302+ki3303). (20)
where k, [, m are three nonzero parameters. This is a

. o three-parameter family. The characteristic values and direc-
The addition of (2a) and (2b), the substitution of (1) andijgns of (6) can easily be found. They are given by the ex-

the elimination of the common term with (2c) leads to pressions
_ _ K1 =k +21S_, 4.7a
ki + K1z — (ki +kg) |l KD+ 65 ] 3) H (4.72)
ki3 — (k13) IED ) Koo =k + 215, (4.7b)
. . - - _— K33 =k —m, 4.7c
a universal relation amonky 1, k1o andk;ys in terms of ma- 33 m ( )
terial properties contragt kg) + kg) | and|| kg) | and e =(5_,5_,1), (4.7d)
matrix and fibre area fractiorig, and V5, respectively since, e =(S4, 84, 1), (4.7¢)

say,

(k1z) = Viky) + Vak(d) 4) es =(—1,1,0), (4.7)

is the arithmetic or Voigt mean oxﬁ? Note that Eq. (3) was \yhere
derived without solving any local problem.
418 = m =+ (m? + 81%)'/2, (8)
Two similar expressions to Eq. (3) can similarly be de-
rived, which yields Moreover, the following simple expressions follow from
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Egs. (4, b, ¢): materials. The elementary method used in this paper to de-
rive universal relations may be applicable to other problems
k= (K1 + Koz + K33)/3, where new results of this nature may be found. The universal
m = (K11 + Koo — 2K33/3, _relations may be useful for checkiljg numerica! codes, exper-
imental data and the range of validity of certain approxima-
= [9(K11 — K22)2 tions.

— (K11 + Kog — 2K33)%] % /(6-2/%). (9)  Appendix A

Given the datak,, K2» and K33, two real solutions A periodic medium is considered which occupies a bounded

k,1,m are possible, whenever the radicand is positive. ThigegionQ C R* with a smooth boundar§< and diameter.
means that, for this composite, there exist two possible geA rapid variation of material properties over the small s¢ale

ometric directions (that of the fibre) for which the universal is taking place withirf2, so thate = [/ L is a small parameter
relations (3, 5) hold. ande << 1. For the sake of argument, a temperatf@ is

sought such that
(b) A two-parameter family is obtained from (6) setting

() .
m = 1, thus ~ o {kij (x/6) | = f i 9 (12)
6 = 0 on 09,

Ky = K-

where f is the heat source;; is the thermal conductivity
Koy = K -2, tensor, the summation convention is understood, where the
Kys = K -1, indices run froml to 3. The material properties show the

dependence onand they obey the symmetty; = k;;.

er = (—=1/2,—-1/2,1),

The method of asymptotic homogenization can be ap-
e = (1,1,0), plied to find an asymptotic solution of Eq. (12). Due to the
rapidly oscillating properties, the temperature is assumed to
depend on two independent spatial variablendy = x/e,

the so-called slow and fast variables, respectively, and the
method of two scales is used; the following ansatz is posed:

es = (—1,1,0). (10)

Also, it is easily obtained that

k (2K 11 + K33) /3,
I = (Kg — Ks3)/3. (11) 0 =09 (x,y) + 8V (x,y) + O(?) (13)

Many more examples of this type could be shown by con- The substitution of Eq. (13) into the boundary-value prob—
veniently choosing the elements bf; in accordance to the lemin Eq. (12), the application of the chain rule of differen-
limitations of Sec. 2. For the sake of brevity, the above extiation and the comparison of similar powers cofields a
amples suffice to show that there exists particular direction§equence of problems to se@k (x), which is found to de-
for which universal relations in three dimensions hold in thepend only onx, and§("). (For details, see, [21], 59-62). A

case of a fibre-reinforced composite. product solution is found fof*) as follows:
960 (x)
; ) —
5. Concluding remarks 0 (x,y) = »0(y) az, (14)

The method of asymptotic homogenization is used to give avhere the set op-functions,,©(y), which depend only on
simple derivation of three universal relations. The applicay, are the unique solution of the so-callgdocal problems,
tion of the method, in general, leads to an equation for the efdenoted by, L, over the periodic cell’. For the case where
fective or homogenized parameters of the concerned periodigvo materials of different properties are contained’infor
medium, which depends on the solution of certain cell probwhich the temperature and heat flux across the common in-
lems, the so-called local problems. Here there are three sudhrfacel’ C Y are continuous, thg-local problem is

problems. A relation among their solutions is found, which

is instrumental in deducing the above mentioned connec- kij pO45 = 0 in Y,

tions. Although the geometry of the periodic fibre-reinforced | ,©] = 0 on T,

medium is two dimensional, the fact that none of the charac-

teristic directions of the material properties is parallel to the | kij pO ni | = — | kipllni on T,

axis of geometric symmetry makes the studied problem three- (L,O) = 0, (15)

dimensional. It is also shown in two examples, that two and
three parameter families of the thermal conductivity tensowhere the comma notation is used to denote differentiation
can be related to the two or three measured values of certaimith respect to the; coordinatej.e., ,0 ; = 0,0/0y;, the
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outward unit normal vector to the interfafds n, the double also describes phenomena related to dielectrics, electrical
bar notation defines the jump of the function across the intereonductivity and magnetic permeability [19].

facel and the angular brackets represent the volume average

of the function over the cell.
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