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On Casimir forces for media with arbitrary dielectric properties
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We derive an expression for the Casimir force between slabs with arbitrary dielectric properties characterized by their reflection coefficients.
The formalism presented here is applicable to media with a local or a non-local dielectric response, an infinite or a finite width, inhomoge-
neous dissipative, etc. Our results reduce to the Lifshitz formula for the force between semi-infinite dielectric slabs by replacing the reflection
coefficients by the Fresnel amplitudes.
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Se presenta una dedugoipara la expreén de la fuerza de Casimir entre placas con propiedadescttiehs arbitrarias caracterizadas por
sus coeficientes de refledai. El formalismo que presentamos e€gido para medios con una respuestaédigica local, no local, placas
de ancho finito o semi-infinito, inhomégeos, disipativos, etc. Nuestros resultados se reducerdaralé de Lifshitz para la fuerza entre
placas digdctricas semi—infinitas substituyendo los coeficientes de reflepar las amplitudes de Fresnel.

Descriptores: Fuerzas de Casimir; digttricos; brmula de Lifshitz.

PACS: 12.20.D.s; 03.70.+k; 77.55.+f; 78.67.-n

1. Introduction ation reaction of the elementary atomic dipoles composing
the dielectric is balanced by the fluctuating vacuum field in
Even though Casimir1] predicted in 1948 an attractive force accordance with the fluctuation-dissipation theorem.
between perfectly conducting plates placed in quantum vac- ] ) o ] ]
uum, it is only in recent years that experimental studies of FOr & configuration of two semi-infinite slabs, with di-
Casimir forces have reached the necessary accuracy to test§IfClrc permitivitiese, ande,, separated by a gap of width
detail theoretical predictions. The first measurements wer& and permitivityes, the Lifshitz formula for force per unit

done by Derjaguiret al. [2] in 1951 using dielectric mate- a"€ais

rials. In the following decades, a number of experiments to 5 0o 0o

measure Casimir interactions between dielectric or conduct- F'(L) = _Tg/ dpr/ dff?’eg/g

ing materials were performed, however involving large rela- 2miet Sy 0

tive errors in the measured force8].[It was until 1997 that x [Gi(&,p) +Ga(&p) 7] ()

Lamoreaux 4] performed measurements with a precision

of the order of 5 % by using an electromechanical systen’{‘”th

based on a torsion balance. Other experiments were madeG,l(g p) = €351 + €1 €352 + €2P x e2pvaL/c _ 1 (2)
taking advantage of the sensitivity of atomic force micro- ’ €351 — €1D €352 — €2P ’
scopes achieving precisions close to 1% 7]. Additional — and

measurements have been made by Ghiah [8] using a mi-

cro torsional balance. This experiment is representative of the Go(&,p) = sitps2tp x e2épvesl/e _ ()
effects that Casimir forces have in micromechanical systems S1=PpPS—p
as was theoretically shown by Serry and Macl&y. Rppli- where¢ = Jw is an imaginary frequency; and sy, s, are

cations to nanostructures have also been considdfed 4].  defined in terms of the momenta parallel and perpendicular
This has boosted investigations in which the detailed propetto the slabst, and K2 = k? + ¢;(i€)&?/c?, respectively:
ties of the materials such as absorptivity, rugosity, or finiteKs = ,/esép/c andK7 , = e3€?s7 ,/c?. Lifshitz theory has
temperature effects are taken into account in the theoreticéleen succesfully employed in a number of experimental situ-
calculations of the Casimir forced . ations, and it yields the Casimir force for perfect conductors.
However, as pointed out by Barash and Ginzburp],[ it

The standard approach to study vacuum forces betwees not clear how to generalize the theory to more complex
imperfect conductors is the macroscopic theory proposed bgroblems, such as nonplanar surfaces, multilayer systems,
Lifshitz [14] in 1956 for semi-infinite dielectric materials. anisotropic media, etc. Thus, they proposed an alternative ap-
In this theory, the dissipative effects associated to the radiproach to Lifshitz formula. As a dissipative system does not
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posses well defined natural frequencies of oscillation, they X
introduced an auxiliary system in which the dielectric permi-
tivity depended only parametrically on the frequency. This d d
procedure enabled them to calculate the free energy of the 1 2
field as a sum over allowed states of the system. In turn, the
force per unit area was obtained as the derivative of the free
energy. Kats32] re-elaborated the formalism of Barash and &4
Ginzburg by writing the dispersion law for surface electro-
magnetic waves in terms of the reflection amplitudesnd

rP of the media fors andp polarizations. Approximating the
reflection coefficients in terms of the frequency and wavevec-
tor dependent surface impedar€gy, Q) he was able to ob-
tain approximate non-local corrections to the Casimir force
for good conductors. Kats remarked that dielectrics materi- z=0 z=L
als. r.equwed alternative formulations, as_the|r reflection CO_FIGURE 1. The system consists of two parallel slabs characterized
gﬁlClentS CannOt, b,e expressed merely in terms of SurfaCSy their thicknessl; amdd» and a dielectric functiol; ande,.
impedances. This is not necessarily correct, as an exact re-

lation between surface impedance and reflection coefficientgje want to describe the electromagnetic field only within
may indeed be introduced for arbitrary systen2s][Jaekel  yacuum, so we hide all the details of the field-matter inter-
and Reynaud6] also rederived Lifshitz formula in terms of action within the slabs in their reflection amplitudeisand
reflection coefficients for partially transmitting mirrors. Their ;2 (; = 1,2). The reflection coefficients® are determined

expression reduces to that obtained by Barash and Ginzbugg, the generalized surface impedanZes(a = s, p) through
[15]. However, their derivation is not valid when dissipation za _ ga
« a — “0

= (4)

is included. r¢ ===
CZe+

Other approaches have been used to study the vacuuhtere Z;' is definedas the quotients)) /H2, of the compo-
fluctuations in the presence of dielectrics618]. More re-  nentsEZ, andH7, of the a-polarized electric and magnetic
cently, the problem of quantization in absorbing media andields evaluated at the-th interface for outgoing boundary
its applications to Casimir forces has been considered bgonditions beyond,, taken along appropriately chosen di-
Kupiszewska [9,20] and also by Matloob 1] in the one-  rections parallel to the surfac&j = ¢/k and Z§ = k/q
dimensional case. Interestingly enough, when temperaturare the surface impedances of vacugin= (@, +£k) are the
effects are neglected the expression for the Casimir force imacuum wavevectors with projectignparallel to the surface

absorbing and non-absorbing materials has the same fungnd componentsk normal to the surface, = @ =w/e,

tional form. This fact suggests that it is possible to obtainyherew is the frequency and the speed of light. The sign
the Casimir force between two dispersive and absorbing slalist 1 is chosen so tha’, propagates (or decays) asin-
without the need of quantizing in an absorbing medium agreases. Upon each reflectiap,andw are conserved while
was shown by Reynauet al. [26] using a scattering matrix  the sign of+k is reversed. Notice that Eq. (# exactand
formalism. that no approximation is involved by the use of our general-
o ) o ized surface impedances, unlike other works, P4] that use
Within the framework of the above discussion, it seemsyp jnappropiate definition of surface impedance. It should
valuable to present an alternative, very simple derivation ofe noticed that for local homogeneous semiinfinite media,
the Casimir force, valid for materials with arbitrary dielectric 78 = q/kq and ZP = k,/(eqaq), Wherek, is the compo-
properties. This is the purpose of the present paper. nent of the wavevector normal to the surface within medium
a with local dielectric responseg, (w), and Eqg. (4) yields the
well known Fresnel amplitudes. However, Eq. (4) is much

2. Formalism more general 75].
The density of states within vacuum may be obtained
Consider two slabs: = 1,2 parallel to thezy plane from the Green'’s functions of the system. To this end, we

within free space and separated by a distahcalong the study first the case of-polarized waves choosing — z as
z-direction, with inner boundaries af = 0 andz, = L as  the plane of incidence. With that choicg, = (0,E,,0),
shown in Fig. 1. We assume that the slabs are non-chirald = (B,,0, B.), 7+ = (Q,0,+k) and the boundary con-
translational invariant and isotropic within the plane, but  ditions for £ becomeiqE,(07) = —Z;0.E,(0%), and
otherwise they may be arbitrary; they could be identical tojqE, (L~) = Z50.E,(L~), with 9, = 9/0z. The electric
each other or different, they might have a local or a non-locaGreen’s function is

dielectric response, an infinite or a finite width, they may be EX(22)E> (25)

opaque or transparent, dissipative, inhomogeneous, etc. Gra(z,2') = %, (%)
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wherez. andz- are the smaller and larger efandz’ re-  force. Furthermore, simple substitution of the Fresnel ampli-

spectively, tudes
Es(z) = e~ 4 pseths (6) k- k,
and o = k+kq (1)
Ey> (Z) _ eik(z—L) + rge—ik(z—L) (7) , k;a _ eak
are solutions of the scalar 1D wave equation with wavenum- o = ko + €ak’ (12)

berk obeying the appropriate boundary conditions at 0™
and L~ respectively, andV is their Wronskian. Analo-
gously, B obeysigB,(01) = —(Z)29.B,(07)/Z3, and
iqgB,(L™) = (Z§)?0,B,(L™)/Z3, so that the magnetic _
Green’s function is obtained by replacidg, — B, and 3. Conclusions
rs — —rsin Egs. (5)-(7). We do not considét, separately,
as it is simply proportional td&, .

For eachy, the local density of states per ukit is given
by [27]:

and manipulation of the integration contours in Eq. (10) leads
to the formula of Lifshitz [Eq.(1)].

We have derived a general expression for Casimir forces be-
tween slabs with arbitrary dielectric properties characterized
by the reflection coefficients of the material. This procedure
avoids complications related to the quantization of the elec-
tromagnetic field in dispersive media. The expression we
obtain for the Casimir force is convenient for calculations
since the reflection coefficients can be obtained straightfor-
wardly in theoretical computations or through experimental
so that by substituting Egs. (5)-(7) and its magnetic anagtudies._ Our approach isf based on_ th(_a exact definitions _of
logues we obtain surface impedance and yields the Lifshitz formula for semi-
infinite slabs when the reflection coefficients are replaced by

1
Pi?(z) = _glm (chE2 (Z,Z) + chB2 (Z,Z)) ’

(k=k+1i0T) (8)

‘ 1 1+ rngeQiI}L the Fresnel amplitudes. This contradicts the results obtained
Pr2 = P Re PR (9) by Mostepanenko and Truno2q] and also by Bezerrat al.
—1'2

[24] that claim that the use of surface impedances is only
an approximation valid for small transverse wave ve@or
However, this conclusion arises from considering an approx-
imate expression of the surface impedance. In our work
this limitation is not present, since we do take into account
that the surface impedances for the p and s polarized waves
are different. Therefore, the results that we obtain are valid
for any value of the wave vectd@®. The expresion for the
Casimir force in Eqg. (10) can be used to calculate accurately
the force between non-homogeneous systems. In fact, cur-
rent experimental setups for measuring Casimir forces con-
sist of two metallic surfaces with a high reflectivity in the
frequency range of interest ~ ¢/a, coated by thin{ 8

nm) Au/Pd layer to avoid Al oxidation. The analysis of the
vacuum on the other side of the slab, obtained by substitut?r);?]i:r;rzr;tg %?t?hls Ki;];?orlrr;ae)?e?yv?rln\ilclz?ngS{c?v?/;n?r?ésu?e tzfe

o . o B
I'Pr?er?[o:al ?o??gveeftii;e;reézl?sg ;E?a?#; ddgecstfbr;;ctif]. h éhe Lifshitz expression for semi-infinite homogeneous me-
contributions frorr)n cither side2§], that is: y 9 Nia with semi-empirical corrections for the presence of that

' ' layer. However, within our formalism, such assumptions are

he [ 72 unecessary. In a future work, we will present exact results for
/ dQQ / dk—
0 >0 q

independent ok. The densityp}, corresponding te po-
larization may be derived similarly, and is simply given by
Eq. (9) after replacing all the superscripts- p. Finally, the
total density of states is;> = pj. + p)-.

A photon in a state characterized byQ andk? has mo-
mentum+hk and moves with velocitytck/q along thez
direction, so that its contribution to the momentum flux is
hek? /q. Multiplying this by the photon occupation number,
integrating overt? with the weight functiorp$; and adding
the contributions from all values af = s,p and @, with
the usual replacemetzé .. — A2 [QdQ . .., we ob-
tain the momentum flux from the vacuum gap into slab 2.
There is a similar contribution coming from the semiinfinite

(L) =Ag Casimir forces between heterostructured media, generalizing
our previous one-dimensional analysit].
rieT§62ikL ,r,frge%kL

xRe[ ] . (10)
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