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The multipole moments of an electrostatic or magnetostatic field and the components of the field itself are expressed in terms of two-
component spinor and of spin-weighted spherical harmonics, obtaining the correspondence between the Cartesian and spherical components.
It is shown that the2l-pole moment of a charge or current distribution definesl, not necessarily distinct, directions which determine the
angular dependence of the multipole field.
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Los momentos multipolares de un campo electrostático o magnetostático y las componentes del campo mismo se expresan en términos de
espinores de dos componentes y de armónicos esf́ericos con peso de espı́n, obteníendose la correspondencia entre las componentes cartesianas
y esf́ericas. Se muestra que el momento2l-polar de una distribución de carga o de corriente definel direcciones, no necesariamente distintas,
las cuales determinan la dependencia angular del campo multipolar.
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1. Introduction
In the standard treatment of the multipole expansion of the
electrostatic or the magnetostatic field two alternative ap-
proaches are followed, expanding the inverse of the distance
between the source point and the field point either in terms of
their Cartesian coordinates [1–4] or of the spherical harmon-
ics evaluated at the directions of these points [1,2,5]. The
first procedure is more elementary, but the expressions for
the terms in the multipole expansion after the dipole or the
quadrupole term become very involved and even the counting
of the independent components of the multipole moments is
somewhat complicated (see,e.g., Refs. 1, 4). On the other
hand, the use of the spherical harmonics allows one to write
down easily all the terms of the multipole expansion.

The aim of this paper is to show explicitly the equivalence
of these two approaches making use of the two-component
spinor formalism, obtaining the correspondence between the
Cartesian and the spherical components of the multipole mo-
ments. In Sec. 2 we give the basic notions about the two-
component spinor formalism and the spin-weighted spherical
harmonics. In Sec. 3 the multipole expansion of the magne-
tostatic field is considered, expressing the field and the multi-
pole moments in terms of spin-weighted spherical harmonics.
It is shown that the2l-pole moment of a bounded current dis-
tribution definesl (not necessarily distinct) directions in the
three-dimensional space. In Sec. 4 a similar treatment for the
electrostatic field is given.

2. The spinor equivalent of a tensor and the
spherical harmonics

The two-component spinor formalism in Euclidean three-
dimensional space appears in the study of the spin of the elec-
tron in non-relativistic quantum mechanics. The components

of a (one-index) spinor will be denoted by symbols likeψA

(A,B, . . . = 1, 2) and the spinor indices will be lowered or
raised according to the rules

ψA = εABψB and ψA = −εABψB , (1)

where

(εAB) =
(

0 1
−1 0

)
= (εAB). (2)

Here and in what follows there is implicit sum over repeated
indices. The mate of the spinorψA is defined by

ψ̂A = ψA or ψ̂A = −ψA, (3)

where the bar denotes complex conjugation; thus,

ψAψ̂A = |ψ1|2 + |ψ2|2 ≥ 0.

A symmetric two-index spinor,vAB = vBA, corresponds to
a (possibly complex) vector with Cartesian componentsvi

(i, j, . . . = 1, 2, 3) given by

vi = − 1√
2
σi

ABvAB , (4)

where the connection symbolsσiAB are complex constants
such that

σiAB = σiBA (5)

and
σiABσj

AB = −2δij . (6)

Choosing the connection symbols as

(σ1AB) =
(

1 0
0 −1

)
, (σ2AB) =

(
i 0
0 i

)
,

(σ3AB) =
(

0 −1
−1 0

)
, (7)
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one finds that
σiAB = −σi

AB , (8)

therefore, a symmetric two-index spinorvAB corresponds to
a real vector if and only ifvAB = −vAB .

From Eq. (6) it follows that

σi
ABσiCD = −(εACεBD + εADεBC) (9)

(the tensor indices are raised or lowered by means ofδij and
δij), hence Eq. (4) is equivalent to

vAB =
1√
2
σi

ABvi. (10)

Thus, according to Eqs. (7) and (10), the components of the
spinor equivalent of a vector are given in terms of its Carte-
sian components by

v11 =
1√
2
(vx + ivy), v12 = − 1√

2
vz,

v22 = − 1√
2
(vx − ivy). (11)

In general, the spinor equivalent of a tensortij···k is defined
by

tABCD···EF =
1√
2
σi

AB
1√
2
σj

CD · · · 1√
2
σk

EF tij···k. (12)

Then one finds thattABCD···EF is totally symmetric if and
only if tij···k is symmetric and tracefree [6,7].

Given a one-index spinor fieldψA one can construct the
real vector field

Ri = −σiABψAψ̂B (13)

and the complex vector field

Mi = σiABψAψB , (14)

which, according to Eq. (9), satisfy

RiR
i = −(εACεBD + εADεBC)ψAψ̂BψC ψ̂D

= (ψAψ̂A)2,

MiM
i = (εACεBD + εADεBC)ψ̂Aψ̂BψCψD

= 2(ψAψ̂A)2,

and, similarly,RiM
i = 0, MiM

i = 0; hence,Ri, Re Mi,
Im Mi are orthogonal to each other and have the magnitude
ψAψ̂A.

In what follows we will make use of the spinor fieldoA,
with components

(
o1

o2

)
=

(
e−iφ/2 cos(θ/2)
eiφ/2 sin(θ/2)

)
, (15)

whereθ andφ are the usual polar and azimuth angles asso-
ciated with the spherical coordinates. The spinor fieldoA

satisfiesoAôA = 1 and the three mutually orthogonal vec-
tors defined byoA form the orthonormal basis,{er, eθ, eφ},
induced by the spherical coordinatesr, θ, φ, i.e.,

(er)j = −σjABoAôB , (eθ+ieφ)j = σjABoAoB . (16)

Since the spherical harmonics of orderl are of the form
cij···m(xi/r)(xj/r) · · · (xm/r), where thecij···m are con-
stants withl indices, symmetric and tracefree, thexi are
Cartesian coordinates andr2 = (x1)2 + (x2)2 + (x3)2

(see, e.g., Ref. 8), from Eq. (16) it follows that
the spherical harmonics of orderl can be written as
cABCD···MNoAôBoC ôD · · · oM ôN , where the coefficients
cABCD···MN are constants totally symmetric in their2l
spinor indices [6,7]. Explicitly, the spherical harmonics are
given by

Ylm = (−1)m (2l)!
l!

[
2l + 1

4π

1
(l + m)!(l −m)!

]1/2

×
(l−m) 1’s, (l+m) 2’s︷ ︸︸ ︷

o(1o1 · · · o1︸ ︷︷ ︸
l

ô1ô2 · · · ô2)︸ ︷︷ ︸
l

, (17)

where the parenthesis denotes symmetrization on the indices
enclosed (e.g., M(ABC) = 1

6 (MABC + MBCA + MCAB +
MACB + MCBA + MBAC)). Since the number ofoA’s and
of ôA’s appearing in Eq. (17) coincide, the spherical harmon-
ics (17) are invariant under the transformation

oA 7→ eiα/2oA (18)

(which implies that̂oA 7→ e−iα/2ôA). A quantityη has spin
weight s if under the transformation in Eq. (18) transforms
according toη 7→ eisαη. Thus, the ordinary spherical har-
monics have spin weight 0.

The spin-weighted spherical harmonics, for an integral
spin weights, can be defined by [9]

sYjm =





[
(j−s)!
(j+s)!

]1/2

ðs Yjm, if 0 ≤ s ≤ j,

(19)

(−1)s
[

(j+s)!
(j−s)!

]1/2

ð−s
Yjm, if − j ≤ s ≤ 0,

where the operatorsð andð, acting on a function with spin
weights are defined by

ðη = −
(

∂θ +
i

sin θ
∂φ − s cot θ

)
η

= − sins θ
(
∂θ + i

sin θ ∂φ

)
(η sin−s θ),

ðη = −
(

∂θ − i

sin θ
∂φ + s cot θ

)
η

= − sin−s θ
(
∂θ − i

sin θ∂φ

)
(η sins θ),

(20)

thusYjm = 0Yjm.

The operatorsð andð appear in the usual vector operators
in spherical coordinates
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∇f = (∂rf) er − 1
2r
ðf (eθ + ieφ)− 1

2r
ðf (eθ − ieφ), (21)

∇ · F = −
√

2
r2

∂r(r2F0) +
1√
2 r

(ðF−1 − ðF+1), (22)

∇× F =
i√
2 r

(ðF−1 + ðF+1) er +
i√
2 r

[
∂r(rF−1) + ðF0

]
(eθ + ieφ) +

i√
2 r

[
∂r(rF+1)− ðF0

]
(eθ − ieφ), (23)

where

F0 ≡ − 1√
2

F · er, F±1 ≡ ± 1√
2

F · (eθ ± ieφ). (24)

Owing to Eqs. (9) and (16), these definitions are equivalent
to F0 = FABoAôB , F1 = FABoAoB , F−1 = FAB ôAôB ,
whereFAB is the spinor equivalent of the vector fieldF;
hence, the componentFs (s = 0,±1) has spin weights. In
terms of its spin-weighted components (24), a vector field can
be written as

F = −
√

2 F0 er − 1√
2
F−1(eθ + ieφ)

+
1√
2
F+1(eθ − ieφ). (25)

Equations (19) imply that

ð sYjm = [j(j + 1)− s(s + 1)]1/2
s+1Yjm,

ð sYjm = −[j(j + 1)− s(s− 1)]1/2
s−1Yjm.

(26)

Furthermore, any function with spin weights can be ex-
panded in a series in the spin-weighted spherical harmon-
ics with spin weights and, for a fixed value ofs, the spin-
weighted spherical harmonics are orthonormal [9,7]

∫ 2π

0

∫ π

0
sYjm sYj′m′ sin θdθdφ = δjj′δmm′ . (27)

The spin-weighted spherical harmonics,sYjm, can also
be expressed in terms ofo andô as [6,7]

sYjm = (−1)m

[
2j + 1

4π

(2j)!
(j + m)!(j −m)!

× (2j)!
(j + s)!(j − s)!

]1/2
(j−m) 1’s, (j+m) 2’s︷ ︸︸ ︷

o(1o1 · · · o1︸ ︷︷ ︸
j+s

ô1ô2 · · · ô2)︸ ︷︷ ︸
j−s

. (28)

This expression applies also whens is a half-integer with

j = 0, 1/2, 1, . . . ,

m = −j,−j + 1, . . . , j,

s = −j,−j + 1, . . . , j

and shows thatsYjm has spin weights.

3. Multipole expansion of the magnetostatic
field

The magnetostatic field in vacuum obeys the equations

∇×B =
4π

c
J, ∇ ·B = 0, (29)

whereJ is the current density. By combining Eqs. (29) one
finds that

∇2(r ·B) = −4π

c
r · ∇ × J =

4π

c
∇ · (r× J) (30)

(cf. Ref. 1, Eq. (16.86)); hence,

r ·B(r) = −1
c

∫ ∇′ · (r′ × J(r′))
|r− r′| dv′

and assuming that the pointr is outside a sphere enclosing
the sources,

r ·B(r) =− 1
c

∞∑

l=0

l∑

m=−l

4π

2l + 1
Ylm(θ, φ)

rl+1

×
∫

r′lYlm(θ′, φ′)∇′ · (r′ × J(r′)) dv′

=
1
c

∑

l,m

4π

2l + 1
Ylm(θ, φ)

rl+1

×
∫

r′ × J(r′) · ∇′(r′lYlm(θ′, φ′)) dv′. (31)

Thus,

er ·B =
∑

l,m

4π

2l + 1
alm

Ylm(θ, φ)
rl+2

, (32)

where, making use of Eqs. (21) and (26),

alm =
1
c

∫
r× J(r) · ∇(rlYlm(θ, φ)) dv

=− 1
c

∫
rlJ(r) · r×∇Ylm(θ, φ) dv

=
1
2c

∫
rlJ(r) · er × [ðYlm (eθ + ieφ)

+ ðYlm (eθ − ieφ)] dv

=

√
l(l + 1)√

2ic

∫
rl(1Ylm J+1 − −1Ylm J−1) dv (33)
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(cf. Ref. 5, Eq. (41.e)). SinceY00 is a constant (or, equiva-
lently,±1Y00 = 0), we havea00 = 0. Furthermore, from the
relationYlm = (−1)mYl,−m, it follows that

alm = (−1)mal,−m.

Using Eq. (25) we find thatr × J = (ir/
√

2)[J−1(eθ +
ieφ) + J+1(eθ − ieφ)], therefore, the spinor equivalent of
r× J is given by

(r× J)AB = ir(J+1ô
AôB − J−1o

AoB),

and making use of Eq. (28) we see that, forl ≥ 1, the (com-
plex conjugates of the) multipole coefficients (33) can also be
written as

alm =

√
l(l + 1)√

2 ic

∫
rl(1Ylm J−1 − −1Ylm J+1) dv

=
(−1)m(2l)!√
2 ic(l − 1)!

√
2l + 1

4π

1
(l + m)!(l −m)!

∫
rl[J−1

(l−m) 1’s, (l+m) 2’s︷ ︸︸ ︷
o(1o1 · · · o1︸ ︷︷ ︸

l+1

ô1ô2 · · · ô2)︸ ︷︷ ︸
l−1

−J+1

(l−m) 1’s, (l+m) 2’s︷ ︸︸ ︷
o(1o1 · · · o1︸ ︷︷ ︸

l−1

ô1ô2 · · · ô2)︸ ︷︷ ︸
l+1

] dv

=
(−1)m(2l)!√
2 c(l − 1)!

√
2l + 1

4π

1
(l + m)!(l −m)!

∫
rl−1(r× J)

(l−m) 1’s, (l+m) 2’s︷ ︸︸ ︷
(11 o1 · · · o2︸ ︷︷ ︸

l−1

ô2 · · · ô2)︸ ︷︷ ︸
l−1

dv. (34)

Since
√

2 ro(AôB) is the spinor equivalent ofr, this last ex-
pression shows that the coefficientsalm are proportional to
the components of the spinor equivalent of the tracefree sym-
metric part of

∫
(r× J)ixjxk · · ·xm dv

(cf. Ref. 4, Eq. (78)).
By virtue of the completeness of the spin-weighted spher-

ical harmonics, the remaining components of the magnetic
induction can be expressed in the form

B±1(r) =
∑

l,m

f
(±)
lm (r)±1Ylm(θ, φ), (35)

for some functionsf (±)
lm . Since∇ · B = 0, making use of

Eqs. (22), (26), (32), and (35) one finds that

f
(−)
lm (r) + f

(+)
lm (r) =

√
2l

l + 1
4π

2l + 1
alm

rl+2
.

Similarly, since∇ × B = 0 outside the sources, from
Eqs. (23) and (35) one obtainsf

(−)
lm (r)−f

(+)
lm (r) = 0. Hence,

f
(±)
lm (r) =

√
l

2(l + 1)
4π

2l + 1
alm

rl+2
. (36)

Thus,

B =
∑

l,m

4π

2l + 1
alm

rl+2

[
Ylmer − 1

2

√
l

l + 1

× −1Ylm(eθ + ieφ) +
1
2

√
l

l + 1 1Ylm(eθ − ieφ)

]
. (37)

Making use of Eqs. (23) and (26) one finds that the field in
Eq. (37) can be written in the formB = ∇×A, with

A =
∑

l,m

4π

2l + 1
alm

rl+1

i

2
√

l(l + 1)

×[−1Ylm(eθ + ieφ) + 1Ylm(eθ − ieφ)], (38)

which, in turn, can be expressed asA = r×∇ψ, with

ψ = −
∑

l,m

4π

2l + 1
alm

l(l + 1)
Ylm

rl+1
,

which is a solution of the Laplace equation. Alternatively, the
field (37) can be written in terms of a scalar potential,ϕM, in
the formB = −∇ϕM, with

ϕM =
∑

l,m

4π

2l + 1
alm

l + 1
Ylm

rl+1
, (39)

which also satisfies the Laplace equation.

The components of the spinor equivalent of the vector
field (37) are [see Eqs. (16)]

BCD =
∑

l,m

4π

2l + 1
alm√
2 rl+2

[
2Ylmo(C ôD)

+

√
l

l + 1 −1YlmoCoD +

√
l

l + 1 1YlmôC ôD

]

or, equivalently, making use of Eq. (28)
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BCD =
∑

l,m

[
4π

2l + 1
1

(l + m)!(l −m)!

]1/2 (−1)m
√

2 (2l + 1)!
(l + 1)!

alm

rl+2
o(CoD

(l−m) 1’s, (l+m) 2’s︷ ︸︸ ︷
o1 · · · o2ô2 · · · ô2)︸ ︷︷ ︸

(l+1) o’s, (l+1) bo’s

, (40)

(cf. Ref. 4, Eq. (72)). Hence, owing to Eqs. (11) and (17), the Cartesian components ofB are given by

Bx + iBy =
√

2 B22 = −
∑

l,m

4π

2l + 1

[
2l + 1
2l + 3

(l + m + 2)(l + m + 1)
]1/2

alm

l + 1
Yl+1,m+1

rl+2
,

Bz =
√

2 B12 =
∑

l,m

4π

2l + 1

[
2l + 1
2l + 3

(l + m + 1)(l −m + 1)
]1/2

alm

l + 1
Yl+1,m

rl+2
, (41)

Bx − iBy = −
√

2B11 =
∑

l,m

4π

2l + 1

[
2l + 1
2l + 3

(l −m + 2)(l −m + 1)
]1/2

alm

l + 1
Yl+1,m−1

rl+2
.

These expressions show explicitly that the Cartesian compo-
nents ofB satisfy the Laplace equation, which was to be ex-
pected since Eqs. (29) imply that, outside the sources, the
magnetic induction (and, hence, each Cartesian component
of B) satisfies the Laplace equation.

Under a rotation about the origin, each point of the space,
r, is transformed into a pointr′ = R(r), whereR is an
orthogonal linear transformation, and any scalar function,
f , is transformed into the functionRf , with (Rf)(r) ≡
f(R−1(r)); thus, the scalar potentialϕM is transformed into

RϕM =
∑

l,m

4π

2l + 1
alm

l + 1
RYlm

rl+1
,

sincer is invariant under the rotations about the origin. On
the other hand,

RYlm =
l∑

m′=−l

Dl
m′m(R)Ylm′ ,

where theDl
m′m are the WignerD functions (see,e.g., Refs.

10, 11); hence, under a rotationR, the multipole momentalm

is replaced by
l∑

m′=−l

Dl
mm′(R) alm′ . (42)

The integrals

mAB···L≡
∫

rl−1(r× J)(AB oC · · · oD︸ ︷︷ ︸
l−1

ôE · · · ôL)︸ ︷︷ ︸
l−1

dv. (43)

appearing in Eq. (34) are the components of a totally symmet-
ric 2l-index spinor; therefore there exist2l one-index spinors
αA, βA, . . . ,λA (the principal spinors ofmAB···L) such that
mAB···L = α(AβB · · ·λL) and sincemAB···L is the spinor
equivalent of a real tensor (which amounts to the conditions
alm = (−1)mal,−m), mAB···L must be of the form [12,7]

mAB···L = α(Aα̂BβC β̂D · · · ηK η̂L), (44)

which means that the2l-pole moment of a given current
distribution is determined byl real vectors,a, b, . . . , h

(the tensor equivalents of
√

2 α(Aα̂B),
√

2 β(Aβ̂B), . . . ,√
2 η(Aη̂B)) in such a way that the symmetric tracefree part

of
∫

(r×J)ixjxk · · ·xm dv is the symmetric tracefree part of
aibj · · ·hm.

The directions ofa, b, . . . ,h need not be different; if the
productαAα̂B appearsp times in the right-hand side of Eq.
(44) then by means of a rotation one can align the newz-axis
with the vector equivalent ofα(Aα̂B) (i.e., αA is proportional
to δA

1 after the rotation), then, with respect to the new axes,

all = al,l−1 = · · · = al,l−p+1 = 0 (45)

(henceal,−l, al,−l+1, . . . ,al,−l+p−1 also vanish). In the ex-
treme case wherep = l, only al0 is different from zero and
the corresponding multipole field is axially symmetric. Thus,
by means of a rotation (42) one can eliminate at least two,
and at most2l, 2l-pole momentsalm.

For instance, for any given bounded current distribution
there exist two vectors,a, b, such that

∫
(r× J)(ixj) dv = a(ibj) − 1

3akbkδij . (46)

One can write down analogous expressions forl ≥ 3, but
they become highly involved, by contrast with the spinor ex-
pression (44).

The orthogonality of the spin-weighted spherical har-
monics is useful if the expansion ofJ±1(r) in terms of the
spin-weighted spherical harmonics of the corresponding spin
weight is known. For example, the current density of a rotat-
ing uniformly charged sphere is of the form

J = g(r) sin θ eφ,

for some functiong(r); therefore,

J±1 = (±i/
√

2)g(r) sin θ.

Writing sin θ in terms ofsin(θ/2) andcos(θ/2) we obtain

sin θ = 2 sin(θ/2) cos(θ/2) = 2o1o2 = −2ô1ô2
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(see Eqs. (15) and (3)) which, according to Eq. (28), is pro-
portional to1Y10 or to−1Y10. Thus, from Eqs. (33) and (27)
one finds that theonlynonvanishing multipole moment isa10,
hence the exterior field is exactly that of an ideal point dipole.
Similarly, the field produced by a current distribution whose
angular dependence is given by spin-weighted spherical har-
monics with a single value ofl is a2l-pole field.

4. Multipole expansion of the electrostatic field

The basic equations for the electrostatic field in vacuum are

∇×E = 0, ∇ ·E = 4πρ, (47)

whereρ is the electric charge density. The first of these equa-
tions implies the existence of a scalar potential,ϕ, such that
E = −∇ϕ, which, therefore, satisfies the Poisson equation

∇2ϕ = −4πρ. (48)

Hence,

ϕ(r) =
∫

ρ(r′)
|r− r′|dv′

and, ifr is outside a sphere enclosing the charges,

ϕ(r) =
∑

l,m

4π

2l + 1
Ylm(θ, φ)

rl+1

∫
r′lρ(r′)Ylm(θ′, φ′) dv′

=
∑

l,m

4π

2l + 1
blm

Ylm(θ, φ)
rl+1

, (49)

with
blm ≡

∫
rlρ(r)Ylm(θ, φ) dv. (50)

Note thatblm = (−1)mbl,−m but in the present case the
monopole moment,b00, need not be equal to zero.

Substituting Eq. (17) into Eq. (50) we get the equivalent
expression for the electric moments

blm = (−1)m (2l)!
l!

[
2l + 1

4π

1
(l + m)!(l −m)!

]1/2

×
∫

ρ(r)rl

(l−m) 1’s, (l+m) 2’s︷ ︸︸ ︷
o(1o1 · · · o1︸ ︷︷ ︸

l

ô1ô2 · · · ô2)︸ ︷︷ ︸
l

dv.

Recalling that
√

2 ro(AôB) is the spinor equivalent ofr, one
finds that the momentsblm are proportional to the compo-
nents of the spinor equivalent of the tracefree part of

∫
ρxixj · · ·xm dv.

By comparing Eqs. (39) and (49) it follows that the analogs
of Eqs. (37), (40), and (41) are obtained by replacingalm by
(l + 1)blm in those equations; in this manner we find that the
spherical components of the electrostatic field are given by

E =
∑

l,m

4π

2l + 1
(l + 1)blm

rl+2

[
Ylmer − 1

2

√
l

l + 1 −1Ylm(eθ + ieφ) +
1
2

√
l

l + 1 1Ylm(eθ − ieφ)

]
(51)

and the components of its spinor equivalent are

EAB =
∑

l,m

[
4π

2l + 1
1

(l + m)!(l −m)!

]1/2 (−1)m
√

2 (2l + 1)!
l!

blm

rl+2
o(AoB

(l−m) 1’s, (l+m) 2’s︷ ︸︸ ︷
o1 · · · o2ô2 · · · ô2)︸ ︷︷ ︸

(l+1) o’s, (l+1) bo’s

. (52)

Therefore,

Ex + iEy = −
∑

l,m

4π

2l + 1

[
2l + 1
2l + 3

(l + m + 2)(l + m + 1)
]1/2

blm
Yl+1,m+1

rl+2
,

Ez =
∑

l,m

4π

2l + 1

[
2l + 1
2l + 3

(l + m + 1)(l −m + 1)
]1/2

blm
Yl+1,m

rl+2
, (53)

Ex − iEy =
∑

l,m

4π

2l + 1

[
2l + 1
2l + 3

(l −m + 2)(l −m + 1)
]1/2

blm
Yl+1,m−1

rl+2
.
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Since the electrostatic potential is a scalar function, from
Eq. (49) it follows that under rotations the multipole moments
blm transform in the same manner as the multipole moments
alm (see Eq. (42)). The coefficientsblm are essentially the
components of the totally symmetric2l-index spinor

∫
ρ(r)rl o(A · · · oD︸ ︷︷ ︸

l

ôE · · · ôL)︸ ︷︷ ︸
l

dv

and therefore there existl one-index spinors,αA, βA, . . . ,
ηA, such that∫

ρ(r)rl o(A · · · oD︸ ︷︷ ︸
l

ôE · · · ôL)︸ ︷︷ ︸
l

dv,

which means that the tracefree part of
∫

ρxixj · · ·xm dv is
equal to the symmetric tracefree part ofaibj · · ·hm, where

a, b, . . . , h are the vector equivalents of
√

2 α(Aα̂B),√
2 β(Aβ̂B), . . . ,

√
2 η(Aη̂B). Aligning thez-axis witha one

obtains

bll = bl,l−1 = · · · = bl,l−p+1 = 0,

wherep is the number of times that the direction ofa is re-
peated among the directions ofa, b, . . . ,h. Hence, by means
of a suitable rotation, one can eliminate2p multipole mo-
ments.

It may be remarked that the expressions for the static
fields derived above (e.g., Eqs. (32), (37), (41), (51), and (52))
can be employed directly in the solution of boundary value
problems (e.g., if the field is known on the points of thez-axis
one can find the multipole moments making use of Eqs. (37)
or (51)).

1. J. D. Jackson,Classical Electrodynamics, 2nd ed. (Wiley, New
York, 1975).

2. L. Eyges, The Classical Electromagnetic Field(Addison-
Wesley, Reading, Mass. 1972, reprinted by Dover 1980).

3. J. R. Reitz, F. J. Milford and R.W. Christy,Foundations of Elec-
tromagnetic Theory, 4th ed. (Addison-Wesley, Reading, Mass.,
1993).

4. P. Kielanowski and M. Loewe,Rev. Mex. F́ıs.44 (1998) 24.
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