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We study the dynamics of one—dimensional lattices of weakly coupled maRs dhe local dynamics has an invariant hyperbolic set.
Moreover, the trajectories from non expanding (and weakly expanding) points go to infinity (for local dynamical system). Under these
assumptions we show that, if the coupling is weak enough, the extended system has similar dynamics.
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Estudiamos la diamica de enrejados unidimensionales de mapeoR @eoplados @bilmente. La diamica local tiene un conjunto
hiperkblico invariante. Aderas, las trayectorias de puntos no expansivospilthente expansivos) van a infinito (para el sistemarmico
local). Bajo estos supuestos mostramos que, si el acoplamiento es suficientezbénés sistema extendido tiene unaainica similar.

Descriptores:Enrejados de mapeos acoplados, caos, ecuaciones diferenciales.

PACS: 05.45.Pq; 05.45.Jn

1. Introduction and« is the diffusion coefficient. Equation (2) describes a
) large variety of phenomena in different fields. Examples are
Coupled map lattices (CMLs) serve as one of the most Usereat conductivity, chemical diffusion processes, enzyme ki-

ful and powerful instruments for understanding the dynamicsetics, and propagation of voltage impulses through nerve ax-
of spatially extended systems. The main activity in this fieldgng

is directed toward the study of CMLs for small values of the  one can obtain a number of well known particular cases

spatial interactions; this is the case, for example, when CMLg reaction—diffusion Eq. (2) by an appropriate choice of the

with diffusive coupling are used to describe some lattice spithoplinear term. Among them are:

models of statistical mechanics in the region of high temper-

ature H]. 1. The Kolmogorov—Petrovsky—Piskunov equation for
For active homogeneous media, CMLs are described by which the nonlinear term is the quadratic polynomial,

equations of the form

us(t + 1) = f(us(t)) + ’YF({US/(t)hs’—SKT)a (1)

wheret is the discrete time coordinatejs the discrete space
coordinate, and:(t) is a characteristic of the medium (for
example, its density, distribution of temperature, etcetera).

h(u) = au(l — u),
wherea > 0 is a parameter.

2. The Huxley equation for which the nonlinear term is
the cubic polynomial,

We suppose that the local mgpand the coupling map’ (of h(u) = au(l — u)(u — a)
ranger) are smooth maps; we also suppose that the coupling ’
parametety is sufficiently small. where0 < a < 1 anda > 0 are parameters.

A natural source of CMLs are discrete versions of par- _ _ ' '
tial differential equations of evolution type. They arise while ~ 3- The FitzHugh-Nagumo equation for which the nonlin-
modeling PDE’s by computer. As an example, let us mention ~ €ar term is the two—dimensional map of the plane,

the nonlinear reaction—diffusion equation B, v) = (ap(u) — bv, cu — dv).

ou

o¢ = ) + Al ) Here p(u) = u(u — 6)(1 — u) with 6 € (0,1) and
a,b,c,d > 0 are real parameters.
whereu = u(x,t) is a function of two variables (the space
coordinatez and timet) with values in thed—dimensional For some of this PDEs a particular and even full quali-
Euclidean spacR?; A is the coupling matrix, tative picture of solution is known (see for example Ref. 6).
But, for CMLs there were no completely described examples
until now.
<82U1 62ud> | H H H H
Ay — o n this work we provide a full topological description of
o2’ 022 ) all possible orbits for some class of CML's. Explicitly, in
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Refs. 1 and 3 it was shown that if the coupling is weak and 2. there existd < j

the local mapf satisfies some chaotic properties (see below), o

then there is an invariant subset on which all orbits can be de- 3+ i N Int(f(£;)) # 0 impliesl; C Int(f(Z;)).

scribed in terms of symbolic dynamics; we show that under P

some additional conditions, orbits starting from other points  In this case, ifC = U I; C 1, the symbolic dynamics

< psuch thatl; C Int(f(L;)),

go to infinity. In order to do that, we consider the equation, o i=1 ) ] )
for space—time configurations, for f|c is given by the topological Markov chaifl 4 with
transition matrixA = (a;;), wherea;; = 1 if and only if
(Gy(u)st = fus) + YF{ust}") — ts41 =0 I; C Int(f(I;)). Precisely, the set contains anf—invariant

set A such thatf|, is topologically conjugate to the shift
whereu = {us.}, s € Z is space coordinate artlde Nis  on,.

time (the explicit meaning and characteristics of the parame-  Consider the following extended system: let us call
ters and functions in the previous equation are given bellow)q . = QZ (the set of all bi-infinite sequences of elements

We investigate this equation without coupling & 0) and  of () 4); endow this set with the uniform metric,
then apply known results of functional analysis. Let us re-

mark that, in principal, such approach also allow us to proveA (w, w') = supd(ws, w)), ws = (WP, w,...) € Q4
the existence of the invariant set. sEZ
The article is organized as follows. In Sec. 2 we give\yhere the distance i 4 is given by
necessary definitions and formulate the main theorem (theo-
rem 2.2). In Sec. 3 we formulate some results about the dy- , 2 otk — v/(’“)‘
namics of a particular local map, which satisfies the hypoth- d(v,v") = Z T
esis of the main theorem. In Sec. 4 we prove theorem 2.2. k=0

Finally, in Sec. 5 we present the concluding remarks for thisor someg > 1 fixed. Introduce the dynamics f+ by using

work. the time—translation operat6s w) " = w{*+",
This yields to the dynamical systeff)z, o) which is
2. Weakly coupled map lattices called thespin systenfsee []). In fact, this system is the

direct product of identical Markov chain.

In the article we will consider coupled maps as dynamicafTheorem 2.11If f satisfies H1, then there exists r > 0
systems. The phase space of them will be the set of bi-infinitsuch that, for any coupling parametéyy| < ~;r, we
uniform bounded sequences can find an F; p—invariant closed totally disconnected
set A;r C C%, so that there exists a homeomorphism
Hf’p : Q]: — Af’p satisfying]-"ﬁF o Hf’p = Hf,F o 0o.
Moreover,u € Ay p if and only if 77 o(u) € C* for all

n €N,

0° ={u={us}sez : us ER; [|u]oo < 00},

with

% |oo = sup |us]. Proof. See Refs. 1 and 3.
SEL
The theorem means that for weak coupling there is a set

The evolution operataFy  : £ — £>° will be defined by , o X
’ (Ay,7) on which the dynamics is the same (from topologi-

(Frr(u)s = flus) + v F({us}"), (3)  cal viewpoint) as without coupling.
In this paper we show that for sonfeand F', the dynam-
where{us}" = (us—,...,usy,) andr € Z* is the length  ics is the same not only for points ik; . Precisely, a tra-

of interaction,f : R — R is the local mapF" : R**! — R jectory from pointz ¢ A r will be proved to go to infinity
is the coupling map angl € R is a parameter controlling the if £ and f satisfy the following additional conditions:
coupling. H2) The coupling mag” grows no faster than local map
In what follows we will assume thatis C'-smooth and ¢, thatis, there exist > 0 andK > 0 such that for ally € R
F is C?—smooth. It is easy to see tha&t ((>°) C (>;
moreover,(¢>°, F; r) is a differentiable dynamical system. sup |F(z1,...,x2-+1)| < max{d|f(y)|, K}
Suppose furthermore, that the local maatisfies the fol- l51<lyl
lowing chaotic hypothesis:
H1) There exists a finite collectiofl; = [a;, b;]}}_, of
pairwise disjoint bounded and closed intervals, such that for
eachl < ¢ < p the following assumptions are satisfied 1. ifz¢gC=U, L, then|f"(z)] — oo asn — oo.

and
H3) There exist > 0, C' > 1 andM > 0, such that

1. f is differentiable on I; with iJIaf |f'|>1 and 2. if |z| > M, then|f(z)| > C|z|,

P |f] < oo, 3 (| ()]« /@) <1te}> M
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This hypothesis says that any trajectory fofstarting from ' ' ‘
non expanding (and weakly expanding) point, goes to infin- 2| - ‘
ity. \

The main theorem of the work is .4 “
Theorem 2.2Consider the magF; r given by Equation (3) “
with f and F satisfying H1, H2, H3 andy| being small
enough. Letu(n) = F} p(ug). Then|[u(n) |- — oo as
n — oo ifand only ifug & Ay r.

Before proving the theorem we show that
f(x) = bx(z? — 1) satisfies the hypothesis H1 and H3 for

large enouglb. |
|

3. One example of local map
FIGURE 1. The cubic non-linearity (z) = bz (z* — 1).

Consider the standard cubic non-linearfity) = bx (2 —1)

with b > 0 (see Fig. 1) and maké = I \ A, where
In order to prove this theorem, we need some preliminary

14+0b 140
I=|—\—\|—
l b’ b
constructions and propositions.

and
Let

Theorem 4.1 Consider the mapF; » given by Equation
(3), with f and F satisfying H1, H2, H3 andy| <« 1.
Letu(n) = Fip(u) ¢ CZ for somen € N. Then
|u(n) ||o — co@asn — oo.

A:{xEI:f(x)> 1—;)_()} (°(Z x N) = {u={ust }sez, ten : |t < 00},

where

A direct calculation shows that #f > 3 then the local
extremes off are, in modulus, bigger thay/(1 + b)/b; so, [ ulloo = S |ust].

cC=1 UIQUI3W|th
Introduce the mag, : £>°(Z x N) — £*°(Z x N) defined by

P Y e R e ﬂ (G (W)t = flust) + ¥ F({ugt}) = woppr, ()
b’ 2b ’
) where{ug:}" = (us—rt,- .., Ustr¢). The bounded orbits of
I Vb2 +b+ Vb2 —3b Vb2 +b— b2 —3b the original systeni¢>, 7; ), are solutions of the equation
2T 2b ’ 2 ’
- (Gy(u)) =0, uwel*(ZxN). (5)
5o | VP Ab VT30 14D
3~ 2 ) b |- Let us write a few words on the strategy to investigate
Eqg. (5). First, we show that Eq. (5) has no solutions when

Moreover. if || u || is large (lemma 4.2). Second, we study the linear part
' of Eq. (5) fory = 0. Third, we prove theorem 4.1 applying

b by — 4462 the implicit function theorem.
4 Lemma 4.2 Suppose thaf and F' satisfy H2 and H3. Then,

the slope off in C is, in modulus, bigger than one; in forall

fact, f satisfies the hypothesis H1 and also satisfies H3 (if _[(C-=1) (C-1)M
|f/(z)| < 1, thenf(z) ¢ I and, ifz ¢ C, then| f"(z) | — oo Il < mm{ 50 K }
asn — 00).

and all u € /*°(Z x N), |Ju|lcc = M impliesG,(u) # 0.
(here the constant€’, K, M andd are from hypothesis H2
and H3).

Proof. It is enough to make the proof for > 0. Let
By construction [, 3], u € Ay rifand only if 77 . (u) € C?  |lullee = m = M, then for anys > 0 there exists a pair
forall n € N. So, to prove theorem (2.2) itis enough to prove (so, to) for which |ug,:,| > m — €. Moreover, it is clear that

4. Proof of theorem 2.2
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lus| < mforall (s,t) € Z x N. Then

|(g’Y(u))80t0‘ = |f(usoto) — Usg,to+1 + ’YF({usnto}q
2 ‘f(usoto)‘ - |u80,t0+1| - WlF({uSOto}q
Z min {(1 - 76)|f(u80750)|’ |f(u80to)| - ’YK} - |uso,to+1|
> min {(1 —70)(Cm — &), Cm —é —vK} —m,
where¢ — 0 whene — 0 due to continuity off. So, one can
finde and, consequentlyso, to) such that(G, (u))s,t,| > 0.
We also need some estimates| g, Go(u)) || co-
Propositon 4.31f |f/'(ust)| = 1+ ¢ forall (s,t) € Z x N
then||(D.Go (1)) oo < 1/e.

Proof:
For arbitrary¢ € ¢>°(Z x N) one has

(DQO(U)(E))st = f/(ust)fst - fs,t+1-

Then, fors € Z fixed, we can restrict the operatgs to the
operatorg : £>°(N) — ¢>°(N) with the differential

(DGo(u(s,))€)r = ar(s) & — &1,

wherea;(s) = f'(us:). We are going to exhibit explicitly the
operatorL, = (DG (u(s,-)))~!, which is supposed to have

the form
Lo(€)i = cils) &
JEN
A direct calculation shows that for the coefficients
0 if j<i

cij(s) =4 )
[T it 5>

t=1

L, (if bounded) is the inverse operator B, (u(s, -)).
It is simple to show that

ILs oo = sup § > leij(s) |
€N jeN
The conclusion follows from the inequality

Z|Cij(5)|=Z|Cij(8)<i<1i€)j:i.

JEN Jjzi Jj=1

which holds for anyi € N, and from the fact that
1(DuGo(u) ™ loo = Sup [ Lsloo-

Finally, we need ’
Proposition 4.4 Let/>(Z x N) > S = {u : Go(u) = 0}.
Then, for allx € S ande > 0 small enough, there exists
7' > 0 such that ifly| < 4/, the equatiorg,(u) = 0 has a
unique solution:* in the open balD. (z).

Proof: The existence of sucll ande for any fixedz € S

immediately follows from the Implicit Function Theorem.

So, in order to prove the proposition one should check that
all estimates required are uniform ferc S.

In order to prove theorem 4.1 we need the following sim-
ple consequence of the implicit function theorem.
Lemma 4.5Let B be a Banach space, let

G(w):Rx B — B

be aC' map andX C B be a closed region. Suppose that
G(0,z) # 0 for all z € X, but there exist;; andvy; > 0
such thatG(v1,z1) = 0. Then there exist, € X and
0 < 79 < 71 such that either

1. G(v0,20) = 0andzy € 0X
or

2. D.G(~0, o) does not have bounded inverse operator.
Proof of theorem 4.1
It is enough again to consider> 0. By Lemma 4.2 we can
find M > 0 and~; > 0, such that fory < v, there is no root
u of (5) satisfying||lu| > M. LetS = {u : Go(u) = 0}.
By proposition (4.4) we can take such a smalihat there is
one and only one solution of (5) i@ (z) for z € S and~
small enough. We only should check that there is no roots in

X = Clos (OM(O) U Os(z)> :

zeS

For all small enough there exist no roots on the bound-
ary of X and there exist no roots i for v = 0. Suppose
that there exists some root iXi for v small enough. Then,
by lemma 4.5, there exist € X and0 < ~y < 7, such that
Gy, (z) = 0 andD,G,,(x) does not have bounded inverse
operator. SinceD,G,,(z) is close toD,Gy(x), uniformly
for all x € X, we have thal| DGy ()|~ is large. Then, by
proposition 4.3 f'(us)| < 1 + ¢ for some(s, t) and small
e > 0. Moreover, the smallet, is the smallek is. So, de-
creasing, if necessary, the interval farwe can make this
small enough as is required in the hypothesis H3. But then
|us¢| > M for small enoughy andu ¢ X.

5. Concluding remarks

Remark 5.1 If the hypothesis H1 and H3 holds, the sym-
bolic description of the dynamics @i s , 7 ) has to be a
Bernoulli shift.

First of all, we can choose, increasihgand decreasing
a;, the intervaldl; = [a;, b;] in such a way that either

[f'(a:)| =1+¢

ora; = —M and either

[f/ (b))l =1+e
orb, = M. So,|f(a;)| and |f(b;)| are greater thad/.
We claim that eitherf(a;) < —M and f(b;) > M or
f(b;)) < =M and f(a;) > M. (If not, we have for exam-
ple,
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2. In order to satisfy lemma 4.2 we make
M < f(ai) < f(bi).

. . c-1) (C-1)M
But from hypothesis H1, it follows that Y2 < min ( ), ( ) ,
oC K
f([as, bi]) ﬂ[_M7 M] #0. whereC, K, M and § are again the constants from

So, we could find pointa;, 3; € I; such thatf (a;) = f(5;). hypothesis H2 and H3.
By the Mean Value Theoreny;/(vy;) = 0 for some~; € I;
which contradicts H1.1. 3. Finally, in order that all points in[—M, M] \ C maps
Remark 5.2 We can easily estimate how small the coupling out of interval[— A1, M], we take
between the chaotic subsystems in theorem 2.2 should be un- v
der the additional assumption, namely, 73 < P

v= min |f(z)]-M >0. where

z€[—M,M|\C
In this case the proof of theorem 2.2 is much more simple. v = min _|f(z)| — M > 0.
Let us call, ze[—M,M]\C
. 7 So, if

o= 1<§g2>7§+1| (Y15 y2rt1)|

and 7] < min{y1, 72,73}
o ) then conclusions of theorems 2.1 and theorem 2.2 hold.
- Y1;- -5 Y2r41
b= 1<a Bt O ’
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