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We study the dynamics of one–dimensional lattices of weakly coupled maps ofR. The local dynamics has an invariant hyperbolic set.
Moreover, the trajectories from non expanding (and weakly expanding) points go to infinity (for local dynamical system). Under these
assumptions we show that, if the coupling is weak enough, the extended system has similar dynamics.
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Estudiamos la dińamica de enrejados unidimensionales de mapeos deR acoplados d́ebilmente. La dińamica local tiene un conjunto
hiperb́olico invariante. Adeḿas, las trayectorias de puntos no expansivos (y débilmente expansivos) van a infinito (para el sistema dinámico
local). Bajo estos supuestos mostramos que, si el acoplamiento es suficientemente débil, el sistema extendido tiene una dinámica similar.

Descriptores:Enrejados de mapeos acoplados, caos, ecuaciones diferenciales.

PACS: 05.45.Pq; 05.45.Jn

1. Introduction

Coupled map lattices (CMLs) serve as one of the most use-
ful and powerful instruments for understanding the dynamics
of spatially extended systems. The main activity in this field
is directed toward the study of CMLs for small values of the
spatial interactions; this is the case, for example, when CMLs
with diffusive coupling are used to describe some lattice spin
models of statistical mechanics in the region of high temper-
ature [4].

For active homogeneous media, CMLs are described by
equations of the form

us(t + 1) = f
(
us(t)

)
+ γ F

({us′(t)}|s′−s|6r

)
, (1)

wheret is the discrete time coordinate,s is the discrete space
coordinate, andus(t) is a characteristic of the medium (for
example, its density, distribution of temperature, etcetera).
We suppose that the local mapf and the coupling mapF (of
ranger) are smooth maps; we also suppose that the coupling
parameterγ is sufficiently small.

A natural source of CMLs are discrete versions of par-
tial differential equations of evolution type. They arise while
modeling PDE’s by computer. As an example, let us mention
the nonlinear reaction–diffusion equation

∂u

∂t
= h(u) + κA∆u, (2)

whereu = u(x, t) is a function of two variables (the space
coordinatex and timet) with values in thed–dimensional
Euclidean spaceRd; A is the coupling matrix,

∆u =
(

∂2u1

∂x2
, . . . ,

∂2ud

∂x2

)
,

andκ is the diffusion coefficient. Equation (2) describes a
large variety of phenomena in different fields. Examples are
heat conductivity, chemical diffusion processes, enzyme ki-
netics, and propagation of voltage impulses through nerve ax-
ons.

One can obtain a number of well known particular cases
of reaction–diffusion Eq. (2) by an appropriate choice of the
nonlinear termh. Among them are:

1. The Kolmogorov–Petrovsky–Piskunov equation for
which the nonlinear term is the quadratic polynomial,

h(u) = αu(1− u),

whereα > 0 is a parameter.

2. The Huxley equation for which the nonlinear term is
the cubic polynomial,

h(u) = αu(1− u)(u− a),

where0 < a < 1 andα > 0 are parameters.

3. The FitzHugh–Nagumo equation for which the nonlin-
ear term is the two–dimensional map of the plane,

h(u, v) = (aϕ(u)− bv, cu− dv).

Hereϕ(u) = u(u − θ)(1 − u) with θ ∈ (0, 1) and
a, b, c, d > 0 are real parameters.

For some of this PDEs a particular and even full quali-
tative picture of solution is known (see for example Ref. 6).
But, for CMLs there were no completely described examples
until now.

In this work we provide a full topological description of
all possible orbits for some class of CML’s. Explicitly, in
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Refs. 1 and 3 it was shown that if the coupling is weak and
the local mapf satisfies some chaotic properties (see below),
then there is an invariant subset on which all orbits can be de-
scribed in terms of symbolic dynamics; we show that under
some additional conditions, orbits starting from other points
go to infinity. In order to do that, we consider the equation,
for space–time configurations,

(Gγ(u))st
.= f(ust) + γ F ({ust}r)− us,t+1 = 0

whereu = {us,t}, s ∈ Z is space coordinate andt ∈ N is
time (the explicit meaning and characteristics of the parame-
ters and functions in the previous equation are given bellow).
We investigate this equation without coupling (γ = 0) and
then apply known results of functional analysis. Let us re-
mark that, in principal, such approach also allow us to prove
the existence of the invariant set.

The article is organized as follows. In Sec. 2 we give
necessary definitions and formulate the main theorem (theo-
rem 2.2). In Sec. 3 we formulate some results about the dy-
namics of a particular local map, which satisfies the hypoth-
esis of the main theorem. In Sec. 4 we prove theorem 2.2.
Finally, in Sec. 5 we present the concluding remarks for this
work.

2. Weakly coupled map lattices

In the article we will consider coupled maps as dynamical
systems. The phase space of them will be the set of bi–infinite
uniform bounded sequences

`∞ .= {u = {us}s∈Z : us ∈ R; ‖u ‖∞ < ∞},
with

‖u ‖∞ = sup
s∈Z

|us|.

The evolution operatorFf,F : `∞ → `∞ will be defined by

(Ff,F (u))s = f(us) + γ F ({us}r), (3)

where{us}r = (us−r, . . . , us+r) andr ∈ Z+ is the length
of interaction,f : R→ R is the local map,F : R2r+1 → R
is the coupling map andγ ∈ R is a parameter controlling the
coupling.

In what follows we will assume thatf is C1–smooth and
F is C2–smooth. It is easy to see thatFf,F (`∞) ⊂ `∞;
moreover,(`∞, Ff,F ) is a differentiable dynamical system.
Suppose furthermore, that the local mapf satisfies the fol-
lowing chaotic hypothesis:

H1) There exists a finite collection{Ii = [ai, bi]}p
i=1 of

pairwise disjoint bounded and closed intervals, such that for
each1 6 i 6 p the following assumptions are satisfied

1. f is differentiable on Ii with inf
Ii

|f ′| > 1 and

sup
Ii

|f ′| < +∞,

2. there exists1 6 j 6 p such thatIj ⊂ Int(f(Ii)),

3. Ij ∩ Int(f(Ii)) 6= ∅ impliesIj ⊂ Int(f(Ii)).

In this case, ifC =
p⋃

i=1

Ii ⊂ I, the symbolic dynamics

for f |C is given by the topological Markov chainΩA with
transition matrixA = (aij), whereaij = 1 if and only if
Ij ⊂ Int(f(Ii)). Precisely, the setC contains anf–invariant
set Λ such thatf |Λ is topologically conjugate to the shift
onΩA.

Consider the following extended system: let us call
ΩF

.= ΩZA (the set of all bi–infinite sequences of elements
of ΩA); endow this set with the uniform metric,

∆(w, w′) = sup
s∈Z

d(ws, w
′
s), ws = (w(0)

s , w(1)
s , . . .) ∈ ΩA

where the distance inΩA is given by

d(v, v′) =
∞∑

k=0

|v(k) − v′(k)|
qk

,

for someq > 1 fixed. Introduce the dynamics inΩF by using
the time–translation operator(σ w)(k)

s = w
(k+1)
s .

This yields to the dynamical system(ΩF , σ) which is
called thespin system(see [7]). In fact, this system is the
direct product of identical Markov chain.
Theorem 2.1If f satisfies H1, then there existsγf,F > 0
such that, for any coupling parameter|γ| < γf,F , we
can find an Ff,F –invariant closed totally disconnected
set Λf,F ⊂ CZ, so that there exists a homeomorphism
Πf,F : ΩF → Λf,F satisfyingFf,F ◦ Πf,F = Πf,F ◦ σ.
Moreover,u ∈ Λf,F if and only if Fn

f,F (u) ∈ CZ for all
n ∈ N.

Proof. See Refs. 1 and 3.

The theorem means that for weak coupling there is a set
(Λf,F ) on which the dynamics is the same (from topologi-
cal viewpoint) as without coupling.

In this paper we show that for somef andF , the dynam-
ics is the same not only for points inΛf,F . Precisely, a tra-
jectory from pointx 6∈ Λf,F will be proved to go to infinity
if F andf satisfy the following additional conditions:

H2) The coupling mapF grows no faster than local map
f , that is, there existδ > 0 andK > 0 such that for ally ∈ R

sup
|xj |<|y|

|F (x1, ..., x2r+1)| < max{δ |f(y)|, K}

and
H3) There existε > 0, C > 1 andM > 0, such that

1. if x 6∈ C =
⋃p

i=1 Ii, then|fn(x)| → ∞ asn →∞.

2. if |x| > M , then|f(x)| > C|x|,
3. inf{|f(x)| : |f ′(x)| 6 1 + ε} > M
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This hypothesis says that any trajectory off , starting from
non expanding (and weakly expanding) point, goes to infin-
ity.

The main theorem of the work is
Theorem 2.2Consider the mapFf,F given by Equation (3)
with f and F satisfying H1, H2, H3 and|γ| being small
enough. Letu(n) .= Fn

f,F (u0). Then‖u(n) ‖∞ → ∞ as
n →∞ if and only ifu0 6∈ Λf,F .

Before proving the theorem we show that
f(x) = bx(x2 − 1) satisfies the hypothesis H1 and H3 for
large enoughb.

3. One example of local map

Consider the standard cubic non–linearityf(x) = bx(x2−1)
with b > 0 (see Fig. 1) and makeC = I \A, where

I =

[
−

√
1 + b

b
,

√
1 + b

b

]

and

A =

{
x ∈ I : | f(x) | >

√
1 + b

b

}
.

A direct calculation shows that ifb > 3 then the local
extremes off are, in modulus, bigger than

√
(1 + b)/b; so,

C = I1 ∪ I2 ∪ I3 with

I1 =

[
−

√
1 + b

b
,
−√b2 + b−√b2 − 3b

2b

]
,

I2 =

[
−√b2 + b +

√
b2 − 3b

2b
,

√
b2 + b−√b2 − 3b

2b

]
,

I3 =

[√
b2 + b +

√
b2 − 3b

2b
,

√
1 + b

b

]
.

Moreover, if

b > b0 =
4 + 6

√
2

4

the slope off in C is, in modulus, bigger than one; in
fact, f satisfies the hypothesis H1 and also satisfies H3 (if
|f ′(x)| 6 1, thenf(x) 6∈ I and, ifx 6∈ C, then| fn(x) | → ∞
asn →∞).

4. Proof of theorem 2.2

By construction [1, 3], u ∈ Λf,F if and only ifFn
f,F (u) ∈ CZ

for all n ∈ N. So, to prove theorem (2.2) it is enough to prove

FIGURE 1. The cubic non–linearityf(x) = bx(x2 − 1).

Theorem 4.1 Consider the mapFf,F given by Equation
(3), with f and F satisfying H1, H2, H3 and|γ| ¿ 1.
Let u(n) .= Fn

f,F (u) 6∈ CZ for somen ∈ N. Then
‖u(n) ‖∞ →∞ asn → ∞.

In order to prove this theorem, we need some preliminary
constructions and propositions.

Let

`∞(Z× N) .= {u = {ust }s∈Z, t∈N : ‖u ‖∞ < ∞},

where

‖u ‖∞ = sup
s∈Z, t∈N

|ust|.

Introduce the mapGγ : `∞(Z×N) → `∞(Z×N) defined by

(Gγ(u))st = f(ust) + γ F ({ust}r)− us,t+1 , (4)

where{ust}r = (us−r,t, . . . , us+r,t). The bounded orbits of
the original system(`∞,Ff,F ), are solutions of the equation

(Gγ(u)) = 0, u ∈ `∞(Z× N). (5)

Let us write a few words on the strategy to investigate
Eq. (5). First, we show that Eq. (5) has no solutions when
‖u ‖∞ is large (lemma 4.2). Second, we study the linear part
of Eq. (5) forγ = 0. Third, we prove theorem 4.1 applying
the implicit function theorem.
Lemma 4.2Suppose thatf andF satisfy H2 and H3. Then,
for all

|γ| < min
{

(C − 1)
δC

,
(C − 1)M

K

}

and all u ∈ `∞(Z× N), ‖u‖∞ > M impliesGγ(u) 6= 0.
(here the constantsC,K, M and δ are from hypothesis H2
and H3).

Proof: It is enough to make the proof forγ > 0. Let
‖u‖∞ = m > M , then for anyε > 0 there exists a pair
(s0, t0) for which |us0t0 | > m− ε. Moreover, it is clear that
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|ust| 6 m for all (s, t) ∈ Z× N. Then

|(Gγ(u))s0t0 | = |f(us0t0)− us0,t0+1 + γF ({us0t0}r|
> |f(us0t0)| − |us0,t0+1| − γ|F ({us0t0}r|
> min

{
(1− γδ)|f(us0t0)|, |f(us0t0)| − γK

}− |us0,t0+1|
> min

{
(1− γδ)(Cm− ε̃), Cm− ε̃− γK

}−m,

whereε̃ → 0 whenε → 0 due to continuity off . So, one can
find ε and, consequently,(s0, t0) such that|(Gγ(u))s0t0 | > 0.
We also need some estimates on‖(DuG0(u))−1‖∞.
Propositon 4.3If |f ′(ust)| > 1 + ε for all (s, t) ∈ Z × N
then‖(DuG0(u))−1‖∞ 6 1/ε.

Proof:
For arbitraryξ ∈ `∞(Z× N) one has

(DG0(u)(ξ))st = f ′(ust) ξst − ξs,t+1 .

Then, fors ∈ Z fixed, we can restrict the operatorG0 to the
operatorG̃0 : `∞(N) → `∞(N) with the differential

(DG̃0(u(s, ·))ξ)t = at(s) ξt − ξt+1 ,

whereat(s) = f ′(ust). We are going to exhibit explicitly the
operatorLs = (DG̃0(u(s, ·)))−1, which is supposed to have
the form

Ls(ξ)i =
∑

j∈N
cij(s) ξj .

A direct calculation shows that for the coefficients

cij(s) =





0 if j < i

j∏

t=i

(at(s))−1 if j > i
,

Ls (if bounded) is the inverse operator ofDG̃0(u(s, ·)).
It is simple to show that

‖Ls ‖∞ = sup
i∈N





∑

j∈N
| cij(s) |



 .

The conclusion follows from the inequality

∑

j∈N
| cij(s) | =

∑

j>i

| cij(s) | 6
∞∑

j=1

(
1

1 + ε

)j

=
1
ε
.

which holds for any i ∈ N, and from the fact that
‖(DuG0(u))−1‖∞ = sup

s∈Z
‖Ls‖∞.

Finally, we need
Proposition 4.4 Let `∞(Z × N) ⊃ S = {u : G0(u) = 0}.
Then, for allx ∈ S and ε > 0 small enough, there exists
γ′ > 0 such that if|γ| < γ′, the equationGγ(u) = 0 has a
unique solutionu∗ in the open ballOε(x).

Proof: The existence of suchγ′ andε for any fixedx ∈ S
immediately follows from the Implicit Function Theorem.

So, in order to prove the proposition one should check that
all estimates required are uniform forx ∈ S.

In order to prove theorem 4.1 we need the following sim-
ple consequence of the implicit function theorem.
Lemma 4.5LetB be a Banach space, let

G(·, ·) : R × B → B

be aC1 map andX ⊂ B be a closed region. Suppose that
G(0, x) 6= 0 for all x ∈ X, but there existx1 and γ1 > 0
such thatG(γ1, x1) = 0. Then there existx0 ∈ X and
0 < γ0 6 γ1 such that either

1. G(γ0, x0) = 0 andx0 ∈ ∂X
or

2. DxG(γ0, x0) does not have bounded inverse operator.
Proof of theorem 4.1.
It is enough again to considerγ > 0. By Lemma 4.2 we can
find M > 0 andγ1 > 0, such that forγ < γ1 there is no root
u of (5) satisfying‖u‖ > M . Let S = {u : G0(u) = 0}.
By proposition (4.4) we can take such a smallε, that there is
one and only one solution of (5) inOε(x) for x ∈ S andγ
small enough. We only should check that there is no roots in

X = Clos

(
OM (0) \

⋃

x∈S

Oε(x)

)
.

For all small enoughγ there exist no roots on the bound-
ary of X and there exist no roots inX for γ = 0. Suppose
that there exists some root inX for γ small enough. Then,
by lemma 4.5, there existx ∈ X and0 < γ0 6 γ, such that
Gγ0(x) = 0 andDxGγ0(x) does not have bounded inverse
operator. SinceDxGγ0(x) is close toDxG0(x), uniformly
for all x ∈ X, we have that‖DxG0(x)‖∞ is large. Then, by
proposition 4.3,|f ′(ust)| < 1 + ε for some(s, t) and small
ε > 0. Moreover, the smallerγ0 is the smallerε is. So, de-
creasing, if necessary, the interval forγ, we can make thisε
small enough as is required in the hypothesis H3. But then
|ust| > M for small enoughγ andu 6∈ X.

5. Concluding remarks

Remark 5.1 If the hypothesis H1 and H3 holds, the sym-
bolic description of the dynamics of(Λf,F ,Ff,F ) has to be a
Bernoulli shift.

First of all, we can choose, increasingbi and decreasing
ai, the intervalsIi = [ai, bi] in such a way that either

|f ′(ai)| = 1 + ε

or ai = −M and either

|f ′(bi)| = 1 + ε

or bi = M . So, |f(ai)| and |f(bi)| are greater thanM .
We claim that eitherf(ai) < −M and f(bi) > M or
f(bi) < −M andf(ai) > M . (If not, we have for exam-
ple,
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M < f(ai) 6 f(bi).

But from hypothesis H1, it follows that

f([ai, bi])
⋂

[−M,M ] 6= ∅.
So, we could find pointsαi, βi ∈ Ii such thatf(αi) = f(βi).
By the Mean Value Theorem,f ′(γi) = 0 for someγi ∈ Ii

which contradicts H1.1.
Remark 5.2 We can easily estimate how small the coupling
between the chaotic subsystems in theorem 2.2 should be un-
der the additional assumption, namely,

ν
.= min

x∈[−M,M ]\C
|f(x)| −M > 0.

In this case the proof of theorem 2.2 is much more simple.
Let us call,

α
.= max

16s62r+1
|F (y1, . . . , y2r+1)|

and

β
.= max

16s62r+1

∣∣∣∣
∂F (y1, . . . , y2r+1)

∂xs

∣∣∣∣ ,

where the maximums are taken over all the possible choices
of ys ∈ [−M, M ], (1 6 s 6 2r + 1).

1. In order to satisfy theorem 2.1 we make

γ1 6
{

µ

2α
,

ε

β(2r + 1)

}
,

whereµ = min {min f |C−M, M−max f |C} andM
is the constant in hypothesis H3 (see [1]) .

2. In order to satisfy lemma 4.2 we make

γ2 6 min
{

(C − 1)
δC

,
(C − 1)M

K

}
,

whereC, K, M and δ are again the constants from
hypothesis H2 and H3.

3. Finally, in order that all points in[−M, M ] \ C maps
out of interval[−M, M ], we take

γ3 6 ν

α
,

where

ν = min
x∈[−M,M ]\C

|f(x)| −M > 0.

So, if

|γ| 6 min{γ1, γ2, γ3}
then conclusions of theorems 2.1 and theorem 2.2 hold.
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