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Geometry of classical particles on curved surfaces
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In this paper we consider a particle moving on a curved surface. From a variational principle, we write the equation of motion and the
constraining force, both in terms of the Darboux frame adapted to the trajectory, that involves geometric information of the surface. By
deformation of the trajectory on the surface, the constraining force and equation of motion of the perturbation are obtained. We show that
the transversal deformation follows a generalized Raychaudhuri equation that contains extrinsic information besides the geodesic curvature.
Results in the case of surface with axial symmetry can be parametrized in terms of the angular momenta.

Keywords: Curves; curved surfaces; particle on surfaces.

En este artulo consideramos el movimiento de una @ara sobre una superficie curvada. De un principio variacional, encontramos las
ecuaciones de movimiento y la fuerza de constbiccien el marco de Darboux adaptado a la trayectoria. Deformando estas ecuaciones,
encontramos que la perturbaoi transversal satisface una ecéacide Raychaudhuri generalizada que contiene infol@naektinseca
adenas de la curvatura geédica. En el caso de superficies con sifaesixial, los resultados se pueden parametrizateeninos del
momento angular.

Descriptores: Curvas; superficies curvas; partlas en superficies.

PACS: 02.40.Hw; 02.40.-k; 45.20.-d

1. Introduction We obtain, aside to the equations of motion, the con-
straining force on the particle. The corresponding equations
Recently the physics of particles and fields in curved surfacegs small perturbations are also obtained, showing that they
in Euclidean space has become subject of interest, becauggjudes, even with no external forces, extrinsic information.
many phenomena are reduced to one of them. For examplgome general results if the surface has axial symmetry and

it is known that a liquid crystal on curved surfaces, look for the gravitational field taken into account are showed.
smectic phases as parallel curved surface [1]. We also know,

that some electronic properties of certain two-dimensional

materials, are explained modeling particles, living in the suro. Lagrangian Classical Mechanics
face, satisfying the Schdinger or the Dirac equation [2].

Topological defects on surfaces [3], relativistic particle dy-| ¢ ys consider the action of a free particle, constrained on a
namics [4], and diffusion on surfaces [5] are also some exg face through the vector Lagrange multipher
amples of how the interaction of particles and fields with sur-

faces through geometry, can be used to model several natural m [

phenomena. Although from a mathematical point of view, L(X;A, 5”):5/X (t) dH/)\‘ (x(t)=X(&*)) dt. (1)
variational problems related to curves and surfaces, has been

addressed [6], they have recently attracted attention, becaupgrex(t) = (!(t), #2(t), 23(t)) € R3, the dot stands for

has been possible to interpret the Euler-Lagrange equations Ae derivative with respect to the tinieandm is the parti-
physical terms, as a balance of internal forces and momentgje’'s mass. The equation of the surface, parametrized by local
seee.g.[7] and [8]. coordinateg®, a = {1,2}, can be written ag = X(£%). By
Inspired by a recent formalism developed to investigataaking infinitesimal deformations — x + dx we have
properties of elastic curves constrained on surfaces [9], in this
work we obtain the basic, but generic, geometric elements of
particles constrained on surfaces. Although it is well known
the classical physics of particles, usually specific cases of par-
ticles moving on surfaces are solved. Here we present its dé\fter integration by parts in the first term, the corresponding
scription in terms of the geometric information of the surface Euler-Lagrange equations are given by
either intrinsic through the gaussian curvature or extrinsic in-
formation, encapsulated in the second fundamental form. mx=\. 3)

6L:m/5k~xdt+/)\~5xdt. @)
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Moreover, variation respect to the local variablg8, — T = U(t)dg,
£* + 6¢*, gives ds
d2§c
= o(t) [—Kabtat”n+ < - +ngtat”> ec} ,
0L = — / e, 06%dt, (4) ds
=0(t) (knn + K4€), @)

wheree, = 9,X, are taqggnt vectors to thg surface. There—in the second line, the second fundamental form of the sur-
fore, the Lagrange multiplieA = —An, beingn = e; X

. ) faceK,, = —d,ep-n, h nintr , and the Christof-
e2/|| - ||, the unit normal to the surface. Finally, under defor- acelap 9aey-n, has been introduced, and the Christo

; e fel symbolsI'y;, compatible withg,;, also appear; there is no
mation of the Lagrange multipliesA, we have that projection alondT, since it is a unit vector. Notice that we

can identifyx,, = —Kt*t” andky€ = kSe.. Thus, we can
0L = /(D\ S(x(t) — X(€Y)) dt, write Eq. (3) in the form
mv?(t) (kpn + kgl) + ma(t)T = —An (8)

and the equation for the constraint is obtained.

However, the Eg. (3), in not useful in this form. In-
stead, we write it in the Darboux frand&',n,£ = T x n},
where T is the unit tangent to the curve arfdis orthog-
onal to the curve on the surface, see Fig. (1). This ba
sis satisfies thal! = k,n + ky€, n' = —k,T + 7,44, A= —mv%mn,
¢ = —k,T — 7,n, where prime stands for the derivative 5 wib
respect to arc length[10]. These equations defines de nor- = mug Kapt"t". ©)
mal curvatures,, = T’-n, the geodesic curvaturg, = T’-£  We can write this force in terms of the principal curvatures
in addition to the geodesic torsiog = n’ - £. k;, of the surface

wherea(t) = dv/dt. Therefore, we can read that the particle
moves along a geodesic patk, = 0, with a(t) = 0, i.e.
v(t) = vg, and feels a force, along the normal to the surface
given by

_ We also conS|d§r that the co_nstrgmt_does not depend on A= mod (m 052 0 + g 5in2 9) 7 (10)
time, then the velocity of the particle is given by
where, as usual] is the angle betweelt and the principal
% = e, tv(t), vectorvy.
If there is an external forcF, acting on the particle, we
= To(t), ®)  can decompose the equation of motion in the local basis and
we can write
wherewv(t) = ds/dt, t* = d&*/ds and s the arc length .
mx =F 4+ A,

along the trajectory of the particle. The relation of time

t, with the arc length of the curve is given bis® = = (A + Fy)n + FpT + Fe, (11)
Gap(dE® /dt)(d€P /dt)dt?, that involves the induced metric on . i )
the surfacegs, = eq - €. Then we can writes?(t) = such that, the corresponding equations to solve are then given
gap(d€®/dt)(deb /dt). In addition, using Egs. (5) and (3), Y
we see thak - x = 0, and therefore the conservation of the mzﬂ(f),{g = Fy,
energy;mv?(t)/2 = E, follows.
The second derivative can be obtained from ma(t) = Fr,
A= F, —mv(t)k, (12)

and the energy is conserved?(t)/2 + U = E, with U
the corresponding potential relative to the external force field.
Notice that if we use the first and the third equations, then

n A=F, — B2 (13)
Kg
i.e. the forcel is written in terms of geometric information
of the surface and of course, in general, it depends ontime

% = To(t) + To(t). (6)

In the first term we can get

] T Therefore, a condition such that no constraining force exists
X(s) is given byF,, = mv2,,, or
knky = kgFy. (14)
This is a remarkable expression, which tell us that, in or-
der that the constraining force vanishes, the ratio of non-
tangential components of the external field must be equal to
FIGURE 1. The Darboux frame. the ratio of the curvatures of the surface.
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2.1. Perturbative expansion the other hand, considering that the constrainte, = 0,

] o ) remains under deformations, i&A\ - e,) = 0, we have that
To first order the Newton law (3) is given by (if the external

force is a constang.gthe gravitational field) OA = —0An+ A, (22)
mox = A, (15)  where
where the deformations are along the surface, A= = AM—kn® + 7, ¥)T — A(7,P + K lo0Pw)e. (23)
ox = @T + Ve (16)  Therefore to first order, the Newton law (3) implies that the

: . training f I th turbed path is given b
Then, since the energy is conserved, we seeribvat 6% + consfraining torce along e periurbed path s gven by

VU - 6x = 0. Derivative respect to the time is given by SA = 2mur, U + (1,F; — muic, — 3k, Fr) ®
6% = (& —vUky)T+0v(Pk, — Uy )n+ (U +duk,y)L. (17) + (1, Fr + muty — 3k, Fy) U. (24)
Thus we have that - §x = v(® — v¥x,), and therefore Whereas the transversal projection implies that
mo(b — vk ) = —@T - VU — WL - VU, mW + (4kg Fy — mo? (k] + 77 + R/2) + MK 0*0°) W
= (PFr + UFy). (18) = — (3/<;gFT + mv2Tg/<;n + mukg + )\Tg) d.  (25)
If there is no external potential théh— vi, U = 0, fol-  \We see that it involves not only the transversal deformation
lows. Along geodesic trajectories we have that U, but also the longitudinal on®, that satisfies (18). In these

equations, we can write the first and the second derivatives,

mv® = 0. 19 ofthe field T, in terms of the local coordinates as

Therefore, with no external forces the tangential deforma-
tion of geodesics is a rigid translatio®, = C, or is only
a reparametrization of the path My # 0. Thus, the only  gng
physical deformations is along the transversal direcfian
Eq. (16), as we already know from invariance of the action U = 02(kyUol® + 14"V, U,) + a(t)t*V,,, (27)
under reparameterizations.

In order to obtaindx, we notice that it is not just Where we have definedt, = 9,V. In a later work, we will
(d/dt)d%, but we have to take into account the Riemann cur-discuss specific solutions to these equations.
vature of the surfac® ,;.q4, SO we get

d(6%)
dt

U = 0t?0,,, (26)

2.2. Geodesic trajectories

=0x+R(vT, 2T + o) %, On perturbed geodesic curves, the deformation on the con-

— 5% 4+ v*R (T, T + Ue) T straining force, is given by
= 6% + ®v? R(T, T)T + Uo?> R(T,£)T. (20) A = 2mory ¥ + mut, V. (28)

When projected into the tangent direction, the second term ofVithout external forces it simplifies such that =
the last equation is identically zero, as a consequence of tHev(27, ¥ + 7,¥). The transversal perturbation satisfies the
antisymmetry of the Riemann tensor. From Eq. (17) and (20)Raychadhury-like equation [12]
we can find .
mW¥ — (mv2(7'92 +R/2)

. 2 2
0% = [ QUHg\I/ (Hg + HqL)q) + (m’l}2/€n _ Fn)Kabfafb)\I/ —0. (29)
+ (7)279"% —a(t)kg — vig)¥|T . o . .

) . Besides intrinsic information, projections of the second fun-
+ [V + 20k, ® — v* (K] + 7)) damental form appear in this equation. Even without external
forces, extrinsic information are required,
+ (V3 Tykip + a(t)ky + vFiy)® — V2R (4" UL a

. . I (202 2 a pb _
+ 206, @ — 207,V — (VP1ykg — a(t)kin — Vic,) P U= (07 + R/2) + 0 hn Kopl?07) ¥ = 0. (30)
— (V2 Rnky + at)T, + v7,)P]n. (21) A simple example is given by a particle falling on the unit
sphere, starting from rest at the north pole, under the grav-

Since on two dimensional surfac&s,, = g.,R/2, we can itational field. SinceF, = 0 then, according to the first

rewrite R,,(*¢* = R /2, in the second line of Eq. (21). On equation in Eq. (12), we have, = 0, and therefore the
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trajectory is a great circle. For a sphere of radiug is
known thatK,;, = gas/r, such that for a unit sphere we have
K. = ga and hences,, = —1, 7, = 0. Moreover, since
R = K? — K*K_,, in this caseR = 2, and from the en-
ergy conservation we hawe¢ = 2g(1 — cos ), wheref is
the angle between the normal vectoand the axiz. Due to
the geodesic torsion vanishes we gg&t= 0. On the normal
direction, F;, = —mg cos 6, and then the transversal defor-
mation follows the equatio — gcos ¥ = 0. In terms of
the angled,

V20V Wy + g’ sinf ¥y — gcos U =0.  (31)
Nevertheless, we note that a first integral i§2/2 —
gcos W2 = C, and therefore

2g(1 — cos 0)0"? W3 — 2gcos U? = C. (32)

2.2.1. Axisymmetric surfaces

If the surface has axial symmetry, we can parametrize it in

29

The normal curvature along the trajectory is given by

2 2
dl
Kyl—) .
This equation can be written in terms &f, . In the first term
we can use Eq. (36), in the second one we can use the induced

metric on the surface, to obtain a first integralgf= 0, in
the form

dp

Is (37)

—hn = Kpp (

1/dl\?
(4 i =0, 38
2<d8> + Uesr =0 (38)
where
1 M?
Ueff(MZJ) = _2(p12+212) (1_ m21)2p2> : (39)

Then we can write the normal curvature of geodesics

M? 2z’ 1

—/{n = —
m2fu2 p12 + 212 p3

plz// _ ,OI/Z/

M2
the form + TRk (1 - m2v2p2> ; (40)
X(p,1) = (p(1) cos p, p(l) sin @, z(1)). 33 . :
() = (pll) cos g, pll) sin o, 2(1) (33) and therefore, the forcg in Eq. (9), is completely deter-
The infinitesimal element of distance is given by> =  mined. If the gravitational field® = —mgk is taken into
p2de? + (p'? + 2'?)dI2, here prime indicates derivative re- account, we can see that
spect tal. The tangent vectors, are
p g &, o mgp'
e, = (—psingp, pcos p,0), VR4 2?
!
_ . , d
e, = (p' cosp, p'sing, 2). (34) F=_9%p %% (41)
p/2 + Z/2 ds
The unit normal is then
1 The velocityv(t), is determined by conservation of the en-
n=————(2cosyp, 2 sinp, —p). (35) ergy
/p/2 + Z/Q 9 2
vi(t) = — (B —mgz(I(?))). (42)
The second fundamental forki,;, has components, . ) L
An example is the catenoid, a minimal surface that we can
pz' parametrize through
Kopp = 2 2
Vet z
X(¢,1) = (coshlcosp,coshlsingp,l), (43)
and
Ky = pe—ple wherel € (—c0,0), ¢ € [0,2x]. The normal curvature of
' V% 22 geodesic curves is parametrized
The principal curvatures are found to be , [ 2M2sech?l
, —fn =sech’l (| — 55— —1]. (44)
K% — z m-v
v /2 2
PP+ 2 The curvaturéR = —2sech?l, and the second fundamen-
and tal form has component&,, = 1, andK; = —1. Ifa
Kl = L. particle moves on this surface under the gravitational field,
P2+ 2" then the projections of the force afe, = mgtanh{, and
With these basic elements we can describe a particle rek;, = gM. /vcosh?l. Because the symmetry, geodesics

stricted to lie along this surface. Because the symmetry underan be classified according the angular momenidm see

rotations about the axis, M, = M - k is conserved where
M = mx x %, is the angular momenta asd= e,y + e;l.
We find

M, = mp*p. (36)

Fig. (2): If 0 < M, < 1, geodesic crosses parallels along the
catenoid; forM, > 1, the path is on one side of the catenoid;
the equator corresponds 3, = 1 andM, = 0 is a merid-
ian [11].
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where the Christoffel symbols compatible wigh, appear.
The projection on the Darboux frame follows the same lines
as before. We then have

mv? (t) (kpn* + K 0" + T8 TVT)
+ ma(t)TH = —An*, (49)

whereT = T*¢,,, is the tangent vector field, arg = 0, X,

the tangent vectors to the surface. If the particle moves freely
we have, as before, that it follows a geodesic curve along the
surface, witha(t) = 0. The force\ is given by

A= —mv2k,. (50)

In this case the second fundamental fofky, is defined
through the covariant derivativ®,, compatible withg,,,

D, =elD,, i.e. Ko = —g(Dgep,n). In addition we can
see that the projection of the Christoffel symbols along the
tangent vector is null

FIGURE 2. The several geodesic curves on the catenoid, classified

according the angular momenta. FZBTQTE =0. (51)

An easy example is a particle falling along a meridianltis certainly interesting to know the effect of nontrivial back-
starting atly, andv? = 2g(ly — 1). The constraining forca ground, that we will present in future work.
is found to be

A(l) = mg (tanhi — 2(lp — I)sech® ) . (45) 3. Summary and conclusions
If the particle leaves the catenoidiat thenA(l;) = 0, im- In this paper we have presented the geometric elements in the
plies thattanh I, = 2(lp — ls)sechg l,. If for instancely = 1, description of particles on surfaces. Projection of the New-
thenl; ~ 0.61. ton second law along the normal to surface, gives the con-

Being ¢ = const, for this patht¥ = 0 andt' = sech!. straining force, that involves the normal curvature of the sur-
From the definition of¢, we note that, = \/ge.,t". We  face. Geodesic curvature (time?¥) gives the acceleration in
have/! = 0 and/¢? = sechl. Therefore the equation of the the transversal direction to the movement. Classical pertur-

transversal deformation is given by bations of the path is equivalent to a field theory on curved
.. ) surfaces. We show that from conservation of energy, a first
W+ gsech”™ [ tanh ¥ = 0. (46)  order equation of the tangential deformation, is obtained. We

also show that the equation of the transversal perturbation
follows a Raychaudhuri-like equation that includes extrinsic
fpformation even if there is not external forces. If the parti-
cle moves onto a surface with axial symmetry, the results are
parametrized in terms of the conserved projection of the an-
gular momenta. The particular results in the case of geodesic
L(z" €% \) = m /det curves are obtained. Using the formalism here presented, a
2 problem to be addressed, is related to the motion of extended
objects on surfaces, for elastic curves, the model mustinclude
. / A (2" (t) — XH(E")) dt. (47) th(i bending energy, quadratic in the curvature which has been
extensively examined [13].

2.2.2. Particle on a surface in a curved space

If the particle moves onto a surface embedded into a curve
space, with coordinates* and metricg,,, (z*), we have the
constrained functional as

The first term involves the background metrie? =
g (z)@Hi”, the second one the Lagrange multipliggs It
generalizes equation (1) to curved background. Under defoACKnowledgments
mationséox we obtain as before, equation (3), but now in the

form JAS wishes to acknowledge J Guven, the many fruitful dis-

A2zt , dz¥ dz M cussions on geometry. GTV aknowledges CONACYT for a
m\ o g ) = A (48)  scholar fellowship.
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