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Geometry of classical particles on curved surfaces
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In this paper we consider a particle moving on a curved surface. From a variational principle, we write the equation of motion and the
constraining force, both in terms of the Darboux frame adapted to the trajectory, that involves geometric information of the surface. By
deformation of the trajectory on the surface, the constraining force and equation of motion of the perturbation are obtained. We show that
the transversal deformation follows a generalized Raychaudhuri equation that contains extrinsic information besides the geodesic curvature.
Results in the case of surface with axial symmetry can be parametrized in terms of the angular momenta.
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En este artı́culo consideramos el movimiento de una partı́cula sobre una superficie curvada. De un principio variacional, encontramos las
ecuaciones de movimiento y la fuerza de constricción, en el marco de Darboux adaptado a la trayectoria. Deformando estas ecuaciones,
encontramos que la perturbación transversal satisface una ecuación de Raychaudhuri generalizada que contiene información extŕınseca
adeḿas de la curvatura geodésica. En el caso de superficies con simetrı́a axial, los resultados se pueden parametrizar en términos del
momento angular.

Descriptores: Curvas; superficies curvas; partı́culas en superficies.

PACS: 02.40.Hw; 02.40.-k; 45.20.-d

1. Introduction

Recently the physics of particles and fields in curved surfaces
in Euclidean space has become subject of interest, because
many phenomena are reduced to one of them. For example,
it is known that a liquid crystal on curved surfaces, look for
smectic phases as parallel curved surface [1]. We also know,
that some electronic properties of certain two-dimensional
materials, are explained modeling particles, living in the sur-
face, satisfying the Schrödinger or the Dirac equation [2].
Topological defects on surfaces [3], relativistic particle dy-
namics [4], and diffusion on surfaces [5] are also some ex-
amples of how the interaction of particles and fields with sur-
faces through geometry, can be used to model several natural
phenomena. Although from a mathematical point of view,
variational problems related to curves and surfaces, has been
addressed [6], they have recently attracted attention, because
has been possible to interpret the Euler-Lagrange equations in
physical terms, as a balance of internal forces and moments,
seee.g.[7] and [8].

Inspired by a recent formalism developed to investigate
properties of elastic curves constrained on surfaces [9], in this
work we obtain the basic, but generic, geometric elements of
particles constrained on surfaces. Although it is well known
the classical physics of particles, usually specific cases of par-
ticles moving on surfaces are solved. Here we present its de-
scription in terms of the geometric information of the surface,
either intrinsic through the gaussian curvature or extrinsic in-
formation, encapsulated in the second fundamental form.

We obtain, aside to the equations of motion, the con-
straining force on the particle. The corresponding equations
of small perturbations are also obtained, showing that they
includes, even with no external forces, extrinsic information.
Some general results if the surface has axial symmetry and
the gravitational field taken into account are showed.

2. Lagrangian Classical Mechanics

Let us consider the action of a free particle, constrained on a
surface through the vector Lagrange multiplierλ,

L(x, λ, ξa)=
m

2

∫
ẋ2(t) dt+

∫
λ · (x(t)−X(ξa)) dt. (1)

Herex(t) = (x1(t), x2(t), x3(t)) ∈ R3, the dot stands for
the derivative with respect to the timet, andm is the parti-
cle’s mass. The equation of the surface, parametrized by local
coordinatesξa, a = {1, 2}, can be written asx = X(ξa). By
taking infinitesimal deformationsx → x + δx we have

δL = m

∫
δẋ · ẋ dt +

∫
λ · δx dt. (2)

After integration by parts in the first term, the corresponding
Euler-Lagrange equations are given by

m ẍ = λ. (3)
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Moreover, variation respect to the local variables,ξa →
ξa + δξa, gives

δL = −
∫

λ · ea δξa dt, (4)

whereea = ∂aX, are tangent vectors to the surface. There-
fore, the Lagrange multiplierλ = −λn, beingn = e1 ×
e2/|| · ||, the unit normal to the surface. Finally, under defor-
mation of the Lagrange multiplier,δλ, we have that

δL =
∫

δλ · (x(t)−X(ξa)) dt,

and the equation for the constraint is obtained.
However, the Eq. (3), in not useful in this form. In-

stead, we write it in the Darboux frame{T,n, ` = T × n},
whereT is the unit tangent to the curve and̀is orthog-
onal to the curve on the surface, see Fig. (1). This ba-
sis satisfies thatT′ = κnn + κg`, n′ = −κnT + τg`,
`′ = −κgT − τgn, where prime stands for the derivative
respect to arc lengths [10]. These equations defines de nor-
mal curvatureκn = T′ ·n, the geodesic curvatureκg = T′ ·`
in addition to the geodesic torsionτg = n′ · `.

We also consider that the constraint does not depend on
time, then the velocity of the particle is given by

ẋ = eatav(t),

= T v(t), (5)

wherev(t) = ds/dt, ta = dξa/ds and s the arc length
along the trajectory of the particle. The relation of time
t, with the arc length of the curve is given byds2 =
gab(dξa/dt)(dξb/dt)dt2, that involves the induced metric on
the surface,gab = ea · eb. Then we can writev2(t) =
gab(dξa/dt)(dξb/dt). In addition, using Eqs. (5) and (3),
we see thaṫx · ẍ = 0, and therefore the conservation of the
energy,mv2(t)/2 = E, follows.

The second derivative can be obtained from

ẍ = Ṫv(t) + Tv̇(t). (6)

In the first term we can get

FIGURE 1. The Darboux frame.

Ṫ = v(t)
dT
ds

,

= v(t)
[
−Kabt

atb n +
(

d2ξc

ds2
+ Γc

abt
atb

)
ec

]
,

= v(t) (κnn + κg`) , (7)

in the second line, the second fundamental form of the sur-
faceKab = −∂aeb ·n, has been introduced, and the Christof-
fel symbolsΓa

bc compatible withgab also appear; there is no
projection alongT, since it is a unit vector. Notice that we
can identifyκn = −Kabt

atb andκg` = κc
gec. Thus, we can

write Eq. (3) in the form

mv2(t) (κnn + κg`) + ma(t)T = −λn (8)

wherea(t) = dv/dt. Therefore, we can read that the particle
moves along a geodesic path,κg = 0, with a(t) = 0, i.e.
v(t) = v0, and feels a force, along the normal to the surface
given by

λ = −mv2
0κn ,

= mv2
0Kabt

atb. (9)

We can write this force in terms of the principal curvatures
κi, of the surface

λ = mv2
0

(
κ1 cos2 θ + κ2 sin2 θ

)
, (10)

where, as usual,θ is the angle betweenT and the principal
vectorv1.

If there is an external forceF, acting on the particle, we
can decompose the equation of motion in the local basis and
we can write

mẍ = F + λ,

= (−λ + Fn)n + FT T + F``, (11)

such that, the corresponding equations to solve are then given
by

mv2(t)κg = F`,

m a(t) = FT ,

λ = Fn −mv2(t)κn (12)

and the energy is conserved,mv2(t)/2 + U = E, with U
the corresponding potential relative to the external force field.
Notice that if we use the first and the third equations, then

λ = Fn − F`
κn

κg
, (13)

i.e. the forceλ is written in terms of geometric information
of the surface and of course, in general, it depends on timet.
Therefore, a condition such that no constraining force exists
is given byFn = mv2κn, or

κnF` = κgFn. (14)

This is a remarkable expression, which tell us that, in or-
der that the constraining force vanishes, the ratio of non-
tangential components of the external field must be equal to
the ratio of the curvatures of the surface.
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2.1. Perturbative expansion

To first order the Newton law (3) is given by (if the external
force is a constant,e.gthe gravitational field)

mδẍ = δλ, (15)

where the deformations are along the surface,

δx = ΦT + Ψ`. (16)

Then, since the energy is conserved, we see thatmẋ · δẋ +
∇U · δx = 0. Derivative respect to the time is given by

δẋ = (Φ̇−vΨκg)T+v(Φκn−Ψτg)n+(Ψ̇+Φvκg)`. (17)

Thus we have thaṫx · δẋ = v(Φ̇− vΨκg), and therefore

mv(Φ̇− vκgΨ) = −ΦT · ∇U −Ψ` · ∇U,

= (ΦFT + ΨF`). (18)

If there is no external potential theṅΦ − vκgΨ = 0, fol-
lows. Along geodesic trajectories we have that

mvΦ̇ = 0. (19)

Therefore, with no external forces the tangential deforma-
tion of geodesics is a rigid translation,Φ = C, or is only
a reparametrization of the path ifFT 6= 0. Thus, the only
physical deformations is along the transversal direction`, in
Eq. (16), as we already know from invariance of the action
under reparameterizations.

In order to obtainδẍ, we notice that it is not just
(d/dt)δẋ, but we have to take into account the Riemann cur-
vature of the surfaceRabcd, so we get

d(δẋ)
dt

= δẍ +R (vT, ΦT + Ψ`) ẋ,

= δẍ + v2R (T, ΦT + Ψ`)T,

= δẍ + Φv2R(T,T)T + Ψv2R(T, `)T. (20)

When projected into the tangent direction, the second term of
the last equation is identically zero, as a consequence of the
antisymmetry of the Riemann tensor. From Eq. (17) and (20),
we can find

δẍ = [Φ̈− 2vκgΨ̇− v2(κ2
g + κ2

n)Φ

+ (v2τgκn − a(t)κg − vκ̇g)Ψ]T

+ [Ψ̈ + 2vκgΦ̇− v2(κ2
g + τ2

g )Ψ

+ (v2τgκn + a(t)κg + vκ̇g)Φ− v2Rab`
a`b Ψ]`

+ [2vκnΦ̇− 2vτgΨ̇− (v2τgκg − a(t)κn − vκ̇n)Φ

− (v2κnκg + a(t)τg + vτ̇g)Ψ]n. (21)

Since on two dimensional surfacesRab = gabR/2, we can
rewriteRab`

a`b = R/2, in the second line of Eq. (21). On

the other hand, considering that the constraintλ · ea = 0,
remains under deformations, i.e.δ(λ · ea) = 0, we have that

δλ = −δλn + δ‖λ, (22)

where

δ‖λ=− λ(−κnΦ + τgΨ)T− λ(τgΦ + Kab`
a`bΨ)`. (23)

Therefore to first order, the Newton law (3) implies that the
constraining force along the perturbed path is given by

δλ = 2mvτgΨ̇ + (τgF` −mvκ̇n − 3κnFT )Φ

+ (τgFT + mvτ̇g − 3κnF`)Ψ. (24)

Whereas the transversal projection implies that

mΨ̈ +
(
4κgF` −mv2(κ2

g + τ2
g +R/2) + λKab`

a`b
)
Ψ

= − (
3κgFT + mv2τgκn + mvκ̇g + λτg

)
Φ. (25)

We see that it involves not only the transversal deformation
Ψ, but also the longitudinal oneΦ, that satisfies (18). In these
equations, we can write the first and the second derivatives,
of the fieldΨ, in terms of the local coordinates as

Ψ̇ = vtaΨa, (26)

and

Ψ̈ = v2(κgΨa`a + tatb∇bΨa) + a(t)taΨa, (27)

where we have definedΨa = ∂aΨ. In a later work, we will
discuss specific solutions to these equations.

2.2. Geodesic trajectories

On perturbed geodesic curves, the deformation on the con-
straining force, is given by

δλ = 2mvτgΨ̇ + mvτ̇gΨ. (28)

Without external forces it simplifies such thatδλ =
mv(2τgΨ̇ + τ̇gΨ). The transversal perturbation satisfies the
Raychadhury-like equation [12]

mΨ̈− (mv2(τ2
g +R/2)

+ (mv2κn − Fn)Kab`
a`b)Ψ = 0. (29)

Besides intrinsic information, projections of the second fun-
damental form appear in this equation. Even without external
forces, extrinsic information are required,

Ψ̈− (
v2(τ2

g +R/2) + v2κnKab`
a`b

)
Ψ = 0. (30)

A simple example is given by a particle falling on the unit
sphere, starting from rest at the north pole, under the grav-
itational field. SinceF` = 0 then, according to the first
equation in Eq. (12), we haveκg = 0, and therefore the
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trajectory is a great circle. For a sphere of radiusr it is
known thatKab = gab/r, such that for a unit sphere we have
Kab = gab and henceκn = −1, τg = 0. Moreover, since
R = K2 − KabKab in this caseR = 2, and from the en-
ergy conservation we havev2 = 2g(1 − cos θ), whereθ is
the angle between the normal vectorn and the axisz. Due to
the geodesic torsion vanishes we getδλ = 0. On the normal
direction,Fn = −mg cos θ, and then the transversal defor-
mation follows the equation̈Ψ − g cos θΨ = 0. In terms of
the angleθ,

v2θ′2∇θΨθ + gθ′ sin θ Ψθ − g cos θ Ψ = 0. (31)

Nevertheless, we note that a first integral is,Ψ̇2/2 −
g cos θ Ψ2 = C, and therefore

2g(1− cos θ)θ′2Ψ2
θ − 2g cos θ Ψ2 = C. (32)

2.2.1. Axisymmetric surfaces

If the surface has axial symmetry, we can parametrize it in
the form

X(ϕ, l) = (ρ(l) cos ϕ, ρ(l) sin ϕ, z(l)). (33)

The infinitesimal element of distance is given byds2 =
ρ2dϕ2 + (ρ′2 + z′2)dl2, here prime indicates derivative re-
spect tol. The tangent vectorsea are

eϕ = (−ρ sin ϕ, ρ cos ϕ, 0),

el = (ρ′ cosϕ, ρ′ sin ϕ, z′). (34)

The unit normal is then

n =
1√

ρ′2 + z′2
(z′ cosϕ, z′ sin ϕ,−ρ′). (35)

The second fundamental formKab has components,

Kϕϕ =
ρz′√

ρ′2 + z′2

and

Kll =
ρ′z′′ − ρ′′z′√

ρ′2 + z′2
.

The principal curvatures are found to be

Kϕ
ϕ =

z′

ρ
√

ρ′2 + z′2

and
Kl

l =
Kll

ρ′2 + z′2
.

With these basic elements we can describe a particle re-
stricted to lie along this surface. Because the symmetry under
rotations about thez axis,Mz = M · k is conserved where
M = mx × ẋ, is the angular momenta andẋ = eϕϕ̇ + el l̇.
We find

Mz = mρ2ϕ̇. (36)

The normal curvature along the trajectory is given by

−κn = Kϕϕ

(
dϕ

ds

)2

+ Kll

(
dl

ds

)2

. (37)

This equation can be written in terms ofMz. In the first term
we can use Eq. (36), in the second one we can use the induced
metric on the surface, to obtain a first integral ofκg = 0, in
the form

1
2

(
dl

ds

)2

+ Ueff = 0, (38)

where

Ueff (Mz, l) = − 1
2(ρ′2 + z′2)

(
1− M2

z

m2v2ρ2

)
. (39)

Then we can write the normal curvature of geodesics

−κn =
M2

z

m2v2

z′√
ρ′2 + z′2

1
ρ3

+
ρ′z′′ − ρ′′z′

(ρ′2 + z′2)3/2

(
1− M2

z

m2v2ρ2

)
, (40)

and therefore, the forceλ in Eq. (9), is completely deter-
mined. If the gravitational fieldF = −mgk is taken into
account, we can see that

Fn =
mgρ′√
ρ′2 + z′2

,

F` =
mgz′ρ√
ρ′2 + z′2

dϕ

ds
. (41)

The velocityv(t), is determined by conservation of the en-
ergy

v2(t) =
2
m

(E −mgz(l(t))) . (42)

An example is the catenoid, a minimal surface that we can
parametrize through

X(ϕ, l) = (cosh l cos ϕ, cosh l sin ϕ, l), (43)

wherel ∈ (−∞,∞), ϕ ∈ [0, 2π]. The normal curvature of
geodesic curves is parametrized byMz

−κn = sech2l

(
2M2

z sech2l

m2v2
− 1

)
. (44)

The curvatureR = −2 sech4l, and the second fundamen-
tal form has componentsKϕϕ = 1, andKll = −1. If a
particle moves on this surface under the gravitational field,
then the projections of the force areFn = mg tanh l, and
F` = gMz/v cosh2 l. Because the symmetry, geodesics
can be classified according the angular momentumMz, see
Fig. (2): If 0 < Mz < 1, geodesic crosses parallels along the
catenoid; forMz > 1, the path is on one side of the catenoid;
the equator corresponds toMz = 1 andMz = 0 is a merid-
ian [11].
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FIGURE 2. The several geodesic curves on the catenoid, classified
according the angular momenta.

An easy example is a particle falling along a meridian
starting atl0, andv2 = 2g(l0 − l). The constraining forceλ
is found to be

λ(l) = mg
(
tanh l − 2(l0 − l)sech2 l

)
. (45)

If the particle leaves the catenoid atls, thenλ(ls) = 0, im-
plies thattanh ls = 2(l0− ls)sech2 ls. If for instancel0 = 1,
thenls ∼ 0.61.

Beingϕ = const, for this pathtϕ = 0 andtl = sech l.
From the definition of̀ , we note that̀ a =

√
gεabt

b. We
have`l = 0 and`ϕ = sech l. Therefore the equation of the
transversal deformation is given by

Ψ̈ + g sech2 l tanh l Ψ = 0. (46)

2.2.2. Particle on a surface in a curved space

If the particle moves onto a surface embedded into a curved
space, with coordinatesxµ and metricgµν(xα), we have the
constrained functional as

L(xµ, ξa, λ) =
m

2

∫
v2dt

+
∫

λµ (xµ(t)−Xµ(ξa)) dt. (47)

The first term involves the background metric,v2 =
gµν(x)ẋµẋν , the second one the Lagrange multipliersλµ. It
generalizes equation (1) to curved background. Under defor-
mationsδx we obtain as before, equation (3), but now in the
form

m

(
d2xµ

dt2
+ Γµ

να

dxν

dt

dxα

dt

)
= −λnµ, (48)

where the Christoffel symbols compatible withgµν appear.
The projection on the Darboux frame follows the same lines
as before. We then have

mv2(t) (κnnµ + κg`
µ + Γµ

ναT νTα)

+ ma(t)Tµ = −λnµ, (49)

whereT = Tµeµ, is the tangent vector field, andeµ = ∂µX,
the tangent vectors to the surface. If the particle moves freely
we have, as before, that it follows a geodesic curve along the
surface, witha(t) = 0. The forceλ is given by

λ = −mv2κn. (50)

In this case the second fundamental formKab is defined
through the covariant derivativeDµ, compatible withgµν :
Da = eµ

aDµ, i.e. Kab = −g(Daeb,n). In addition we can
see that the projection of the Christoffel symbols along the
tangent vector is null

Γν
αβTαT β = 0. (51)

It is certainly interesting to know the effect of nontrivial back-
ground, that we will present in future work.

3. Summary and conclusions

In this paper we have presented the geometric elements in the
description of particles on surfaces. Projection of the New-
ton second law along the normal to surface, gives the con-
straining force, that involves the normal curvature of the sur-
face. Geodesic curvature (timesv2) gives the acceleration in
the transversal direction to the movement. Classical pertur-
bations of the path is equivalent to a field theory on curved
surfaces. We show that from conservation of energy, a first
order equation of the tangential deformation, is obtained. We
also show that the equation of the transversal perturbation
follows a Raychaudhuri-like equation that includes extrinsic
information even if there is not external forces. If the parti-
cle moves onto a surface with axial symmetry, the results are
parametrized in terms of the conserved projection of the an-
gular momenta. The particular results in the case of geodesic
curves are obtained. Using the formalism here presented, a
problem to be addressed, is related to the motion of extended
objects on surfaces, for elastic curves, the model must include
the bending energy, quadratic in the curvature which has been
extensively examined [13].
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