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The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its
non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical
problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions
is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically
the equation for an initial Dirac delta pulse. We discuss the solutions to three cases: one based on power-law correlation functions where the
pulse diffuses faster than the classical raté, a second case specifically designed to display slower rate of diffusion than the classical one,
and a third case to describe hydrodynamic dispersion in porous media.

Keywords: Time-dependent diffusion; anisotropic media; tracer and pollutant transport.

En este trabajo se analiza la eciawile advecdin-difusibn en la cual se tiene la velocidad y el tensor de difusinisotopico dependientes

del tiempo, y se examinan los efectos nasitos del transporte y el uso de una base vectorial no ortogonal. Estabacaparece en
diversasareas de laisica, particularmente en transporte defgatas en campos estagticos de velocidad y en medios porosos subterraneos,

sin embargo, hace falta un&isis mas profundo de sus soluciones. A fin de examinar el efecto de los coeficientes dependientes del tiempo
y de la anisotrofa en la difusbn hemos obtenido ariitamente la soluéin general del modelo para el caso de un pulso inicial tipo delta

de Dirac. Aplicamos la ecuam a tres casos: uno basado en funciones de coelagcie siguen leyes de potencias que da lugar a super-
difusion, el cual ha sido resuelto n@mcamente con anterioridad, otro que hemos construido Eiga@cente para exhibir sub-difési, y

un tercero desarrollado para describir disg@rsiidrodiramica en medios porosos.

Descriptores: Difusion dependiente del tiempo; medios aniépicos; transporte de trazador y contaminantes.
PACS: 05.60.Cd; 05.45.Df; 47.53.+n; 47.56.+r
1. Introduction captured within this last approach by associating the stochas-

) o tic velocity variations to permeability changes of the porous
The transport equation for a concentration figld,analyzed edia [1-6] andD is the hydrodynamic dispersion tensor

in this work is obtained from the conservation law that displays larger diffusion along the velocity direction than
oC in the transversal direction. Equation (3) can be found in
ot -V-a (1) many other problems too, such as : (i) transport in porous

materials with mixed-pore-size [7], (ii) transport in peri-
odic porous media [8], (iii) transport of contaminants carried
by the wind in the atmosphere [9-11], (iv) low- and high-
q=-D(t)-VC +v(t)C, ) temperature magnetically confined plasmas, where charged
particles can displace rapidly along the magnetic lines but dif-
whereD(t) is a symmetric diffusion tensor, andt) is ave-  fuse slowly in the perpendicular (with respect to the magnetic
locity vector field, both functions of time (not space). The field) direction [12-14], (v) gas transport in cylindrical indus-

and a Fourier-Fick’s advective-diffusive closure relation of
the form

resulting transport equation is trial ducts [15-16], (vi) transport of molecular spins in bio-
aC tissues for nuclear magnetic resonance applications [17-19],
yr \va (D(t) V(O — v(t)C)_ (3) and (vii) Brownian particles with memory, where the diffu-

sion tensor’s time-dependence can be related to long correla-
Our main interest regarding the structure of the last equations of the randomly fluctuating forces acting on the parti-
tion concerns the time-dependence on advection and diffusle [20,21].

sion, and the anisotropy of the diffusion tensor. This equa- In this work we obtain an analytical solution of Eq. (3)
tion and diverse variants of it can be found in many ap-and explore the implications of the anisotropy on the trans-
plications, including particle transport in anisotropic time- port process by examining the natural coordinate systems in-
dependent stochastic velocity fields, where the diffusion tenvolved. It is to be mentioned that some practical approaches
sor is related to velocity correlation functions. Also, tracer orpropose the description of the so calletbmalous transport
pollutant transport in underground porous formations can beia a time-dependent diffusion coefficient (as in Eq. (3)),
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since the resulting mean square standard deviation can i2. Model

crease above or below the linear time dependence (as we

will show later), it is interpreted asub-or super-diffusion ~ To construct the model we assume tfiais diagonal in the

As it is well-known, non-diffusive transport also naturally u-coordinate system,e., D;; = x;(t)d;;, whered;; is the

arises in the context of Continuous Time random Walk mod-Kronecker delta, and thus

els with non-Gaussian and/or non-Markovian statistics see

for example [22,23] and references therein. However, the ¢ =—xi(fi-V)C +v;C. 5)

present work focuses on a different source of non-diffusive

behavior. In particular, we are interested in systems that deSubstituting Eq. (5) into Eq. (1), and usiNg- f; = 0, we get

spite being described by Fourier-Fick’s closure relations exthe transport equation

hibit non-diffusive transport because of the anomalous time

dependence and anisotropy in the diffusion tensor. ac = Z (Xi (£-V)2C —v; (£ - V) C) , (6)
To formulate the anisotropic transport problem on a gen- ot i

eral setting le{f;},7 = 1,..., N, denote a normalized basis _
of vectors inRY (not necessarily orthogonal), and write the OF equivalently,
flux as
9C _ Z 8270 _ U.aﬁ (7)
N ot~ &~ \Moawr " ou )
a=> q¢f; 4) ’
=1

Note that in the{f;} basis the transport equation in (7) is di-
Notice that thei-th component; is not necessarily equal agonalj.e., it has no cross terms in the directional derivatives
to the projection of vector onto the basis vectof;, i.e., f; - V. However, as we will discuss in Sec. 3 this does not
¢ = Zé\’zl(q . fj)g]fil, whereg,; = (f; - f;) is the Euclidean necessarily imply thaff; } are the principal directions (eigen-
metric Written in the(f;} basis. This difference corresponds Vectors) ofD.

to the fact that; are contravariant components whie f; Clearly, if a different coordinate system is adopted, cross
are covariant ones. Ifu;,...,uy) denotes the coordinate terms (involving the directional derivatives along the corre-

system corresponding to the basfs}, thenf; - V = 9/du;. sponding coordinate directions) will in general appear. As
In this work we restrict attention to homogeneous?a particular important example, consider a Cartesian coordi-

anisotropic media, such that the diffusion tensbr, the  nate systenfz, ..., zy) with orthonormal basis vectors,
velocity, v. = Y, v;fi, and the basis(f;} are space- ¢=1,...,N.Inthiscase,

independent quantities. Following the stochastic transport P

approach [2,4,24], however, we keep the time dependence in £,V = Z ij—— (8)
both, the diffusion tensof)(t), and the velocityy = v(t). — 0z

Furthermore, we focus on a particular class of systems char-

acterized by the condition that their diffusion tensor can bevhere the constants

brought to a diagonal form (with time-dependent elements),

when written in the coordinate system corresponding to the aij = f; - ey, (9)
basis{f;} through a time-independent linear transformation

(see Eg. (9)). When, moreover, such a transformation iglefine the change of bases with the corresponding change of
an element of thesO(N) group, and thugf;} is itself an ~ coordinates given by the linear transformation
orthonormal basis, then the previous condition implies that

D(t) - D) = D) - D(t) for t # t' (this can be verified zi= Y aju;. (10)
in the particular case considered in Sec. 4, see Eq. (27)). J

Of course this is not the most general situation by far and the = .

physical meaning of the particular cases considered might ngltvIth inverse

be straightforward at all, but for the purposes of this work, it B o1
is general enough. In fact, as will be discussed in the fol- Ui = Z(a )ij 5 = ZAW'IJ" (11)
lowing sections, the “diagonalizability” condition allows us J J

to find exact solutions to our model. The rest of the papeRgtice that the metric tensor can be written as
is organized as follows: in Sec. 2 we make some physic L ainag, = (a-aT)g;.
assumptions on the flux to define the model and we find its Inlthe 6oordinateér1 ...zx) and under the assumptions
general solution analytically, Sec. 3 is devoted to clarify the g

made, Eq. (3) becomes
physical interpretation of the model and in Sec. 4 we show a3

its main features through particular examples that exhibit ei- 9C 92C aC

ther normal, super or sub-diffusion. Finally, conclusions and T E ,Djkiax O E Vj I (12)
. . . . ~ 7 k N SC]

directions of possible future work are presented in Sec. 5. 3k J
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wherey, = . a;;v; and the diffusion tensoB;, is defined ~ where the translated coordinate system in Eq. (14) has been

as used. By noticing thatu.) = 0, it follows that
D, = Z XilijQik - (13) t
Z’ (w) = [ w(s)ds, 1)

Note that, by constructior);;, is symmetric,D;, = Dy;.

When written in the(u,, ... uy) coordinates, the solu-
tion of the transport problem given by Eq. (7) can be ob-which meansd(u;)/dt = v;, i.e, the mean pulse position
tained analytically even wheg; andv; are time dependent in the f; direction drifts at the speed;. The mean square
functions. Notice that an advective-diffusive equation withdeviation in thef; direction,o?, is given by
time-dependent mean drift velocity, like Eq. (7), can always
be written as a purely diffusive equation in terms of the rigid- L
translated coordinates 02 = ([us — (u)]?) = ([u)]’) = 2/Xi(8)ds. (22)

0

t

0

up = u; — /vi(s)ds, t' =t (14)

J Provided the diffusion tensor componentst), Eq. (22)

gives the corresponding anisotropic diffusion which, depend-
If the ansat (v, t') = Hfil hi(u},t") is then assumed, ing ony;, can be normal or anomalous.
Eq. (7) is equivalent to the set 8f equations:

Oh; 0?h; i
() —2 15) 3. Interpretation
57 = ) g (15) P
with i = 1,..., N, in the sense that any solution of (15) is When thef; basis is orthonormal.é., Cartesian)q; andf; - q

also a solution of (7). Along this work there will be sum are equal, and Eq. (5) implies that the flux along theli-
over repeated indices only when explicitly stated by the sumt€ction depends only on the gradient@falong that same

mation symbol. Furthermore, by introducing the temporaldirection. However, whef;} is not orthogonal, it can be
variables the case that even if; depends only on the gradient of

t! along directionf;, the projectionf; - q does depend on the
() = /xi(S)dS, (16)  gradient ofC along thej-th direction, forj # i.
4 By choosingg; to obey the relation (5) and therefore the
(15) reduces to D’s components (in théf;} basis) to satisfyD;; = x;d;j,

Oh;,  02%h; one might be tempted to conclude that the vectors of the ba-
on 0w’ an  sis {f;} are eigenvectors of the diffusion tensor. As it will be
for eachi — 1. ... N. In order folm- 0 be a genuine tempo- show_n in what foIIowg, it is not the case in general_. In vector
ral variable, i’t haé to be a monotonic functiontofvhich is notation, a general eigenvalue problem can be written as

guaranteed sincg;(¢) is a positive definite function. For the
initial condition h; (u}, 7, = 0) = §(u}), the solution of (17)

D-d; = \d;, (23)

's given by whered; and \; are thei-th eigenvector and the correspond-
1 w2 ing eigenvalue of the second order tenBorrespectively. In
hi(uj, i) = ——=exp | == |, (18)  particular, the dispersion tensor can be written in terms of
VAT, 47; p , p

dyadic products of the non-orthogonal basis vect{ds, as
and the solution of Eq. (12) is D=3, ; Dijfif;, where
> Aqvjwj—fot v;(s)ds 2
€xp <( I (1) ) )
Clz,t)=]] , (19)

dmgr;(t)

Dij = gitg; (f-D-f), (24)
k.l

and we remind the reader th}%l = (f;-f,)"'istheinverse
whereg = det g;; and Eq. (11) was used. The componentsof ;. = f; - f;, which in general is different to the identity.
of the drift velocity vector can analogously be written in the The existence off; - f,,)~! is guaranteed by the fact thef },
Cartesian frame according tg = Zj Aijv;. i=1,2,...,N,is abasis.
To calculate the mean standard deviation of a pulse with  From expression (24) it is clear that {if;} were eigen-
respect to the normalized distributier(u;, ¢) we define the  yectors ofD, then the dispersion tensor components would

expectation valuéF’) of a scalar functior” as be given byD;; = \;g;;'. Therefore we conclude that the
L , N flux model in (5) does not imply th&f;} are the eigenvec-
(F) = / Clul VP (') /G A, (20)  1ors of
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where the equation takes its simplest form is fidf}, but

an auxiliary basis that allows us to solve the problem. Notice
that Standard diagonalization methods are not directly appli-
cable in this case because the diffusion tensor depends on
time, its principal directions (or eigenvectors) — and therefore
the associated coordinates — depend on time as well. Conse-
quently, when written in this non-inertial coordinate system,
the advection-diffusion equation contains a space and time-
dependent advective term which renders it more complicated
than the original one. Although these three bases are differ-
ent in general{f;} and{d;} are related. This will become
clear in the next examples, where we restrict attention to the
caseN = 2 for the sake of simplicity.

({3 = ;‘ﬁ

4. Applications

FIGURE 1. lllustration of a the three basis of vectorfe; }, {fi} ~ Let us first consider a general two-dimensional anisotropic
and{d;}. situation. We consider a non-orthogonal basis spanned by

. . o the vectord; = > . a;;e;, with ¢ = 1,2, as shown in Fig. 1,
D. Moreover, since the tens@r is symmetric, its eigenvec- |, . J

tors have to be orthogonal, and therefore they cannot be in

general equal téf; }. a5 = (
Summarizing, in general there are three different basis

(see Fig. 1): (i) the non orthonormal constant basis in terms  |n such a basis, we propose a diffusion tensor whose com-

of which the problem takes its simplest fordt; }; (i) the  ponents are written @;; = x;(t)d;;. In this case, the metric

Cartesian time-independent basis where the standard form @nsor in the: coordinates is:

transport equation holds and our physical intuition works bet-

ter, {e; }; and (iii) the time-dependent Cartesian basis defined o < 1 cos (o — ) ) (26)

by D’s eigenvectors{d;} (assuming they are not degener- Y cos (a1 — az) 1 '

ate), which diagonalizes the diffusion tensor. It is interesting

to notice that in the proposed model the coordinate system According to (13) the diffusion tensor written in Carte-
|  sian coordinates takes the form:

cosaq sinog ) (25)

coS g Sin g

X1 cos? o + xa2 cos? an X1 COS a1 Sin vy + Y2 €COS Qg sin g
Di; = (27)

X1 COS (1 Sin vy + Y2 COS (g Sin g X1 sin® a1 + X2 sin® a9

and its eigenvalues and eigenvectors are:

1 |
A= <X1 +x2 + (=13 4 X3 + 2x0x cos 2(n - az)]) : (28)

(29)

4 1 ( X1 COs 2a1 + X2 €os 2ai0 + (—1)”‘%/)(% + X3 + 2x1 X2 cos [2(a1 — ag)] )
i = ’
n;

X1 8in 2a1 + 2 sin 2ap

respectively, where; is a normalization factor. Consistent
with the general discussion in Sec. 3., the eigenvedopese
orthonormal and different frof). The vectod; corresponds 4.1. Anisotropic Sub-Diffusion
to the direction of maximum diffusion (sincg > X). For

general functionsy;(t) there is not much more that can be AS a first example let us consider a case in which sub-
said aboutd;. However, for the situation described below diffusion takes place. To this end we provide an adequate

in cases 4.1 and 4.2, it can be shown that for large valug®'™m Of xi(?) in the diffusion tensor. We have designed this

of time ¢t > T (for a given characteristic decay ting function with the help of Eq. (22), such tha exhibits the
limy—ood; = £ fOr & = x1/x2 < 1, limyood; = desired sub-diffusive behavior at short and long times. The

for & > 1, andd, o f; + f, for x = 1, shown in Fig. (2). resulting, at-first-glance complicated expression, is

1
Xi(tp) = Doie” Pt} *I_,, (tp), (30)
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FIGURA 2. (Color online) Results corresponding to model in Eq. (30). (Top) Eigenvectors of the diffusion gsorthe limit¢ — oo (in
the figure such a limit is represented by opacity tendint)td he eigenvectod; corresponds to the maximum diffusion direction while
to the minimum one. The figure on the left corresponds to the¢asg = 1, the one in the middle tg, /72 = 1/3 and the one on the right
toy1/v2 = 3. (Bottom) Time evolution of anglé; formed by the eigenvectors of the diffusion tensor with respect ta:theis, for three
different~; /- ratios. The solid upper (blue) lines denote anglelofand the solid lower (red) lines denote angledefgiven in Eq. (29).
The top (blue) dashed line denotes the angle= 0.857/2 and the bottom (red) dashed line denotes the angle= 0.3. According to
Fig. 1, these are the anglesfofandf,. The asymptotic behavior of the angles is consistent with the text.

-3 .
10 0

1072 10

time

FIGURE 3. (Color online) Time evolution of the tensor components
x: and its eigenvalued; for different values ofy; for the model
(30). The lower dashed (blue) correspondsctowith v, = 1/4
and the upper dashed (red)xe with v2 = 3/4. The solid upper
(blue) line shows the eigenvalue and the solid lower (red) shows
the eigenvalué\,.

wheretp = t/T, v; € (0,1), I,(x) is the modified Bessel

function of ordera andT is the system’s characteristic de-

cay correlation time. The behavior in time pf is relatively
simple, as displayed in Fig. 3 for some valuegyofAsymp-
totically, it is observed thag, (t) ~ t7: " fortp > 1.

The corresponding mean square displacement is,

012 _ l eftDt’Yi_l/2
D
Do T

X ((tD +1- 2’71').[%7%_ (tp) + tpfgi,yi (tD))
927vi+1/2
r/2—-)|’

for v; # 1/2. For the special case af = 1/2, the mean
square displacement takes the simpler form

(31)

o2

L —2ein¢ (It I (t )
Do, T e plIo(tp) + I1 (tp)
For short timesip <« 1, the mean square deviation increases
linearly with time for all values ofy;, which corresponds to
normal diffusion. However, fotp, > 1 it asymptotically
behaves as

(32)

Ui2 ~ l z t’)’i
D>

Yi
which corresponds to sub-diffusion sinte< ; < 1, as can
be observed in Fig. 4 farp > 1 where we show the mean
square displacement as a function of time for different values
of Yi-

From expressions (27), (28) and (29) we know tHat
corresponds to the direction of maximum diffusion, and also

(33)
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o (t)/DyT In this case, the mean square displacement takes the form:
100 - i
4Dy, T
= ((1+tD)ﬁi+2 —1> —tp fi#—1,-2
0 tp —In(1+tp) Gi =—2 (35)
(tD+1)1n(1+tD) ﬂi:fl
1 For short times;tip < 1, the mean square deviation
grows astp for 8; = —1, which is diffusive; for other val-
. ues of 3; it increases as%, which corresponds to ballistic
‘o behaviour. However, for large timelg, > 1,
1 10 100 1000
FIGURE 4. (Color online) Mean square displacement as a function ﬁ Bi < —2
of time for different values ofy for model (30). From bottom to tp B = —2
top, the solid lines correspond to the exact value“ofor v = 1/4 01-2 ~ e 2< < —1 (36)
(red) andy — 3/4 (blue), while the dashed lines show the cor- 1Dy, T et 1115 +2] O
; ) ; ) tpln(tp) Bi=—1
responding asymptotic values according to expression (33). The (Bit?
dotted (black) line corresponds to normal diffusigh~ ¢. GryGEy L1 <Bi<0

that, as shown in Fig. 2, it satisfies the asymp- For large values ofp and3; = 0 the diffusion is ballis-
totic x-dependent behaviour discussed previously, namelyic, i.e, o> ~ t%. As shown in Fig. 5, this model describes
limy_,ody = f5 for x < 1, limy_,oody = f; for s > 1, three different asymptotic transport regimes:(i) normal diffu-
andd; « f; + f» for k = 1, wherex = x1/x2. In all cases, sion forj; < —1, (ii) logarithmic-type diffusion for3; = —1

of course, the concentration pulse sub-diffuses according tand (iii) super-diffusion for-1 < g; < 0.

relation (33). This example has been previously studied by Numbere
_ _ o and Erkal [3] by solving the corresponding transport equa-
4.2. Anisotropic Super-Diffusion tion, Eq. (12), numerically. Our analytical results confirm to

L ) certain extent their findings. In particular, f@r< —3 they
Let us next assume that(t) is given by an expression typ- oo sFickian” (diffusive) behaviour in all cases. However,
ically encount'ered in thg theory of particle trar?spo'rt in ran'according to Egs. (35) and (36), this is only true in the asymp-
d_o_m st_ochas_tlc velocity fields [2,_4], where t_he dlﬁus!on coef-; e regime. They describe the regie < 3 < —1 as scale
ficient is the integral of the velocity correlation function over dependent or weakly diffusive, since it converges asymptot-
time. If a power law correlation function is considered [2,3]: ically to diffusive; this results coincides with what we an-

&i(t) = &oi(1+tp)™, it then follows alytically found, however, they logically missed (since they
Doi [(1 Tt )ﬁi+1 _ 1} B £ —1 results are numeric) the particular case= —1. Finally,
Xi = { Bi+1 b ! (34)  they report the regior-1 < 3 < 0 as “non-Fickian” (non-
Do;In(1+1p) Bi =—1. diffusive), which agrees with our findings. From our results,
ﬁ = -2 ﬁ =-1 B =0
B < -2 v -2<p<-1 v -1<B<0 Y
-4 - 5
\ P4 j
f P T T
normal diffusion Iogarithmic super-diffusion
diffusion
2
o°~ t 2~ tint g2~ tB+2

FIGURE 5. Three different asymptotic transport regimes for differ@nt 0 values, in model (34).
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FIGURE 6. (Color online) Density of concentratiafi for the model (34) for different values of time:= (17, 67", 11T") (from left to right),
for v; = 0 andy;(t) given by Eq. (34) — with = 1, 2, which correspond to non-orthogonal coordingtes associated with the matrix in
Eq. (25). Three cases are considergél, 82) = (—0.5,—0.5), (51, 32) = (—0.5,0) and (31, B2) = (0, —0.5), (from top to bottom). The
pattern asymptotically gets oriented along a fixed direction depending on the ratig (¢) /x2(t): for & < 1 it orientates alond, while
for k > 1 along the directiorf;, whenx = 1, the pattern gets oriented alofig+ f>. The eigenvectors of the diffusion tendorare also
shown. It can be observed that the direction of largest diffusion corresponds in all cakeartd forx < 1, lim;—.. d1 = f2, while for
k> 1,lim;ody = fyandfors = 1,d; o f; + f5.

the dynamics of a pulse, as illustrated in some of their figures4.3. Hydrodynamic Dispersion

can be exactly evaluated using Eq. (19).
Let us finally analyse the case of hydrodynamic dispersion in

The explicit form of the concentration pulsg(z,y, t) ; . ) : :
can be found directly through expression (19). In Fig. (6) weh hom_ogeneous |sgtro_p|c_ porous med|a_, where anls_oFroplc
show the time evolution of the concentration profile forthreedISperSIon appears intrinsically. The anisotropy exhibits a

sets of parameter valués, 5). It can be noted that the maximum in the velocity direction and the minimum in the
concentration mainly diffus,es élong the directidp which perpendicular directions. In this case, the dispersion tensor is

depends on the rati@, as we claimed: for < 1 it tends to written as [25,26]
the directionf,, while for x > 1 it tends to in the direction Vv
f1, whenk = 1, the concentration orients alofig+ f5. D = ar|v[l+ (ar - O‘T)m @37)
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where «;, and ar are the longitudinal and transverse dis- cients and diffusion anisotropy. The problem has been for-
persivity respectively. Since anisotropy axes are orthogonahmulated in terms of a non-orthogonal basis in order to ac-
we choose an orthonormal vector basis Withn the direc- commodate anisotropy. There appear naturally two basis vec-
tion of the velocity (direction of maximum dispersion). Thus tor: the non-orthonormal constant basis in terms of which the
v = vfy, and therefore in @-dimensional system we write  problem takes its simplest forrif; }, and the time-dependent
Cartesian one defined iy's eigenvectors{d;}, which di-
Dij=v ( O‘OL 0 ) , (38) agonalizes the diffusion tensor. It has been shown that the
T coordinate system where the equation takes its simplest form
and Eq. (5) gives is not{d;} but {f;}. Although these basis are different in
general, the direction of maximum dispersidd, }, at large
times, asymptotically approachesfiof; or f; + f5, depend-
ing on the value of the ratie = x1/x2
aC We have particularly discussed the advection-diffusion
_O‘T”TM (40) equation in the context of its application to particle or so-

. . . lute transport in stochastic velocity fields. Here the diffusion
Thus the model of the previous subsections can be applieflsor is given in terms of a time integral of the correlation
with x1 = arv andx, = arv. Here the transformation ¢,ncion. The resulting transport behavior can display fea-
matrix a;; is a rigid rotation of anglé? from the Cartesian  yres of the so called sub- or super-diffusion, where the stan-
reference systerfe; } to the{f;} system. Therefore dard deviation increase in time with a power lower or lager

g1 = —aLva—C +vC (39)
aul

g2 =

cosQ sinQ the the unity, respectively. A known case that consider power
Qij = ( _5inQ  cosQ ) . (41)  law anisotropic dispersion coefficients [2,3,24,25] was exam-
ined, and we analytically reproduced the numerical results
andA;; = (af;) ™! = ay;. they obtained [3].

Non-diffusive transport can be introduced in this model  Finally, an interesting direction of future work might be
by assuming thak;, = ay(t) andar = ar(t) are functions  to extend this model to the domain of fractional diffusion,
of t conveniently chosen as it was done in the previous examwhere non-locality (in space and time) naturally arises.
ples. The solution for the tracer concentratiOfw, z2,t)
will be that in Eq. (19) where the proper corresponding vari-
ables are to be introduced{; = a;;,g = 1, v2 = 0). In this
example it is easy to see thdf = f;.
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