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Wigner functions of free “Schrodinger cat” states
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We study the evolution of a free “Sdbdtinger cat” state (a superposition of two coherent correlated states moving in opposite directions)
using the formalism of the Wigner function. Two possible mechanisms to spatially separate the two states are considered: a “quantum sling”
and a Paul trap that produces unstable motion. The numerical analysis shows how the two superposed states move away of each other, whi
keeping an interference term between them that is typical of quantum phenomena.
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Estudiamos la evoluan de un estado libre de "gato de Satiinger” (una superposizi de dos estados coherentes réadiose en direcciones
opuestas) utilizando el formalismo de la fubieide Wigner. Se toman en cuenta dos posibles mecanismos para separar especialmente los
dos estados: una "resorteraagtica” y una trampa de Paul que produce movimientos inestables.aidiamungrico muestra @mo los

dos estados superpuestos se alejan uno de otro, conservando al mismo tiempo entre@liomtmsde interferencia que sdpitos de los
fenbmenos canticos.

Descriptores: Funciones de Wigner, espacio fase, estados amians.

PACS: 03.65.Ca; 03.65.5q

1. Introduction A particularly convenient way to describe the quantum
state of a system is through the use of the Wigner function,

Coherent states [1] have the minimum dispersion in positiorfvhich permits to visualize the pseudo-probability density in
and momentum allowed by the Heisenberg uncertainty prinPhase-space (se,g, Ref. 11). The Wigner function is anal-

ciple; they are analogous, at the quantum level, to classic&90us to a classical joint probability function, but it can take
states. They can also be defined in many other ways; foRegative values, which is precisely the benchmark of quan-

instance, as eigenstates of the annihilation operator of a hafum effects. _
monic oscillator. Wigner functions have been studied under several phys-

ical conditions. The Wigner function of a Séuinger cat

There are several interesting generalizations of COheren?tate exhibits typical Gaussian-like probabilities located at
states. Thus, for instance, coherent correlated states [2] sat: yp b

isfy the minimum dispersions and correlations allowed by the WO different regions of phase—s.pace, with an additional in-
terference term that takes negative values.

more general Robertson-Sékinger uncertainty relations. . . .
The even and odd coherent states for harmonic oscillators, The aim of the present paper is to study the behavior of

introduced in the 1970s by Dodonov, Malkin and Man’ko [3] an unboun_d or free_ S_ctmlnger cat st_ate._We are particularly
et 1 o .~ interested in describing the separation in phase space, of the
and later called “Sclidinger cat” states [4], are superposi-

tions of coherent states; they are closely related to cohererwo coherent correlated states and their interference. For this

correlated and squeezed states [5]. Since @&thger cat purf)r?sseéc\:’vezujveethfe\é\gg?;:éung::grnafloégg';ﬂan of a para-
states have a wide class of application in quantum optics, the|¥1e ' P 9 P P

have been much studied in recent years and have been re?rlé tl:(e:r?cscnl'la'l:]cjers\}\/ithﬁtell’sfluir;t%ics”I::grir\:\'::’toh dﬂr(?ee ddiﬁpseggegt
ized in laboratories: for ions in Paul trap by Moneteal. [6], q Y- 9 L

oo . and the particular cases of a quantum sling and a Paul trap
and by Bruneet al.[7] for photons in microcavities. . i .
are considered; numerical analysis of a free 8dimger cat

Schidinger cat states in time varying field have inter-giate in these two situation is presented. Finally we present a
esting properties of their own. In particular, the behaworSumrnary of results in Sec. 4.

of these states in a Paul trap, which has a time varying fre-

guency, has been studied by Césimet al. [8]. Another ) .
situation is the “quantum sling”, proposed in Ref. 9, which 2. Parametric oscillator
consists of an abrupt release of a particle, initially bound t
a harmonic oscillator, leading to a free particle state. Th
guantum sling effect for a Sobdinger cat state has interest- 9 2 m o,

ing implications, since it describes a situation in which the Zha‘l’ = | omaz T 3¥?® v, (1)
two states of the “cat” move in opposite directions; thus, for

instance, the model was applied by Dremin and Man’ko [10jwith time varying frequencyy = w (t), admits a solution of
to the study of particles emitted by nuclei. the form

2I’he Schodinger equation for a parametric oscillator,
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m f 9 2m a
= Nexp —=——= —_—= 2 hm
v p{ st TN fx}’ @ e, =2
where N is a normalization factor; and the functighis a e o o w i |Nj[|2 9
solution of the classical equation of motion x| [fa”+ ffa™ + f f 2|N 2 lal*+1]1, (10)
:F
f+w =0, and the correlation is given by
fHM)f=0 3) dth | b
with the Wronskian 1 A _ ,
Slep+pr)e =S| f fra® + ffa™
FIo=711 =2 4)
2
It turns out that the operator +% (f*f + ff*) (2 ‘Ni‘Q la® + 1) (11)
. | V|
. —1 N .
= or T - ese dispersions and correlations satisfy the Robertson-
0= Gyt M4 1P ) These d d correl fy the Rob

Schibdinger uncertainty relations [9].
is a constant of motion and can be identified with the annihi-

lation operator (in the Schdinger picture) [7]. Its eigenstate, . .
defined ag |a) = a | ), is, in coordinate representation, the 3- Wigner function
state defined by Eq. (2). It is a coherent correlated state [7].

Now, an even or odd (+ or -) Sdbdinger cat state can be
defined as a superposition of two coherent states:

1
; 3 Wi(g,p) =
V=N exp {27;%';1‘2} (exp { (2;?) O}Om} 27;

x / e~ P/ I (q - f)\lf (q + g) dz. (12)

iexp{(?)éo}ox}>, (6) o ?

It can be interpreted as a pseudo-probability distribution
where in phase space, and satisfies the normalization condition

We now consider the Wigner function, which is defined for a
pure state as

1 2 px N
m 2 Rl f/) /W dpdg = 1 13
whf*f) pepEs—TCC (o) dpda =1 4

el =2
The Wigner function is a Gaussian jnandq for a co-
are normalization factors. herent state. For a Sdidinger cat state, it is a superposition
Since of two gaussians with an additional interference term. For
an harmonic oscillator, the Gaussian rotates around de origin
(ax]a]as) =0 = (a| at los ), (8) with the same frequency as the oscillator.

In this paper, we are particularly interested in studying a
the expectation values of position and momentum are zerqsarametric oscillator with a time dependent frequency. The
< p >=< ¢ >=0. The dispersions for the cat state, as giverformalism of Sec. 2 can be used for this purpose. From the
from the above expressions, take the form definition (5) for the annihilation operator, we write thand

A g coordinates as:

<x2>i:%
@ 1\ atrat) o=y [ (fak fa) (1)

from where it follows with some straightforward algebra, that
| the Wigner function of a Schdinger cat states is given by

N+|?
% [f*2a2+f2a*2+ff* <2|N |2 Oé|2+1>

N7

1

a2 2 2 2 s N
Wi(a, ax)= |Ni2|f(m7r) exp {&Ee (g f*/f)+ |a0\2}(672‘°‘7a°‘ te2latraol 19,=21el" 0os[2i (o a—ap o )D (15)
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As expected, this function consists of three terms, thdunction:
first two being Gaussians representing each state of the

cat in phase space, and the third term being the inter- £(t) = wg%ei“t, fort <0, (17)
ference between these two superposed states. For the - w*%(1+wot) fort > 0.
usual harmonic oscillator of frequency, we simply have 0 ’
_, —1/2 ; _ . ) . .
f=wo / exp{-iwot} ) ) ) In order to simplify the notation, we define dimensionless
The contrast/, defined as the ratio between the magni-yariables
tudes of the interference and Gaussians terms, turns out to be
just mwo)% ( 1 )é
§d=q|—— p= , 18
I = exp{4|ao[?}. (16) 1 q( 2h P=PA oo (18)
It depends only of the initial value,. such that
3.1. Wigner function for the quantum slin o
9 9 g Qo = qo + Do, (19)

As an application of the previous formalism, we now con-

sider the example of a “quantum sling” as defined in Ref. 92nd

This model describes a patrticle in a harmonically oscillating , ,

potential that is released suddenly at time 0. In the nota- a(t) = e*tg + e’ 'p. (20)

tion of the previous section, it is described by the following
In terms of these variables, the Wigner function given in

|  Eqg. (15) takes the form

2
2eleol

T (62‘0“”2 + 6_2‘0“"2)

—iw — .12 —iw — |2
Wilieo = (exp{fQ[e taof(q+zp)] }‘FGX}D{*?‘@ ta0+(q+zp)|}

+2exp {—2 |7+ iﬁ\2} cos (—2i [e” " g (g + ip) — ™oy ( — ip)]) (21)

for the oscillatory regime before the release of the sling. As
expected, there are two Gaussians rotating one around the

other with an interference inbetween; this case has been ana- After the sling is released, that is, for> 0, we have
|yzed previous|y by many authors. o (t) =q+ (1 + int) p. Then, the Wigner function takes
|  the explicit form

2¢laol?
Weliso :71- (62\w0|§i e—2|ao\2) (eXp {—2 [(cj — o — wtp)*+(p — 130)2} }

+exp {2 [(q+ Go — wtp)® + (P + Po)?] } £2exp {2 [(7 — wtp)® + p*] } cos[4(qop — Pod — Powtp)]) (22)

In this case we have two Gaussian states separating from
each other at constant speed, with a very large interferen&mhereA and B are related talc and ac potentials, respec-
term between them. This behaviour is shown in Fig. 1, whergively, andwy is the radiofrequency in the trap [12].
we present a particular case of the cat state after it has been This form of the potential leads directly to a classical
released from the sling. The interference terms are shown iaquation of motion that is just the Mathieu equation
close-up in Fig. 2.

d2
3.2. Paultrap g2 T (a+2gcos2r) f =0, (24)

As a next example, we consider the motion of an ion in a PaufNéréa andq are dimensionless parameters related to the
trap. The time varying potential has the form physical parameters of the trap, andis a dimensionless
time: 7 = wot/2. Itis well known from the theory of Mathieu

w?(t) = A+ Bcoswt, (23) functions (seeg. g, Abramowitz [13]) that there are stable
and unstable solutions depending on the combined values of
the parameters andg.
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1/2
0

In the following, we present a numerical study of the evo-
lution of a Schédinger cat state in a Paul trap. Two partic-

(25)

f,

F=w

ﬁich satisfies the initial conditions

W
W

are considered.

are particularly interested in the unstable case, since it cor-

ular cases, one stable and one unstable,

(26)

where derivatives are with respect to the dimensionless

as such

has some similarities with the quantum sling described in the

previous section.

respond to an unbound Séidinger cat state and

For our numerical study, we have chosen parameters vatime 7.
ues: a = —0.15, ¢ = 0.80 for the stable case. As for the

unstable case, the following values were taken=-0.5

The Mathieu functions corresponding to these values of
the parameters are given in Fig. 3, both for the stable and the

0.3. Furthermore, we define the dimensionless function unstable case.

q:

.....a..ﬁ..‘

AL

FIGURE 1. Wigner functions for a quantum sling, after release. The initial valag is- 1 + <.

FIGURE 2. Close-up of the interference terms in Fig. 1
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FIGURE 4a. Dispersion for Schidinger cat state ok z? >y
o _ _ < p* >. Stable case. - -< 22 >, — < p? >
FIGURE 3a. Real and imaginary parts of the Mathieu function for
the stable case: (a=-0.1, g =0.75) - - - Im(f), — Re(f)
2+
1+
10 2 0 40
-1
2H
FIGURE 4b. Dispersion ok xzp + px >. Stable case.
3500}
T [
3000}

FIGURE 3b. Real and imaginary parts of the Mathieu function for 2500!
the unstable case (a=-0.5,9=0.3) F
2000}

In Figs. 4 and 5, we present the dispersions of position 15gq
and momentum for a cat state, together with the position- g
momentum correlation. The stable case, Fig. 4 is presentec!000;
for the sake of completeness; as expected, the figures are ver ggqt
similar to those obtained by Cagtzset al.[8] for similar val- E

ues of the parameters. 2 4 6 8

Numerical results for the dispersions and correlations inFicure 5a. Dispersion of Sciidinger cat state fox z2 >y
the unstable case are shown in Fig. 5. In this case, it isc p?> >. Unstable case. - -< 22 >, — < p* >
seen that all these functions grow rapidly after a certain time,
which reflects the unstability of the system. 15000

In Fig. 6, we show the Wigner functions in the stable case 4,54,
as it evolves in the phase space plane. We used the fact the
o = —i(fg— fp) in terms of dimensionless variablgs 10000
andp. From the figures, it can be seen that the dispersions ...
are squeezed, the highest dispersions ipeing in coinci-
dence with the lowest dispersionspnand viceversa; as for 5000

the correlation, it remains constant as expected. .
2500 #

~—

The Wigner function for the unstable case is shown in
Fig. 7. The dispersions spread with time and the two states
separates with an increasing velocity. The strong interference 2 1 6 8
term between the two states is clearly visible. FIGURE 5h. Dispersion ok xp + pz >. Unstable case.
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0.8. The interference terms are very prominent. The whole structure rotates with a variable angular

=-0.15,q=

FIGURE 6. Stable case a

velocity.
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FIGURE 7. Unstable case, a =-0.5, q = 0.3. The gaussian states separate with incresing velocity.
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4. Summary not vanish, but get squeezed in thdirection and spreads in
theq direction.

We have obtained the graphical representations of the Wigner A similar behavior also occurs for the unstable case of the

functions for a Schidinger cat state in the case where there is . ilator. Th in diff i< that th -

spatial separation between the two superposed semiclassi(pqﬁramemc osciflator. The main diierence 1S that the semi

states. As is clear from the figures, there is a strong interfer: assical states do not move along straight lines at constant

ence term which takes negatives values in phase space, tha%eed. A squeezing of states is also present.
revealing the quantum nature of the state. It is important to point out that, in a real situation, the in-

In the case of a quantum sling, the Saffinger cat state is  terference will be lost by decoherence due to an interaction
initially described in phase space, as expected, by two GaudVith the environment (see, g, Hacyan [14], Barberis and
sians rotating one around the other, with the usual interfertlacyan [15]). Our results show that a strong coherence be-
ence term between them. After the release of the sling, thBveen the two superposed states remains in an idealized situ-
two Gaussians separate at constant Speed, moving a|ong [ﬁgon. The conclusion, therefore, is that the interaction with
¢ coordinate. There is a squeezing of the state, since the di§2e environment must be very strong in a realistic situation
persion of the position increasestaswhile the dispersion of  for the decoherence to take place rapidly. This process will
the momentum remains constant. The interference term dod studied in a future work.
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