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Recurrence relations of special functions and group representations
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It is shown that the recurrence relations satisfied by several special functions can be related to representations of Lie algebras of dimensiol
three or four. It is also shown that in some cases these recurrence relations can be related to the isometries of constant-curvature twc
dimensional manifolds.
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Se muestra que las relaciones de recurrencia satisfechas por varias funciones especiales pueden relacionarse con represégedcames de
de Lie de dimengin tres o cuatro. Se muestra tag@mique en algunos casos estas relaciones de recurrencia pueden relacionarse con las
isometias de variedades de dimemsidos con curvatura constante.
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1. Introduction

d
As is well-known, the spherical harmonics of a given order (a(x)d +b(x) + nr(m)) fa(x) = Anfrsi(x),
. . X

form a representation space for the rotation group SO(3) and

some recurrence relations satisfied by the spherical harmon-
ics or the associated Legendre functions can be readily ob-
tained making use gf_the commutatl(_)n_ relations of the ge.nWherea, b, ¢, r are real-valued functions aof that do not
erators of the group; in fact, the explicit form of the spheri-

L . : ontainn but may depend on other parameters and .,
cal harmonics is frequently obtained using the generators o .
L . . do not depend or. Some examples are given by the Bessel
the group. In a similar manner, the Bessel functions of in-

X functions, the associated Legendre functions, the associated
tegral order are related to the Euclidean group of the plan : .
. . o aguerre polynomials, the Gegenbauer, Hermite and Cheby-
and in both cases one can establish addition theorems mak- .
shev polynomials [1,3-6] (see Table I).

ing use of the unitarity of the representation. Other spe- . . .
. . X X . As we shall show, it is convenient to define the operators
cial functions are also related to Lie groups in various ways

(see.e.g, Refs. 1, 2 and the references cited therein) and in T, = i 0 b ) 0
many cases the relationship arises naturally in some problems + =€ a(x)a? +b(z) — "(x)aj ’
of quantum mechanics.

(ate) g + o) = @)} £ul0) = pinfor(@). @

In this paper we show that if a family of special functions T = —e % (a(:p)a +c(z) + ir(x)a> , (@
satisfies recurrence relations of a certain type, then the prod- Oz Oy
ucts of these functions with exponentials form bases for irre- )
ducible representations of Lie algebras of dimension three or 0= _Z@’

four. In some cases the transformations generated by theS% . . .
. . . - . : Wwherey is a new variable, and the functions

Lie algebras are isometries of two-dimensional manifolds;

in particular, we find that the recurrence relations for the Fo(x,y) = falz)e™. (3)

Chebyshev polynomials are connected with the isometries of _

an hyperboloid in three-dimensional Minkowski space. It isThen Egs. (1) are equivalent to

also shown that by defining appropriately the inner product,

one obtains a unitary representation for the corresponding Lo Fn = AnFoa, T-Fn==pnFna )
Lie groups. and
ToF,, = nkF,. 5)
2. Eecurrence relations and related Lie alge-  pjaking use of the definitions (2) and (3) one finds that
ras

T T, F=ec"™{a®f' +ald +b+c—r)f,
Several special functions of mathematical physics erend at b’ + be + nar’ + ner — (n + 1)br
least on one parametet, and obey recurrence relations of

the form —n(n+ )72 f.}
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TaBLE |. Explicit expressions of the functions appearing in the recurrence relations (1)

Functions fn a(z) b(z) c(z) r(x) An Un
Associated Legendre P V1—22 0 0 1“'_302 n—m n+m
Gegenbauer Cy z2—1 2ax 0 T n+1 -n—2a+1
Legendre P, z? -1 x 0 x n+1 -n
Chebyshev T, 22 —1 0 0 x n -n
Laguerre Ly T a+l—=zx 0 1 n+1 -n—a«
Bessel JIn 1 0 0 —1/z -1 1
Hermite H, 1 —2z 0 0 -1 2n

which, according to Egs. (4), must coincide with
“Anttnt1€™ fr,
thus
af! +a(d +b+c—r)f + [ab + be + nar’ + ner
—(n+1)br —n(n+ )7 f0 = Mting1fn. (6)
Similarly, one finds that
T T _F=e"™{a*f! +a(a +b+c—r)f, +[ac +bc
—nar’ —nbr + (n — Der —n(n — 1)r?]f,}
and therefore
af! +a(d +b+c—r)f +[ac’ + be — nar’ — nbr
+(n—1er —n(n — D712 frn = ndn_1fn. (7)

By comparing Egs. (6) and (7) it follows that

al' =) —rb-c)=K, (8)
and
2(ar’ —r%) = N, 9)
whereK andN are independent of andn, and
)‘nlu‘n-i-l - ,un>\n—1 = Nn+ K. (10)

wheren is a constant. From the commutation relations (11)
one finds that

[T, T_] = e "™Y(NT, + K)e'¥

= NTy+ (Nno + K). (13)
Therefore, choosing, = —K /N, we obtain
[Ty, T_]=NTy,  [To,Te]=+Te.  (14)
On the other hand, Egs. (4), (5), and (12) give
Ty (e7 ™V Fy) = An(e ™"V Fyp1),
T (e VF,) = —pin(e” ™V F, 1) (15)
and _ _
To(e™"™ Y Fy) = (n—mno)(e” "V Fy). (16)

By combining the commutation relations (14) one finds
that

Cy=TyT- + IN(TE — Tp) 17)

commutes withfi andT}, which means that’, is a Casimir
operator. In a similar manner one finds that wiénr= 0, the
operator

CQ = T+T_ + KTO (18)

commutes withl'y andT,. The eigenvalues of’; andC>,
denoted byk; and ko, respectively, corresponding to the
functions given in Table | are listed in Table II.

Thus, the operators (2) must obey the commutation relations According to the preceding discussion, we have four dif-

[Ty, T-]=NTp + K, [To, T] = £T%, (11)
where the constantd and K can be calculated by means
of Egs. (8) and (9) or (10). The values &f and K for the
functions contained in Table | are given in Table II.

The Lie algebra generated Y., T, Ty and, possibly,

the identity, depends on the valuesiéfand N. WhenN is

different from zero, it is convenient to introduce the operators

Ty = e YT 0V = Ty + nor(z)e™™,  (12)

ferent cases.

() N > 0. WhenN is positive, the Lie algebra gener-
ated byT, andTj is isomorphic tosu(2) andso(3).
This case contains the associated Legendre functions
(see Table II).

N < 0. WhenN is negative,ﬁE and T, generate a

Lie algebra isomorphic teu(1,1) ands((2,R). This

case contains the Gegenbauer, Legendre, Chebyshey,
and Laguerre polynomials.

(ii)
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TaBLE Il. Values of the constants appearing in the commutation relations (11) and (14).

Functions N K ng K1 K2 w(x)
Associated Legendre 2 0 0 m(m+ 1) e 1
Gegenbauer -2 —2a —a a(l —a) e |1 — x?|o—3/2
Legendre -2 -1 —1/2 1/4 [1— 2?7t
Chebyshev -2 0 0 0 [1— 22| 73/2
Laguerre -2 —a—1 —(a+1)/2 (1—-a?)/4 x* e
Bessel 0 0 e 1 e x
Hermite 0 -2 e e 0 e’

(i) N =0, K = 0. WhenN and K vanish, the algebra whereN,, is a normalization constant such that the functions
generated byl'y. and T, is isomorphic to that of the @,, are normalized with respect to the inner product (19), for
Euclidean group of the plane. This case contains thany transformation, generated by the Lie algebra (11),
Bessel functions.

. . . 70, = Zz’nq)nH
(iv) N =0, K # 0. WhenN is equal to zero buk is ;

different from zero, the algebra generated®y, Ty,

and the identity is a central extension of the algebra ofwhere the matriX7,,,,) is unitary. (Recall that in some cases
the Euclidean group of the plane. This case containghe functions cannot be normalized in the strict seass,

the Hermite polynomials. .

/ Jolaz)J, (' 2)zdr = o~ 6(a — a').)

3. Unitarity of the group actions 0
Therefore, if(z,y) and(2’,y’) are two arbitrary points, we
have

(o= [t [ dyeen TEpaen 09 Y a gy

wherew(x, y) is some weight function; the functiom and .
the limits of integration are to be chosen in such a way that, = (T®,)(2,y) (TP,)(,y).  (22)
for a space of functions obeying the appropriate boundary n

conditions,Ty = Ty andT’y = T_. The self-adjointness of ¢ yare exists a transformatiah in the group generated by
Ty requires thatv be a function ofz only, while the condition 0 e algebra (11) such thaf @,,)(z’,y') does not van-

We introduce the inner product

T S
Ti =T- amounts tar’ + aw'/w —b+r = ¢, ie, ish for only one value of. (as in the case where thg are
b+c—r the associated Legendre functions or the Bessel functions of
In |aw| = / a d. (20) integral order, sinceé’? (1) = 6,0 and J,(0) = &,0), then

the right-hand side of Eq. (22) reduces to a single term and

Then, 7] = T, and the operator§’, and C; are self-  Eq. (22) becomes an addition theorem for the functins
adjoint. The weight functions corresponding to the families

of special functions appearing in Table | are listed in Table II.

Differentiating Eq. (9) it follows tha®r/a=r"/r'+a’ /a; 4. Constant-curvature manifolds
therefore, whem + ¢ = 0, from Eqg. (20) we find that, apart
from an irrelevant constant factor, the weight function can béVhenb(x) andc(z) vanish, the operators

taken as
(Ty +T-) T, —T.)
2

w = |a3TI‘_1/2' (21) To, Ti = R and T = ( %
(3

By virtue of Egs. (4), (5), (15), and (16), the functions
fn(z)e™ or fn(x)ei(n—no)y are mapped into linear combi- can be considered as vector fields on a two-dimensional man-
nations of themselves under the transformations generated ild, M. This happens, for instance, for the associated
the Lie algebra (11) or (14), respectively. Letting, for in- Legendre functions, the Bessel functions and the Chebyshev
stance, polynomials (see Table I). In the case of the associated Leg-
4 endre functions, taking/ as the sphere withx = cos
O (2, y) = N fn(z)e™, andy = ¢, wheref) and¢ are the usual polar and azimuth

Rev. Mex. 5. 49 (1) (2003) 53-56



56 G.F. TORRES DEL CASTILLO

angles, respectively, the operatdis(: = 0,1,2) generate Using Eqg. (9) again, one finds that the Gaussian curvature
the rotations of the sphere and the functions (3) (which, apamf the metric (25) is equal taV/2. Furthermore, letting
from a constant factor, are the spherical harmonics) are the = det(g,., ), one has,/|g| = |a*'|~!/2, which coincides
separable eigenfunctions of the Laplace—Beltrami operator okith the weight function obtained in the preceding section
the sphere. Analogously, in the case of the Bessel functionfEq. (21)]; thus, in the case under consideration, the area el-
of integral order, takind/ as the Euclidean plane with=1r  ement appearing in the inner product (19) is the area element
andy = ¢, wherer and¢ are the usual polar coordinates, defined by the metric (25).

the operators; generate the orientation-preserving isome-  Making use of the general expression

tries of the plane and the producls(z)e*™¥ are separable

eigenfunctions of the Laplace operator. As we shall show, ) 1 9 of
the Chebyshev polynomials are also related to the Laplace— Vif= T@ (\/EQW 8xu)
Beltrami operator of a constant-curvature manifold. 9

In the case of the Chebyshev polynomials, the opera: . N .
tors (2) are explicitly given by for the Laplace—Beltrami operator, whegg*) is the inverse

of (g,.), EQ. (24) yields

4 0 0
Toz_iﬁ, Ty=+ et ((x2—1) ¥ zx) . (23)
9y gz~ 0y V2f = (1-22)202f — (1—22)2d, f — (1—22)92f. (26)
We look for a metricg,,, dz*dx”, with
v =12, ' =z, 2=y, Therefore, the2 functiong, (z,y) = T,(x)e™¥ are eigen-
ti fV< with eigenvalue equal to zero. It may be
which is invariant under the transformations generate uor;ﬁ:;odn?h;t with €ig g y
by (23),i.e,
X"0gyp /02" + g, X" [02” + g, 0X " 02" = 0, V2=Ty T~ T3+ Ty =T + T3~ T3.
whereX*9/0x* is any of the vector fields (23). We find that,
up to an overall constant factor, A family of functions, T, (), which contains the Cheby-
, dx? dy? shev polynomials fotv = 0, is obtained looking for separable
Guvdatdz” = =222 1-a2 (24)  eigenfunctions of the Laplacian operator (26); if

which has signaturé+—) for —1 < z < 1. A straightfor-
ward computation shows that (24) is the metric induced by
the Lorentzian metric-d X2 — dY? 4+ dZ? on the surface

VAT (x)e™) = T (x)e™,

n

X2+ Y2 - 72 =1 parametrized by one obtains
¥ — cos Yy v — siny 7 T o
Nk T A2 T A2 (1—2*) T — 2T + <n2— 1ZQ)T;f:O. (27)

It can be readily seen, making use of Eq. (9), that the vec-
tor fieldsT; with b(z) = c¢(x) = 0 generate the orientation- The functionsZ'®(z) share the same raising and lowering op-

preserving isometries of erators (1) for all values af and, for a fixed value of;, the
da e’ — dx? dy? o5 functionsT (x)e™ form a basis for an irreducible represen-
G L7 AT = a?(z) + a(z)r' (z) (25)  tation of SQ(2,1).
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