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A unified stochastic description of the effects of internal and external fluctuations on the thickness and roughness of a biofilm is given in terms
of linear and nonlinear master equations (ME). In the absence of detachment theME is linear, while erosion renders it to be nonlinear. For
the linear case the influence of the environment is modeled through an external noise in one of the transition probabilities per unit time and
theME is solved analytically. For the nonlinear case we only consider internal fluctuations and use van Kampen’s systematic expansion to
solve theME. In both cases the thickness and roughness dependence on time is calculated and expressed in terms of the first two moments
of the probability distribution function. An analytical expression for roughness as a function of thickness is also obtained in both cases. For
both cases we compare our analytical results with reported experimental measurements of these quantities forP . Aeruginosa.The best fitting
values of the transition probabilities and external noise parameters are determined, so that the relative errorδ between the calculated and the
experimentally measured values of the thickness and roughness is minimized. We find that for the linear case the mean relative error< δ >

is relatively small, 1.8 %-6.2 %, while in the presence of detachment is slightly higher, 6.7 %- 9.3 %. We close the paper by discussing the
advantages, scope and limitations of our approach.
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Se presenta una descripción unificada de los efectos producidos por fluctuaciones internas y externas sobre el espesor y la rugosidad de
una biopeĺıcula en t́erminos ecuaciones maestras (ME) lineales y no lineales. En ausencia de desprendimiento la ME es lineal, pero la
presencia de erosión la hace no lineal. En el caso lineal la influencia del ambiente se modela introduciendo ruido externo en una de las
transiciones de probabilidad por unidad de tiempo y la ME se resuelve analı́ticamente. Para el caso no lineal sólo consideramos fluctuaciones
internas y utilizamos el desarrollo sistemático de la ME introducido por van Kampen para resolverla en forma aproximada. En ambos
casos la dependencia temporal del espesor y la rugosidad se calculan y expresan en función de los dos primeros momentos de la función
de distribucíon de probabilidad. También se obtienen expresiones analı́ticas para la rugosidad en función del espesor y se comparanéstos
resultados analı́ticos con mediciones experimentales reportadas para P. Aeruginosa. Se determinan los valoresóptimos de las probabilidades
de transicíon y de los paŕametros de ruido externo de tal manera que el error relativoδ entre los valores calculados y medidos del espesor y la
rugosidad sea ḿınimo. Aśı encontramos que para el caso lineal el error relativo medio< δ > es relativamente pequeño, 1.8%-6.2%, mientras
que en presencia de desprendimiento es ligeramente mayor, 6.7%-9.3%. Concluimos discutiendo las ventajas, perspectivas y limitaciones de
nuestro enfoque del problema.

Descriptores: Biopeĺıculas, procesos estocásticos; espesor; rugosidad; ecuación maestra; ruido externo.

PACS: 05.40.-a, 05.40.Ca, 87.68.+z

1. Introduction

A biofilm is a layer-like aggregation of cells and cellular
products attached to a solid surface or substratum [1, 2]. An
established biofilm structure comprises microbial cells and
extracellular polymeric substances, has a defined arquitec-
ture, and provides an optimal environment for the exchange
of genetic material between cells. Communication between
cells may in turn affect biofilm processes such as detachment.

Biofilms occur in a large variety of engineering sys-
tems such as streambeds, water pipes, groundwater aquifers,
among others [3]. They play an important role in engineering

processes like biological activated carbon beds, land systems
or wastewater treatment and other chemical processes, where
high biomass concentrations, which allow large volumetric
loading, are maintained without the need for solids separation
and recycling [4]. In spite of their utility, though, biofilms
can also create industrial and practical problems, such as the
prevention of heat flow across a surface or the increase of
the rate of corrosion at a surface [5]. This illustrates the role
played by biofilms in certain infectious diseases and their im-
portance for public health.

A clear picture of attachment can not be obtained with-
out considering the effects of the substratum, condition-
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ing films forming on the substratum, hydrodynamics of the
medium, phyicochemical characteristics the medium, and
various properties of the cell surface. Biofilm arquitecture
is heterogeneous both in space and time, constantly changing
because of external and internal processes. Although from
a macroscopic point of view an idealized biofilm is a thin
homogeneous layer of constant thickness, microscopically it
is a nonuniform structure characterized by a variable thick-
ness and polymer densities [6]. This heterogeneity may play
an important role in hydrodynamic fouling, microbial influ-
enced corrosion, substrate conversion [7] and biocide effi-
cacy [8]. Also, owing to their irregular surface, biofilms in-
crease the fluid’s frictional resistance [5] and the wall shear
stress [9]. These effects, in turn, influence the effective
diffusion coefficient in aerobic biofilms, where the oxygen
distribution strongly depends on flow conditions and on the
biofilm’s structure [10, 11].

In the usual macroscopic description of biofilms two vari-
ables are commonly used to characterize them, namely, thick-
ness,E, and the aereal densityS. The latter is the amount of
dry biomass which is attached to a unit area of substratum
and that it depends on environmental conditions. The solid
surface may have several characteristics that are important
in the attachment process, for instance the extent of micro-
bial colonization appear to increase as the surface roughness
increases. This is because shear forces are diminished, and
surface area is higher on rougher surfaces [5]. The rough-
ness,R, describes the standard deviation of the thickness and
helps to characterize the spatial inhomogeneity within the
biofilm [2]. Usually E is defined as the perpendicular dis-
tance from the substratum to the biofilm-bulk liquid interface
and determines the distance through which substrates and nu-
trients must diffuse to fully penetrate a biofilm. In the usual
macroscopic descriptions of biofilms, these state variablesE
andR, obey deterministic equations. However, it is observed
thatE may exhibit significant spatial or temporal variations
even under conditions of constant substrate loading and shear
stress [2, 12]. Although these variations may be accounted
for in a statistical way, a deterministic approach cannot de-
scribe their dynamics or predict its values [12, 13], because
strictly speaking roughness is a random, rather than a deter-
ministic variable. Thus, the previous one-dimensional view
of E should be enlarged due to the complexity of biofilm
processes, and may be viewed as the outcome of intrinsic
probabilistic elementary events like the birth and death of in-
dividuals in the biofilm’s population, and of complex mecha-
nisms for nutrient mass transport, such as diffusion or con-
vection [14]. Here we shall adopt a stochastic approach
and considerE as a random variable and, accordingly, the
roughness,R, describes the fluctuations around the average
thickness value. It depends on the number of microorgan-
isms present,n, which is itself a stochastic variable. From
this point of view, the behavior of thickness and its influ-
ence on other properties of the biofilm, should be accounted
for within the framework of a stochastic description of the
biofilm [15, 16]. The basic purpose in this work is to con-

struct simple stochastic models which allow us to describe
some of the complex and large variety of processes occurring
in a biofilm.

Now, it is well known that fluctuations acting in open sys-
tems may be conveniently classified into internal and exter-
nal fluctuations. The former are those self-originated in the
system, while the latter are determined by the environment.
Internal fluctuations are a consequence of the large number
of microscopic degrees of freedom of a many body system,
and are, therefore, averaged out in a macroscopic descrip-
tion. They scale with the size of the system and vanish in the
thermodynamic limit, except at a critical point where long
range order is established [17]. Their study is an important
and well known part of statistical mechanics [18]. In con-
trast, external fluctuations exist when a system is under the
influence of external noise, caused by a natural or induced
randomness of the environment of the system. These fluctua-
tions play the role of an external field driving the system and
they do not scale with its size [19]. Thus, if external noise is
present in a macroscopic system it will dominate over inter-
nal fluctuations [20].

In this work we construct a stochastic model for the be-
havior of the biomass fluctuations in a monospecies biofilm.
We follow an approach that we used in previous work [21]
and the elementary events of birth and death of individuals
are assumed to be Markovian stochastic processes. Thus the
stochastic time evolution of the biofilm may be described by
a Markovian master equation(ME). The attachment of the
biofilm is a complex process regulated by diverse charac-
teristics of the growth medium, substratum and cell surface.
Furthermore, the biofilm structure may also be influenced by
the interaction of particles of nonmicrobial components from
the host environment.We shall model the influence of the en-
vironment as external noise acting on one of the transition
probabilities per unit time for the elementary events. The
dynamics of the fluctuations is described by means of a uni-
fied treatment of internal and external fluctuations introduced
by Sanchoet al. [22]. As will be shown below, this model
is capable of predicting the relationship between the average
values of biofilm thickness and roughness, owing to the com-
bined action of internal and external fluctuations.

To this end the paper is organized as follows. In the next
Sec. 2 we define the model and write down the basicME de-
scribing the time evolution of the corresponding probability
density. In the absence of detachment theME is linear, while
erosion renders it to be nonlinear. This means that in the for-
mer case the transition probabilities per unit time are con-
stant or linear functions of the number of microorganisms,n,
while in the latter case they become nonlinear functions of it.
In the linear case the random influence of the environment is
modelled by introducing an external, non-white, dichotomic
noise, into the transition probability per unit time for an or-
ganism to reproduce. Then the partial differential equation
for the associated generating function(GF ) is derived [15].
Since the transition probabilities also appear as parameters
in this equation, this procedure generates a stochastic partial
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differential equation for theGF which becomes a functional
of the noise source. Averaging this equation over the real-
izations of the external noise source, an equation for the ef-
fective generating function(EGF ) is obtained, and from it
equations for the first two moments of the corresponding ef-
fective probability distribution are derived. From these quan-
tities the relationship between roughness and average biofilm
thickness is obtained as a function of time and of the param-
eters defining both, internal fluctuations and external noise.
In the absence of external noise, in Sec. 3 the effect of de-
tachment is considered and the corresponding nonlinearME
is constructed. We use van Kampen’s systematic expansion
of theME [15] and derive a linear Fokker-Planck equation
(FPE) with constant coefficients from which equations for
E andR are derived and solved. In Sec. 4 we compare our
analytical results for these quantities in both cases, with their
experimental values, as obtained by Peyton [2] for a specific
steady-state biofilm, namely,P . Aeruginosa. The best fitting
values of the transition probabilities per unit time and exter-
nal noise parameters are determined so that the relative error
between the calculated and the measured values of biofilm
thickness and roughness is minimized. We find that theory
predicts the same type of behavior than the experiment with
errors that range between1.8%− 6.2% and6.66%− 9.29%
for the linear and nonlinear cases, respectively. Finally, we
close the paper by emphasizing the scope and limitations of
our approach.

2. Stochastic modeling

2.1. Internal fluctuations: constant transition probabili-
ties

Consider a biofilm of a species of bacteria withn individuals
at time t. If the processes of reproduction and death of the
individuals are considered as stochastic events,n becomes a
time dependent stochastic variable. Furthermore, if the age
of the biofilm is ignored, the time evolution ofn(t) may be
represented by a stochastic Markovian processes. In general,
n may be space dependent, but as a first approximation to the
problem this dependence will be neglected and the state of
the biofilm will be specified only byn(t). We assume that
the number of microorganisms only changes by one, so the
process is also a one step process. The time evolution of the
conditional probability density,

P (n, t) ≡ pn(t) ≡ P (n, t;n0, t0),

of having n microorganisms present in the biofilm at time
t, given that at the initial time their numbern0 was fixed,
obeys the usual master equation (ME) with the general
form [15, 16],

∂P (n, t)
∂t

=R(n+1)P (n+1, t)+G(n−1)P (n−1, t)

−[R(n)+G(n)]P (n, t). (1)

HereR(n) andG(n) denote, respectively, the so called re-
combination and generation transition probabilities per unit
time that, being atn, a jump ton − 1 or to n + 1 occurs.
These probabilities are extensive quantities, that is,

R(n) ≡ V r(n), G(n) ≡ V g(n),

whereV is the volume of the biofilm.r(n) is the natural
death rate of an individual andg(n) is the probability to pro-
duce a second individual by fission; both quantities are de-
fined per unit time and unit volume. In general, both,r andg
are arbitrary functions ofn.

Although the differential-difference equation, (1), gives
a complete description of the problem, it is easier to use the
complete representation provided by the generating function
(GF ), F (z, t), defined by

F (z, t) ≡
∞∑

n=0

znP (n, t), (2)

which yieldsP (n, t) and its moments through the general re-
lations [23]

P (n, t) =
1
n!

[
∂n

∂zn
F (z, t)

]

z=0

, (3)

〈nm〉 ≡
∞∑

n=0

nmP (n, t) =
[
(z

∂

∂z
)mF (z, t)

]

z=1

. (4)

We shall consider first the simplest case wherer(n) ≡ α and
g(n) ≡ β are fixed constants. Then Eq. (1) reduces to

·
pn= αV (E − 1)pn + βV (E−1 − 1)pn, (5)

where the action of the step operatorsE± is defined for an
arbitrary functionf(n) by

E±f(n) = f(n± 1). (6)

For this caseF (z, t) obeys the differential equation

∂F (z, t)
∂t

= V [β(z − 1) + α(
1
z
− 1)]F (z, t), (7)

whose exact and analytic solution is well known [15]. In pre-
vious work we have generalized this equation into a stochas-
tic equation by introducing external noise into one of the tran-
sition probabilities per unit time to model the dynamics of the
process of imbibition in a Hele-Shaw cell [21]. Here we shall
use a similar approach to describe the behavior of internal and
external fluctuations in a biomembrane to derive expressions
for its thickness and roughness.

2.2. Effects of external noise

To introduce external noise into (7), we assume that under a
natural or induced randomness of the environment, the gener-
ation transition probability per unit timeβ becomes a random
quantity instead of being constant [21]. That is

β = β0 + ζ(t), (8)
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where the mean valueβ0 ≡ β is a positive quantity andζ(t)
denotes the fluctuations aroundβ0 induced externally into the
system.

To describe in a unified way both, the dynamics of the
internal as well as the external fluctuations ofn, we use the
approach developed by Sancho and San Miguel [22] and re-
viewed in Rodŕıguezet al. [21]. Therefore in this section we
only write down explicitly some of the relevant steps. Substi-
tution of (8) into (7) leads to the following stochastic partial
differential equation for theGF in the presence of external
noise

∂F (z, t)
∂t

=

V

[
β0(z − 1) + α(

1
z
− 1) + (z − 1)ζ(t)

]
F (z, t). (9)

This definesF (z, t) as afunctionalof ζ(t).
Averaging this equation over the realizations of the so

far arbitrary external noiseζ(t), indicated by an overbar, an
equation for the effective generating function (EGF ),

F (z, t) ≡ F (z, t), (10)

is obtained, namely,

∂F (z, t)
∂t

=

V

[
β0(z−1)+α(

1
z
−1)

]
F (z, t)+V (z−1)F1(z, t), (11)

where we have identified

F1(z, t) ≡ ζ(t)F (z, t). (12)

Equation (11) will become a closed equation forF (z, t) only
if an independent equation forF1(z, t) is provided. Follow-
ing the method described in Ref. 21, one can show that for the
case under consideration this closed set of equations reads

∂

∂t
fi = Mijfj , (13)

with

fi =
(

F (z, t)
F1(z, t)

)
(14)

and

Mij =

V

(
β0(z−1)+α( 1

z−1) (z−1)
η(t, t)(z−1) − λ

V +[β0(z−1)+α( 1
z−1)]

)
. (15)

Hereλ−1 denotes the correlation time of the external noise
andη(t, t′) stands for its autocorrelation function.

Equation (13) can be solved exactly for appropriate initial
and boundary conditions that we choose as follows. We take
the initial conditions

F (z, t = 0) = zn0 , (16)

F1(z, t = 0) = 0, (17)

which amount to assume

P (n, t = 0) = δn,n0 , (18)

whereP (n, t) is the effective probability distribution associ-
ated with theEGF , F . As usual,δij denotes the Kronecker’s
delta. As for the boundary condition we take one that pre-
serves the normalization ofP (n, t), namely,

F (z = 1, t) = 1. (19)

To solve Eq. (13) we must first specify the so far arbitrary
noise parametersλ−1 andη(t, t). In order to induce a mathe-
matical model structure suitable for analytical treatment, we
shall follow Sancho and San Miguel [22] and make the as-
sumption thatζ(t) is a two-state or dichotomic Markov pro-
cess. This means that the stochastic variablen is a stepwise
constant process which jumps between two discrete values±
∆ with equal probability at instants randomly distributed and
with a correlation timeλ−1. More explicitly, this implies that
ζ(t) is defined by the properties

ζ(t) = 0 (20)

and
ζ(t)ζ(t′) = ∆2e−λ|t−t′|, (21)

so that
η(t, t) ≡ ζ(t)ζ(t) = ∆2. (22)

We may view this dichotomic noise as a representation
of a random feature of the natural environment of the biofilm
which either favors or opposes the birth of individuals. It
models a situation where two states of the environment have
the same intensity but opposite effect on the system, without
specifying more details of how this influence is produced. It
should be mentioned that a dichotomic noise is not as un-
realistic as could be presumed. Actually, it may be easily
produced in the laboratory with a noise generator and can
be actually applied to real systems [20]. On the one hand,
this noise has the advantage of being itself simple enough for
easy, explicit mathematical manipulation, and will be used
as a first exploratory representation of the effects of exter-
nal noise on the biofilm. Furthermore, the positive character
of β0 andV imposes the condition[β0 −∆] ≥ 0 on the val-
ues of∆, and this in turn guarantees the positivity ofP (n, t),
otherwise the starting equation (9) would be meaningless.
This positivity might be violated for white noise [15].

The solution of Eq. (13) with (16)- (17) yields forF (z, t)
andF1(z, t)

F (z, t) =
zn0

2Λ(z)
e[a(z)−λ−Λ(z)

2 ]t

×
[
(λ + Λ(z)) + (λ− Λ(z)) e−Λ(z)t

]
, (23)
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F1(z, t) =
λ2 − Λ2(z)
4b(z)Λ(z)

e[a(z)−λ−Λ(z)
2 ]t(1− e−Λ(z)t), (24)

where the following abbreviations have been used,

Λ(z) ≡ [
λ2 + 4∆2b2(z)

]1/2
, (25)

a(z) ≡ V

[
β0(z − 1) + α(

1
z
− 1)

]
, (26)

b(z) ≡ V (z − 1). (27)

From Eqs. (23) and (4) we get the first two moments
of the effective distribution probabilityP (n, t) associated
with F (z, t),

〈n(t)〉 = n0 + V (β0 − α)t (28)

and

〈n2(t)〉 = n0[2V (β0 − α)t− 1 + n0]

+2ΓV 2(1 + e−λt) + 2αV t + V 2(β0 − α)2t2, (29)

whereΓ ≡ ∆2/λ2. As a consequence, the standard devia-
tion σ2

n and the relative fluctuationχn turn out to be, respec-
tively,

σ2
n ≡

〈
n2

〉
− 〈n〉2 = 2ΓV 2(1 + e−λt) + 2αV t− n0 (30)

and

χn ≡ σ2
n

〈n〉2 =
1

V (β0 − α)2(N0 + t)2
[N0(β0 − α)

+2αt + 2ΓV (1 + e−λt)], (31)

with

N0 ≡ n0

V (β0 − α)
.

It is convenient to rewrite this last equation in the static limit
of the external noise,λ−1 → ∞, and in the thermodynamic
limit defined byn →∞, V →∞, n/V = finite, which leads
to

χn =
∆2t2

[n0
V + (β0 − α)t]2

. (32)

Equations (28) and (32) show that the mean value〈n(t)〉
is independent of the external noise, whereasχn have terms
that depend on both, internal and external fluctuations as
well. The latter contributions depend on the amplitude∆
of the dichotomic noise and remain finite in the thermody-
namic limit, but the contribution due to internal fluctuations
vanishes in this limit.

3. Effects of detachment

Biofilm cells may be dispersed either by shedding of
doughter cell from actively growing cells, detachment as a
result of nutrient levels or quorum sensing, or shearing of

biofilm aggregates because of flow effects. The mechanisms
underlying these processes are not well understood. De-
tachment caused by physical forces has been studied in de-
tail, and the main processes causing it are erosion or shear-
ing (continuous removal of small portions of the biofilm),
sloughing (rapid and massive removal), and abrasion (de-
tachment due to collision of particle from the bulk fluid with
biofilm) [24, 25].

As a first approach to the description of these complex
processes, here we model detachment in terms of the fol-
lowing simple stochastic point of view. We assume that the
growth of the biofilm is modeled with linear generation and
natural death rates, that is,g(n) = βn andr(n) = αn. If
detachment of biomass may exist, for each individual there
will be an additional death rate,rd(n), which can be esti-
mated as follows. Experimental results [6] provide a basis
to assume that for each microorganism, the detachment fre-
quency varies with the depth in the biofilm and is inversely
proportional to the area of substratumAb. Then, if the vol-
ume of all the microorganisms and their metabolic products
is Vm = vmn, the additional detachment probability per unit
time should also be proportional to the number of the other
individuals present [26],

rd(n) =
γ

Ω0
n(n− 1), (33)

with γ ≡ kdV
1/3, wherekd is the detachment rate. We have

also introduced the dimensionless quantity

Ω0 ≡ ΩV 1/3, with Ω ≡ Ab(1− εb)
vm

,

beingεb the mass porosity of the biofilm,i. e., the volume
fraction of water in the total biomass volumeV . Thus, the
total recombination probability is now nonlinear,

r(n) ' αn +
γ

Ω0
n(n− 1) (34)

and the macroscopic rate equation reads

1
V

dn

dt
≡ ·

n =g(n)−r(n)=(β−α)n− γ

Ω0
n(n−1). (35)

The corresponding nonlinearME for pn(t) per unit volume
is the following differential-difference equation

·
pn=

[
α(n + 1) +

γ

Ω0
n(n + 1)

]
pn+1 + β(n− 1)pn−1

−
[
αn +

γ

Ω0
n(n− 1) + βn

]
pn, (36)

which using (6) may be rewritten in the more compact form

·
pn= α(E − 1)npn + β(E−1 − 1)npn

+
γ

Ω0
(E − 1)n(n− 1)pn. (37)
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3.1. The systematic expansion

TheME (36) is nonlinear in the sense thatr(n) is a nonlinear
function ofn. This equation cannot be solved analytically in
an exact form and it is necessary to develop an approximate
analytical solution. To this end we use van Kampen’s gen-
eral method and expand (36) in powers ofΩ−1 [15]. To this
end first note that the transition probabilitiesr(n) andg(n)
are independent ofΩ and that we have to postulate the way
in which pn(t) depends onΩ. Following van Kampen, we
assume thatpn(t) has a sharp peak located at some valuen
of orderΩ and located at the pointΩφ(t), with a width of
orderΩ1/2. This assumption is expressed formally by trans-
forming the stochastic variablen to a new variableζ defined
by

n = Ω0φ(t) + Ω1/2
0 ζ, (38)

whereφ(t) is some time dependent function that has to be de-
termined. This assumption contains a central-limit theorem
argument and its correctness has to be justifieda posteriori
by showing that it is actually possible to chooseφ(t) in such

a way thatζ turns out to be of order unity, by adjustingφ(t)
to follow the motion of the peak. As a consequence,pn(t)
transforms into a probability density distributionΠ(ζ, t) ac-
cording to the relation

pn(t) = p(n, t) = p
[
Ω0φ(t) + Ω1/2

0 ζ, t
]
≡ Π(ζ, t). (39)

Since the probability should be conserved in terms either of
n or ζ, it then follows that

p(n, t) = Ω−1/2
0 Π(ζ, t) (40)

and that the derivatives transform as

∂p

∂n
= Ω−1

0

∂Π
∂ζ

(41)

and
∂p

∂t
= Ω−1/2

0

∂Π
∂t

− dφ

dt

∂Π
∂ζ

. (42)

Starting from (36), it is a matter of straightforward algebra to
obtain the following transformed equation forΠ(ζ, t)

∂Π
∂t

− Ω1/2
0

dφ

dt

∂Π
∂ζ

= Ω1/2
0 {[αφ(t)− βφ(t) + γφ2(t)]

∂Π
∂ζ
}+ Ω0

0{[α− β + 2γφ(t)]
∂

∂ζ
(ζΠ) +

1
2
[αφ(t) + βφ(t)

+γφ2(t)]
∂2Π
∂ζ2

}+ Ω−1/2
0 [

α + β

2
∂2

∂ζ2
(ζΠ) + γ

∂

∂ζ
(ζ2Π)] + Ω−1

0 [
γ

2
∂2

∂ζ2
(ζ2Π)] + ϑ(Ω−3/2

0 ). (43)

This expansion leads to the following results. The lead-
ing terms are of orderΩ1/2

0 and they can be made to cancel
by demanding thatφ(t) should obey

dφ

dt
= V (β − α)φ− V γφ2, (44)

which gives the macroscopic equation (35). Note that this
equation has the time independent solution

φs = (β − α)/γ (45)

corresponding to a stationary population

ns = Ω0
β − α

γ
, (46)

as follows from (35). To the next orderΩ0
0, (43) reduces to

a linear Fokker -Planck per unit volume equation with time
dependent coefficients, namely,

∂Π
∂t

= [2γφ(t)− (β − α)]
∂(ζΠ)

∂ζ

+
1
2

[
(β + α)φ(t) + γφ2(t)

] ∂2Π
∂ζ2

. (47)

For the stationary stateφs, this equation reduces to the linear
Fokker -Planck equation with constant coefficients

∂Π
∂t

= (β − α)
∂(ζΠ)

∂ζ
+

β(β − α)
γ

∂2Π
∂ζ2

. (48)

Its solution is well known for the initial condition

Π(ζ, 0) ≡ δ(ζ − ζ0),

namely,

Π(ζ, t) =
1√

βπ
γ [1− e−2(β−α)t]

exp

{
−γ

β

[
ζ − ζ0e

−(β−α)t
]2

1− e−2(β−α)t

}
,

(49)
and becomes a stationary Gaussian aroundφs for t →∞,

Πs(ζ) =
√

γ

βπ
e−

γ
β ζ2

. (50)

3.2. The Gaussian approximation

In the limit t → ∞ it suffices to determine only the first
and second moments ofΠ(ζ, t). Although these quantities
can be obtained directly from Eqs. (49) or (50), it is conve-
nient, for future reference, to derive the equations they satisfy
from (47). This leads to

∂

∂t
〈ζ〉 = V [(β − α)− 2γφ(t)] 〈ζ〉 (51)
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and

∂

∂t

〈
ζ2

〉
= 2V [β − α− 2γφ(t)]

〈
ζ2

〉

+V
[
(β + α)φ(t) + γφ2(t)

]
. (52)

These equations describe the time behavior of〈ζ〉 and
〈
ζ2

〉
around any macroscopic state defined byφ(t). For the partic-
ular macroscopic state defined as the stationary solution (45),
Eqs. (51), (52) reduce to

∂

∂t
〈ζ〉s = −V (β − α) 〈ζ〉s (53)

and

∂

∂t

〈
ζ2

〉s
= −2V (β − α)

〈
ζ2

〉s
+ 2V

β(β − α)
γ

, (54)

where the upperscripts denotes the stationary case. The ex-
act solutions of these equations for given

〈ζ(t = 0)〉s ≡ ζ0,
〈
ζ2(t = 0)

〉s ≡ ζ2
0 ,

read
〈ζ(t)〉s = ζ0 exp [−V (β − α)t] (55)

and
〈
ζ2(t)

〉s
= ζ2

0 exp [−2V (β − α)t]

+
β

γ
{1− exp [−2V (β − α)t]}. (56)

From Eqs. (55) and (56) it follows that the standard deviation

σ2
ζ (t) ≡ 〈

ζ2(t)
〉s − [〈ζ(t)〉s]2

is given by

σ2
ζ (t) =

β

γ
{1− exp [−2V (β − α)t]}, (57)

and the relative fluctuation,

χζ(t) ≡
〈
ζ2(t)

〉s − [〈ζ(t)〉s]2
[〈ζ(t)〉s]2 ,

turns out to be

χζ(t) =
2β

γζ2
0

eV (β−α)t sinh[V (β − α)t]. (58)

In terms of the number,n, of individuals present at time
t, from Eqs. (38), (55), (56) and (57), it follows that

〈n(t)〉s = n0 exp [−V (β − α)t]

+Ω0
β − α

γ
{1− exp [−V (β − α)t]} , (59)

σ2
ζ (t) = σ2

n(t) (60)

and

χn(t) = 2βγ

× eV (β−α)t sinh[V (β − α)t]
[γn0 − Ω0(β − α) {1 + exp [V (β − α)t]}]2 . (61)

4. Results

In heterogeneous biofilms convection and not only diffusion,
may be a significant mechanism for nutrient mass transport,
a possibility that shows the complexity of biofilm processes.
However, since at present it is not yet possible to describe
or numerically simulate this complexity, average values of
biofilm thickness must still be used for modelling and design
purposes [2], [27]. Given this complexity and in order to
relate the predictions of our model with experimental results,
we recall that we have assumed that the biofilm is spatially
homogeneous. Moreover, ifvm is the volume of an individ-
ual microorganism and its extracellular products, the volume
Vm of all the microorganisms and their metabolic products
is Vm = vmn, wheren is the number of individuals present
at timet. Since the porosityεb of the biofilm is the volume
fraction of water in the total biomass volumeV ,

V =
vm

1− εb
n. (62)

Now, since the thicknessE may be also defined asV divided
by the area,Ab, of the solid surface to which the biofilm is at-
tached, the total thicknessE of the biofilm can be expressed
as

E(t) =
vm

Ab(1− εb)
n(t) ≡ 1

Ω
n(t). (63)

Apart fromE, another commonly used quantity to char-
acterize the accumulation of a biofilm, is its coefficient of
surface roughness or thickness variability,R. It describes the
standard deviation ofE,

R ≡
√

σ2
E =

1
Ω

√
σ2

n. (64)

4.1. Linear case

Using (28) and (63) we derive the following explicit expres-
sion for

〈
E(t)

〉
as a function oft for the linear case,

〈
E(t)

〉
L

=
1
Ω

[n0 + V (β0 − α)t] . (65)

Note that it does not depend on the noise parameter∆; so,
according to our model the average thickness is not sensitive
to the external noise in the linear case.

It is convenient to relate Eq. (65) with experimentally
measurable quantities. To this end recall that the areal den-
sity, S, is the amount of dry biomass which is attached to
a unit area of substratum and that it depends on environ-
mental conditions. Since the dimensions of the substrate
loading rate,L , are mass/(area-time),S andL are related
by L = S/t. On the other hand, volumetric density,ρV , is
the amount of biomass in a given volume of biofilm and it is
reported as dry biomass per unit wet volume. This quantity is
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important in the mathematical modeling of biofilm processes
since biomass concentration is often related to the activity of
a biofilm.

Similarly, from (30) in the static limit and (64) we arrive
at

RL(t) =
1
Ω

√
V 2∆2t2 + 2V αt− n0, (66)

which depends explicitly on the external noise through∆.
Using Eq. (65) we getRL(t) in terms of

〈
E(t)

〉
L

RL

[〈
E(t)

〉
L

]
=

1
Ω(β0 − α)

{∆2Ω2
〈
E(t)

〉2

L

+2Ω
[
α(β0 − α)−∆2n0

] 〈
E(t)

〉
L

+n0

(
∆2n0 − β2

0 + α2
)}1/2. (67)

In contrast to
〈
E(t)

〉
L

, RL(t) depends on the exter-
nal noise through∆. However, in the absence of external
noise,∆ = 0, this equation shows that roughness increases
with the average thickness. Note that from Eq. (67) it also
follows that roughnessR(t) increases when the observation
area,Ab ∼ Ω, of the biofilm decreases. This feature is also
consistent with experimental observations which show that
thickness data measured by optical methods at different lo-
cations, where the observed area is very small, provide in-
formation of roughness that can not be obtained by volumet-
ric displacement methods [2]. We also know that the in-
creased surface roughness increases the mass transport rate
to the biofilm [28].

4.2. Nonlinear case

Analogously, for the nonlinear case of Section 3, equiva-
lent expressions to (65)-(67) are obtained from (59) and (60).
This leads to

〈
E(t)

〉
NL

=
Ω0

Ω
β − α

γ
{1− exp [−V (β − α)t]}

+
n0

Ω
exp [−V (β − α)t] , (68)

RNL(t) =
1
Ω

√
β

γ
{1− exp [−2V (β − α)t]}, (69)

or in terms of
〈
E(t)

〉
NL

RNL

[〈
E(t)

〉
NL

]
=

1
Ω

√
β

γ

1
Ω0

β−α
γ − n0

×{n0[n0 − 2Ω0
β − α

γ
] + 2ΩΩ0

β − α

γ

〈
E(t)

〉
NL

−Ω2
〈
E(t)

〉2

NL
}1/2. (70)

5. Comparison with experiment

The thickness variability of a pure culture ofP. Aeruginosa,
as a function of time and for different values of the sub-
strate loading rateL , was measured by Peyton [2]. In

these experiments photomicrographic images of the biofilm’s
cross section were captured and stored. The biofilm thick-
ness was measured every2x10−6m. Since the width of the
sample was5x10−6m, it may be reasonably assumed that
Ab = 10−11m2. In the experiments it was estimated that
vm = 2.09x10−18m3 andεb = 0.9. According to Eq. (63)
this yieldsΩ−1 = 2.09x10−6m.

It should be recalled that in Peyton’s experiments the re-
actor was cleaned up before each experiment and filled with
nutrients, so that at the initial time there were no reproducing
microorganisms in the system. Thus, for the purpose of com-
paring our theoretical predictions for

〈
E(t)

〉
in the linear and

nonlinear cases, with the corresponding measured values, we
should setn0 = 0 in Eq. (65).

A first comparison with experimental results is ob-
tained if

〈
E(t)

〉
L

vs. t is plotted from Eq.(65) optimizing
Ψ ≡ V (β0 − α), so that in the time interval0 − 166.5 hr,
the sum of squared deviations between experimental and the-
oretical values is minimized. The optimal values are given in
Table I. In this way we get the theoretical straight lines shown
in Fig. 1.

By carrying out a linear regression for each straight line,
we find the best fitting values for the slope,mop, with the cor-
responding correlation coefficientC2. The values ofmop and
C2 are also given in Table I. SinceC2 ≈ 1, the adjustment is
excellent. The relative per cent error,δ, between experimen-
tal points and theoretical values is defined as

δ ≡
〈
E(t)

〉
exp

− 〈
E(t)

〉
theo〈

E(t)
〉
exp

x100.

As a result, the mean relative error〈δ〉 of the absolute value
of δ, for each straight line in Fig. 1 is also given in Table I. It
ranges from1.8% to 6.2%, and these values represent a good
fitting between the linear theory and the experimental results
in the initial stage, from 0 to 166.5 hr, of the development of
the growing process.

Let us now consider the behavior of roughness. Equa-
tion (67) gives a nonlinear dependence ofRL(t) on

〈
E(t)

〉
L

.
Note that this theoretical relation is more general that the lin-
ear one reported in the experimental measurements by Pey-
ton (1996) in his Fig. 3. To identify the conditions under
which our result forRL(t) reduces to that of Peyton’s, we
recall that in the static limit of the external noise,λ−1 →∞,
and in the thermodynamic limit defined byn →∞, V →∞,
n/V = finite, the relative fluctuationχn is given by Eq. (32).
If in this equation we setn0 = 0 we get

χst
P =

(V ∆)2

Ψ2
, (71)

or in terms ofRL(t) and
〈
E(t)

〉
L

this relation reduces to the
linear behavior

RL

[〈
E(t)

〉
L

]
=

V ∆
Ψ

〈
E(t)

〉
L

. (72)
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TABLE I.

L(mgm−1h−1) Ψ(h−1) mopx10−8(mh−1) C2 < δ > (%)

10.2 0.01771 3.701 0.9985 1.8

51.2 0.04299 8.985 0.9560 6.2

92.2 0.13517 28.25 0.9652 5.7

FIGURE 1. Time progression of the thickness average


E(t)

�
L

for
P. Aeruginosa, as calculated from Eq. (37) for the parameters val-
uesΩ−1 = 2.09 x 10−6 m, vm = 2.09 x 10−18 m3 , εb = 0.9.
The different curves correspond to the three substrate loading rates
reported by Peyton, 1996 given in Table I, (N,- - -) L01 = 10.2,
(•,— —) L02 = 51.2, ( �,—) L03 = 92.2 (mgm−1h−1).

When the above limits are not considered, the
term∼ 〈

E(t)
〉1/2

L
in (67) can not be neglected. To estimate

a value for the resultingχ(t) we use the stationary value of〈
E(t)

〉
L

,
〈
E

〉st

L
, which corresponds to the plateau value of

the average biofilm thickness in Fig. 1 in Peyton [2] and are
given in our Table II,

χst =
(V ∆)2

Ψ2
+

2
Ω

V α

Ψ
1〈

E
〉st

L

, (73)

or

RL

[〈
E

〉st

L

]
=

〈
E

〉st

L
[(

V ∆
Ψ

)2 +
2
Ω

V α

Ψ
1〈

E
〉st

L

]1/2. (74)

In the last two equations the parameterV ∆ , which mea-
sures the influence of the external noise is not known. The
value of the parameterΨ ≡ V (β0 − α) was optimized pre-
viously in the linear case and its values are given in Table I.
To determine the best fitting value ofV ∆ we proceed as fol-
lows. First, for both Eqs. (72) and (74) we determine the
value ofV ∆ and the curve that passing through the origin,
represents best all the experimental points of biofilm rough-
ness as a function of average biofilm thickness reported in
Peyton’s Fig. 3 [2]. These optimal values are given in Ta-
ble II for Eq. (72) andV ∆ = 0.042 for Eq. (74). For both
cases this behavior is shown in our Fig. 2, where the con-
tinuous line is the nonlinear model prediction and the broken
line represents the adjustment of the experimental data given
in Peyton’s Fig. 3. A linear regression analysis of the ex-
perimental points yields a correlation coefficientC2 = 0.58.
On the other hand, carrying out the same analysis for the first
term on the right hand side of Eq. (72), yieldsC2 = 0.44.
This shows that due to the dispersion of the experimental
points, the model exhibits an adjustment as poor as the one
in Figure 3 of Peyton [2]. This fact is a direct consequence
of the absence of specific experimental data for each load-
ing rate. However, it should be pointed out that the theoret-
ical model consistently implies thatRL(t) vanishes for zero〈
E(t)

〉
L

,whereas for Peyton’s regression line this is not the
case.

From the above results we can now derive the condition
for which the second term on the right hand side of (74) may
be neglected with respect to the first. This occurs when

Ω
2Ψ

(V ∆)2
〈
E(t)

〉st À V α. (75)

The order of magnitude of the maximum values ofV α for
which this condition holds, is given in Table II. From these
values and those ofΨ given in the same Table II, we deter-
mine the corresponding value ofβ0 (Table II).

When condition (75) is not fulfilled,V α takes a value dif-
ferent from the one given in Table II. We shall take the value
V α = 0.4385 in Fig. 2, which is one order of magnitud
larger than those given in Table II but still consistent withΨ.

TABLE II.

L(mgm−1h−1)


E(t)

�st × 10−6(m) Ψ(h−1) ∆V (h−1) αV (h−1) β0V (h−1)

10.2 4.52 0.0177 0.074 ∼ 10−2 0.0277

51.2 13.33 0.0430 0.116 ∼ 10−1 0.1430

92.2 31.00 0.1352 0.205 ∼ 10−1 0.2352

Rev. Mex. F́ıs. 49 (2) (2003) 132–143



STOCHASTIC MODELING OF SOME ASPECTS OF BIOFILM BEHAVIOR 141

FIGURE 2. Experimental ( - - - ) and theoretical (—) biofilm rough-
nessRL vs. average biofilm thickness



E(t)

�
for the parameters

given in Table II. The points are data from all the experiments re-
ported by Peyton [2].

Let us now turn our attention to the nonlinear case. Note
that ( 68) and Fig. 2, imply that the nonlinear model may
describe all the behavior of the experimental curves. Indeed,
if using Eq. (68) we plot

〈
E(t)

〉
NL

vs. t and optimize the
valuesΨNL ≡ V (β − α) and the nonlinear parameter,V γ,
for the time interval0− 350 hr, we get the curves plotted in
our Fig. 3. They show that

〈
E(t)

〉
NL

saturates after a defi-
nite time interval for the different loading rates. The relative
error between experimental points and the theoretical values,
〈δ〉, is calculated in the same way as for the linear case. The
corresponding optimized values are given in Table III.

Notice that Eq. (69) predictsRNL(t) as a function of
t andγ, separately. Since in the previous analysis we have
only determined the optimal values ofΨNL for the different
loading rates, it is necessary to determine firstβ in an inde-
pendent way. To this end, note that from Eq. (69) it follows
that ast →∞

RA ≡ R(t →∞) =
1
Ω

√
β

α
. (76)

TABLE III.

L(mgm−1h−1) ΨNL(h−1) V γx10−2(h−1) < δ > (%)

(L1)10.2 0.0095 0.1596 6.66

(L2)51.2 0.0077 0.0404 6.73

(L3)92.2 0.0145 0.0408 9.29

FIGURE 3. Experimental points and theoretical time progression
curves of the thickness average



E(t)

�
NL

for P. Aeruginosa,the
same parameters as in Fig. 1. The different curves correspond to
the three substrate loading rates reported by Peyton, 1996: (- - - )
L01 = 10.2, (— —) L02 = 51.2, (—) L03 = 92.2 (mgm−1h−1).

Although no explicit experimental results for this limitR
are available, we can get an estimated limit value for each
of the experimental loading rates as follows. From Eq. (68)
we get the asymptotic values

〈
E(t →∞)

〉
NL

≡ 〈
E(t)

〉A

NL
,

reported in Table IV. Next, from Peyton’s Fig. 3, we get esti-
mated limit values forRA, by averaging the two experimental
data nearest to the determined values for

〈
E(t)

〉A

NL
. Finally,

from Eq. (76), we obtained the values of the parameterβ/γ
for each loading rate. For the same values ofΨ given in Table
IV, and the corresponding values ofβ/γ, Eq.(69) is used to
generate the analytical curves plotted in Fig. 4.

From Figs. 3 and 4, we may identify two stages of the
biofilm growing process. The first one is characterized by a
high growing rate of both,

〈
E(t)

〉
NL

andRNL(t). Roughly,
the high growing rate stage can be identified in both figures
as0 < t < 50, 0 < t < 100 , and0 < t < 150 for L1, L2,
andL3, respectively. The second stage corresponds to a de-
creasing growing rate process leading to an asymptotic value
for

〈
E(t)

〉
NL

andR.

Equation (70) givesRNL

[〈
E(t)

〉
NL

]
as a function of〈

E(t)
〉

NL
, β/γ andΨ/(V γ). This relation is represented

by the continuous curve in Fig. 5. As before, the broken
curve is Peyton’s result. Finally, we compare the experimen-
tal and theoretical curves forR vs.

〈
E(t)

〉
. The theoretical

curve wasobtainedbyminimizingtheerrorbetweentheexperi-
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TABLE IV.

L(mgm−1h−1) ΨNL(h−1)


E(t)

�A

NL
x10−6(m) β/γ RAx10−6(m)

(L1)10.2 0.0095 5.968 6.67567 5.40

(L2)51.2 0.0077 18.952 2.64560 10.75

(L3)92.2 0.0145 35.627 3.92871 13.10

FIGURE 4. Biofilm roughnessRNL vs. t as calculated from
Eq. (69) for the same P. Aeruginosa biofilm for the parameters
given in Table IV. ( - - - )L01 = 10.2, (— —) L02 = 51.2, (—)
L03 = 92.2 (mgm−1h−1).

mental data, while the theoretical value by optimizingΨ
andV γ. It is important to point out that in this procedure
only two parameters are optimized, namely,Ψ/(V γ) and
β/γ. Their optimal values turned out to beΨ = 0.3486
andV γ = 4.96x10−4. Note that the theoretical results show
a nonlinear increase ofR(t) with

〈
E(t)

〉
in correspondence

with experimental observations [2, 6, 10]. However, it also
shows a tendency to saturate to a constant value, in contrast to
the numerical adjustment by Peyton. Therefore, we conclude
that when the detachment of biomass exists, the nonlinear
model exhibits the same basic behavior.

6. Concluding remarks

In summary, in this work we have presented and developed a
stochastic approach to describe the thickness and roughness
of a competitive growing population in a biofilm. To elabo-
rate on the obtained results the following comments may be
useful.

A stochastic model which describes in a unified form
both, internal as well as external fluctuations in monospecies
biofilms was proposed. It is important to stress that the model
is idealized in many respects. To begin with, it assumes that
all microorganisms have the same reproduction rate; it does
not include the spatial heterogeneity of the biofilm and there-
fore, does not take into account the changes of the state vari-
ables due to substrate diffusion within the biofilm. For spa-
tially inhomogeneous systems, fluctuations in the number of
individuals are a local phenomenon and their description re-
quires to known(−→r , t). This can be accomplished by in-
troducing the number density as a continuous random quan-
tity, which amounts to describe the system in terms of an in-
finite set of stochastic variables. Although this continuous
description may be achieved in a variety of ways [29, 30],
its implementation is not an easy task and one has to restore
to approximations, such as the method of compounding mo-
ments [15]. For this reason in this work we neglected spatial
effects. The spatial distribution of adherent bacteria on the
surface has been measured and taken into account in a de-
scription based on rate equations for the attached cells con-
centrations. This leads to the consideration of effective at-
tachment rate constants dependent on position, because the
number of cells near the surface that available for attachment
may vary with the position [31]. In this way a spatial de-
pendence in the transition probabilities per unit time could
be introduced.

The age of the biofilm was neglected because the mech-
anisms that govern this phenomenon are not well known.
However, this simplification is essential to use Markovian
stochastic processes in modelling the elementary events. This
was particularly useful since the theory of stochastic Marko-
vian process is much more developed than its non-Markovian
counterpart. On the other hand, the changes in the external
conditions that necessarily influence the biofilm growth, were
modeled through external noise in the rate of reproduction.

Biofilm roughness is only one of a series of problems in
understanding biofilms. The internal structure of the biofilm
(channels, pores, etc), state of the biomass (active, inactive,
areas of extracellular material) and diffusive and convective
flows through this structure are also of important significance.
However, in spite of its limitations, this stochastic model is
able to predict an explicit time dependence of average thick-
ness and roughness, as well as a relationship between these
two quantities, as discussed in section 4, while determinis-
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tic models are not able to do so. Some of the limitations
might be overcome in future works through stochastic gener-
alizations that include spatial dependence and hydrodynam-
ical effects. To this end Langevin descriptions or the use of
the van Kampen’s compounding moments method to include
spatial dependence, could be explored. Also, the model can
be extended to include multispecies biofilms by constructing
a multivariate master equation; however, whether this gen-
eralizations are able to successfully model other features of
biofilms, remains to be assessed.
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