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A unified stochastic description of the effects of internal and external fluctuations on the thickness and roughness of a biofilm is given in terms
of linear and nonlinear master equatiofg ). In the absence of detachment theF is linear, while erosion renders it to be nonlinear. For

the linear case the influence of the environment is modeled through an external noise in one of the transition probabilities per unit time and
the M F is solved analytically. For the nonlinear case we only consider internal fluctuations and use van Kampen’s systematic expansion to
solve theM E. In both cases the thickness and roughness dependence on time is calculated and expressed in terms of the first two moments
of the probability distribution function. An analytical expression for roughness as a function of thickness is also obtained in both cases. For
both cases we compare our analytical results with reported experimental measurements of these quaRtifiesdgimosaThe best fitting

values of the transition probabilities and external noise parameters are determined, so that the relatibetveen the calculated and the
experimentally measured values of the thickness and roughness is minimized. We find that for the linear case the mean refatdve-error

is relatively small, 1.8 %-6.2 %, while in the presence of detachment is slightly higher, 6.7 %- 9.3 %. We close the paper by discussing the
advantages, scope and limitations of our approach.
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Se presenta una descripuoiunificada de los efectos producidos por fluctuaciones internas y externas sobre el espesor y la rugosidad de
una biopeicula en &rminos ecuaciones maestras (ME) lineales y no lineales. En ausencia de desprendimiento la ME es lineal, pero la
presencia de erdsi la hace no lineal. En el caso lineal la influencia del ambiente se modela introduciendo ruido externo en una de las
transiciones de probabilidad por unidad de tiempo y la ME se resuei@@araknte. Para el caso no linealsconsideramos fluctuaciones
internas y utilizamos el desarrollo sistatico de la ME introducido por van Kampen para resolverla en forma aproximada. En ambos
casos la dependencia temporal del espesor y la rugosidad se calculan y expresarbardfutas dos primeros momentos de la famnci

de distribucbn de probabilidad. Tamén se obtienen expresiones atieds para la rugosidad en fubai del espesor y se comparastos
resultados anglcos con mediciones experimentales reportadas para P. Aeruginosa. Se determinan loéptiianesie las probabilidades

de transiadn y de los paametros de ruido externo de tal manera que el error relé#@rndre los valores calculados y medidos del espesor y la
rugosidad sea mimo. Ad encontramos que para el caso lineal el error relativo medio> es relativamente peqfie, 1.8%-6.2%, mientras

gue en presencia de desprendimiento es ligeramente mayor, 6.7%-9.3%. Concluimos discutiendo las ventajas, perspectivas y limitaciones de
nuestro enfoque del problema.

Descriptores: Biopeliculas, procesos estagticos; espesor; rugosidad; ecdaanaestra; ruido externo.

PACS: 05.40.-a, 05.40.Ca, 87.68.+z

1. Introduction processes like biological activated carbon beds, land systems
or wastewater treatment and other chemical processes, where
A biofilm is a layer-like aggregation of cells and cellular high biomass concentrations, which allow large volumetric
products attached to a solid surface or substratun2]] An loading, are maintained without the need for solids separation
established biofilm structure comprises microbial cells andand recycling 4]. In spite of their utility, though, biofilms
extracellular polymeric substances, has a defined arquiteean also create industrial and practical problems, such as the
ture, and provides an optimal environment for the exchang@revention of heat flow across a surface or the increase of
of genetic material between cells. Communication betweetthe rate of corrosion at a surfacé].[ This illustrates the role
cells may in turn affect biofilm processes such as detachmenplayed by biofilms in certain infectious diseases and their im-
Biofilms occur in a large variety of engineering sys- portance for public health.
tems such as streambeds, water pipes, groundwater aquifers, A clear picture of attachment can not be obtained with-
among others3]. They play an important role in engineering out considering the effects of the substratum, condition-
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ing films forming on the substratum, hydrodynamics of thestruct simple stochastic models which allow us to describe
medium, phyicochemical characteristics the medium, andome of the complex and large variety of processes occurring
various properties of the cell surface. Biofilm arquitecturein a biofilm.

is heterogeneous both in space and time, constantly changing Now, it is well known that fluctuations acting in open sys-
because of external and internal processes. Although fronems may be conveniently classified into internal and exter-
a macroscopic point of view an idealized biofilm is a thin nal fluctuations. The former are those self-originated in the
homogeneous layer of constant thickness, microscopically kystem, while the latter are determined by the environment.
is a nonuniform structure characterized by a variable thickinternal fluctuations are a consequence of the large number
ness and polymer densities] [ This heterogeneity may play of microscopic degrees of freedom of a many body system,
an important role in hydrodynamic fouling, microbial influ- and are, therefore, averaged out in a macroscopic descrip-
enced corrosion, substrate conversiof] gnd biocide effi-  tion. They scale with the size of the system and vanish in the
cacy B]. Also, owing to their irregular surface, biofilms in- thermodynamic limit, except at a critical point where long
crease the fluid's frictional resistancé] pnd the wall shear range order is established 7). Their study is an important
stress §]. These effects, in turn, influence the effective and well known part of statistical mechanicg8][. In con-
diffusion coefficient in aerobic biofilms, where the oxygen trast, external fluctuations exist when a system is under the
distribution strongly depends on flow conditions and on theinfluence of external noise, caused by a natural or induced
biofilm’s structure [0, 11]. randomness of the environment of the system. These fluctua-

In the usual macroscopic description of biofilms two vari- tions play the role of an external field driving the system and
ables are commonly used to characterize them, namely, thickhey do not scale with its sizel§]. Thus, if external noise is
ness,E, and the aereal densifj. The latter is the amount of present in a macroscopic system it will dominate over inter-
dry biomass which is attached to a unit area of substraturfal fluctuations 20].
and that it depends on environmental conditions. The solid In this work we construct a stochastic model for the be-
surface may have several characteristics that are importahgavior of the biomass fluctuations in a monospecies biofilm.
in the attachment process, for instance the extent of microwe follow an approach that we used in previous wotk ][
bial colonization appear to increase as the surface roughnessd the elementary events of birth and death of individuals
increases. This is because shear forces are diminished, aate assumed to be Markovian stochastic processes. Thus the
surface area is higher on rougher surfacés [he rough- stochastic time evolution of the biofilm may be described by
ness,R, describes the standard deviation of the thickness and Markovian master equatiq@d/ E). The attachment of the
helps to characterize the spatial inhomogeneity within thebiofilm is a complex process regulated by diverse charac-
biofilm [2]. Usually £ is defined as the perpendicular dis- teristics of the growth medium, substratum and cell surface.
tance from the substratum to the biofilm-bulk liquid interface Furthermore, the biofilm structure may also be influenced by
and determines the distance through which substrates and nilre interaction of particles of nonmicrobial components from
trients must diffuse to fully penetrate a biofilm. In the usualthe host environment.We shall model the influence of the en-
macroscopic descriptions of biofilms, these state variables vironment as external noise acting on one of the transition
andR, obey deterministic equations. However, it is observedorobabilities per unit time for the elementary events. The
that £ may exhibit significant spatial or temporal variations dynamics of the fluctuations is described by means of a uni-
even under conditions of constant substrate loading and sheted treatment of internal and external fluctuations introduced
stress 2,12]. Although these variations may be accountedby Sancheet al. [22]. As will be shown below, this model
for in a statistical way, a deterministic approach cannot deis capable of predicting the relationship between the average
scribe their dynamics or predict its value$2[13], because values of biofilm thickness and roughness, owing to the com-
strictly speaking roughness is a random, rather than a detebpined action of internal and external fluctuations.
ministic variable. Thus, the previous one-dimensional view  To this end the paper is organized as follows. In the next
of E should be enlarged due to the complexity of biofilm Sec. 2 we define the model and write down the basiE de-
processes, and may be viewed as the outcome of intrinsigcribing the time evolution of the corresponding probability
probabilistic elementary events like the birth and death of in-density. In the absence of detachmentMé& is linear, while
dividuals in the biofilm’s population, and of complex mecha- erosion renders it to be nonlinear. This means that in the for-
nisms for nutrient mass transport, such as diffusion or conmer case the transition probabilities per unit time are con-
vection [14]. Here we shall adopt a stochastic approachstant or linear functions of the number of microorganisms,
and considely as a random variable and, accordingly, thewhile in the latter case they become nonlinear functions of it.
roughnessR, describes the fluctuations around the averagén the linear case the random influence of the environment is
thickness value. It depends on the number of microorganmodelled by introducing an external, non-white, dichotomic
isms presentp, which is itself a stochastic variable. From noise, into the transition probability per unit time for an or-
this point of view, the behavior of thickness and its influ- ganism to reproduce. Then the partial differential equation
ence on other properties of the biofilm, should be accountetbr the associated generating functi@giF’) is derived [5].
for within the framework of a stochastic description of the Since the transition probabilities also appear as parameters
biofilm [15,16]. The basic purpose in this work is to con- in this equation, this procedure generates a stochastic partial
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differential equation for th& F which becomes a functional Here R(n) and G(n) denote, respectively, the so called re-
of the noise source. Averaging this equation over the realeombination and generation transition probabilities per unit
izations of the external noise source, an equation for the etime that, being ak, a jump ton — 1 or ton + 1 occurs.
fective generating functio(EGF’) is obtained, and from it These probabilities are extensive quantities, that is,
equations for the first two moments of the corresponding ef-

fective probability distribution are derived. From these quan- R(n) = Vr(n),G(n) = Vg(n),

tities the relationship between roughness and average biOf”WhereV is the volume of the biofilm.r(n) is the natural
thickness is obtained as a function of time and of the paraMyeath rate of an individual angin) is the probability to pro-
eters defining both, internal fluctuations and external noisey,ce a second individual by fission: both quantities are de-

In the absence of external noise, in Sec. 3 the effect of deﬁned per unit time and unit volume. In general, botiandg
tachment is considered and the corresponding nonlihe&ar are arbitrary functions of ’

is constructed. We use van K_ampen’s systematic expansion Although the differential-difference equation, (1), gives
of the M E' [15] and derive a linear Fokker-Planck equation 5 ¢omnjete description of the problem, it is easier to use the

(F'PE) with con;tant coefficients from which equations for complete representation provided by the generating function
E and R are derived and solved. In Sec. 4 we compare OUKGF) F(z,1), defined by

analytical results for these quantities in both cases, with thei

experimental values, as obtained by Peytahfdr a specific =,

steady-state biofilm, namel¥,. Aeruginosa The best fitting F(z,1) = Z 2" P(n,1), ©)
values of the transition probabilities per unit time and exter- n=0

nal noise parameters are determined so that the relative erratich yieldsP(n, t) and its moments through the general re-
between the calculated and the measured values of biofildations R3]

thickness and roughness is minimized. We find that theory 1 Ton

predicts the same type of behavior than the experiment with P(n,t) = - |:nF(Z, t)} , 3
errors that range betwedr8% — 6.2% and6.66% — 9.29% nt [0z 2=0

for the linear and nonlinear cases, respectively. Finally, we oo D)

close the paper by emphasizing the scope and limitations of (n") = Z n™P(n,t) = {(za)mF(Z,t)} )
our approach. n=0 “ z=1

We shall consider first the simplest case where) = « and
2. Stochastic modeling g(n) = B are fixed constants. Then Eq. (1) reduces to

- B L
2.1. Internal fluctuations: constant transition probabili- Pn=aV(E —1)p, + SV(E Dpn, ®)

ties where the action of the step operatd$ is defined for an

Consider a biofilm of a species of bacteria witindividuals arbitrary functionf (n) by

at time¢. If the processes of reproduction and death of the E*f(n) = f(n£1). (6)
individuals are considered as stochastic eventsgecomes a

time dependent stochastic variable. Furthermore, if the aggor this casé(z, ¢) obeys the differential equation

of the biofilm is ignored, the time evolution af(¢) may be OF (2,1)
represented by a stochastic Markovian processes. In general, 3 t’
n may be space dependent, but as a first approximation to the . o
problem this dependence will be neglected and the state dYnose exactand analytic solution is well knowrd] In pre-

the biofilm will be specified only by:(t). We assume that Vious work we have generalized this equation into a stochas-
the number of microorganisms only changes by one, so thC equation by introducing external noise into one of the tran-
process is also a one step process. The time evolution of trftion probabilities per unit time to model the dynamics of the

VB -1+l ~DIFGE, ()

conditional probability density, process qf imbibitionin a HeIe—$haw celt]. I-_lere we shall
use a similar approach to describe the behavior of internal and
P(n,t) = p,(t) = P(n,t;n0, o), external fluctuations in a biomembrane to derive expressions

for its thickness and roughness.
of havingn microorganisms present in the biofilm at time
t, given that at the initial time their number, was fixed, 2.2. Effects of external noise

obeys the usual master equatioh/ ) with the general ) o
form [15,16] To introduce external noise into (7), we assume that under a

natural or induced randomness of the environment, the gener-
ation transition probability per unit time becomes a random
quantity instead of being constarit1]. That is

dP(n,1)

5 =R(n+1)P(n+1,t)+G(n—1)P(n—1,t)

—[R(n)+G(n)|P(n,1). (1) B = fo +C(8), (®)
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where the mean valug, = (3 is a positive quantity and(t) Fi(z,t=0)=0, a7
denotes the fluctuations aroufiginduced externally into the i
system. which amount to assume

To describe in a unified way both, the dynamics of the
internal as well as the external fluctuationsmpfwe use the
approach developed by Sancho and San Mig@e] &nd re-
viewed in Rodiguezet al. [21]. Therefore in this section we
only write down explicitly some of the relevant steps. Substi-
tution of (8) into (7) leads to the following stochastic partial
differential equation for th& ' F' in the presence of external
noise

0F (z,t)
ot To solve Eq. (13) we must first specify the so far arbitrary
1 noise parameters—* andr(t, ). In order to induce a mathe-
V|Bo(z —1) + (1(; —1)+(z=1)¢(t)| F(zt). (9  matical model structure suitable for analytical treatment, we
shall follow Sancho and San Miguekd] and make the as-
This definesi"(z, t) as afunctionalof ¢(t). sumption that(¢) is a two-state or dichotomic Markov pro-

Averaging this equation over the realizations of the socess. This means that the stochastic variabie a stepwise
far arbitrary external noisé(t), indicated by an overbar, an constant process which jumps between two discrete vatues
equation for the effective generating functidii@ F), A with equal probability at instants randomly distributed and

— —_ with a correlation time\~!. More explicitly, this implies that

P(n,t=0) = Sy, (18)

whereP(n, t) is the effective probability distribution associ-
ated with theEGF, F. As usualg;; denotes the Kronecker’s
delta. As for the boundary condition we take one that pre-
serves the normalization @f(n, ), namely,

F(z=1,t)=1. (19)

F(zt) = F(z,1), (10) ¢(t) is defined by the properties
is obtained, namely, S
_ ¢(t)=0 (20)
OF(z,t)
ot and
1] GGt = A% A, (21)
V| Bo(z—1)+a(==1)| F(z,t)+V(2—1)Fi(z,t), (11)
o so that
where we have identified n(t,t) = C(t)C(t) = A% (22)
Fi(z,t) = ((t)F(z,1). (12) We may view this dichotomic noise as a representation

. . o of a random feature of the natural environment of the biofilm
Equation (11) will become a closed equationfez, 1) only \yhich either favors or opposes the birth of individuals. It
if an independent equation fdf, (z,1) is provided. Follow- ,qels a situation where two states of the environment have

ing the method described in Ref. 21, one can show that for thg,e same intensity but opposite effect on the system, without
case under consideration this closed set of equations readsspecifying more details of how this influence is produced. It

0 should be mentioned that a dichotomic noise is not as un-
afi = Mi; fj, (13)  realistic as could be presumed. Actually, it may be easily
produced in the laboratory with a noise generator and can
o be actually applied to real system&0]. On the one hand,
f = ( F(z,t) ) (14) this noise has the advantage of being itself simple enough for
! ) easy, explicit mathematical manipulation, and will be used
as a first exploratory representation of the effects of exter-
nal noise on the biofilm. Furthermore, the positive character
M;; = of By andV imposes the conditioff, — A] > 0 on the val-
) ues ofA, and this in turn guarantees the positivity/ofn, t),
V(ﬁo(z—l)Jra(z_l) (z2—1) > (15) Otherwise the starting equation (9) would be meaningless.
n(t,t)(z—1) —3+[Bo(z—1)+a(L-1)] This positivity might be violated for white noiseLq].
Here \~! denotes the correlation time of the external noise The solution of Eq. (13) with (16)- (17) yields faf(z, ¢)
andn(t, t") stands for its autocorrelation function. andFy (z,t)
Equation (13) can be solved exactly for appropriate initial 210

and boundary conditions that we choose as follows. We take £'(z,t) = 2A(2)
the initial conditions

with

and

Flo,t = 0) = 2, (16) x [+ M) + (= A@) e, (@3)

Rev. Mex. . 49 (2) (2003) 132-143



136 R.F. RODRIGUEZ, J.M. ZAMORA, E.SALINAS-RODRIGUEZ, AND E. IZQUIERDO

Fi(z,t) = A2 = A%(z) e[a(z)fﬂ]t(l -~ e—A(z)t), (24) biofilm aggregates because of flow effects. The mechanisms

2

4b(2)A(2) underlying these processes are not well understood. De-
where the following abbreviations have been used, tachment caused by physical forces has been studied in de-
tail, and the main processes causing it are erosion or shear-

Az) = [A? +4A2b2(z)}1/2, (25) ing (continuous removal of small portions of the biofilm),
sloughing (rapid and massive removal), and abrasion (de-

1 . : L
a(z) =V | Bolz— 1) + a(; ~1), (26) Lai\gzlnrsn&i?;;f collision of particle from the bulk fluid with
b(z) = V(2 —1). 27) As a first approach to the description of these complex

_ processes, here we model detachment in terms of the fol-
From Egs. (23) and (4) we get the first two momentsjowing simple stochastic point of view. We assume that the
of the effective distribution probability”(n,t) associated growth of the biofilm is modeled with linear generation and

with F(z, 1), natural death rates, that ig(n) = fn andr(n) = an. If
detachment of biomass may exist, for each individual there
(n(t)) = no + V(6o — )t (28)  will be an additional death rate,(n), which can be esti-
and mated as follows. Experimental result§] provide a basis

to assume that for each microorganism, the detachment fre-
(n2(t)) = no[2V (Bo — )t — 1 + ny) guency varies with the depth in the biofilm and is inversely
proportional to the area of substratuy. Then, if the vol-
+2IV2(1 4 e M) + 2oVt + V() — )2, (29)  ume of all the microorganisms and their metabolic products
is V,, = vyn, the additional detachment probability per unit

wherel’ = A?/A*. As a consequence, the standard deviatime should also be proportional to the number of the other
tion o2 and the relative fluctuatiog,, turn out to be, respec- individuals present 26],

tively,

rq(n) = ln(n -1, (33)

o2 = <ﬁ> — ()2 = 2TV2(1 + e M) + 2aVt — ng (30) - Q

with v = k;V1/3, wherek, is the detachment rate. We have

and
, also introduced the dimensionless quantity
o; 1
n = o5 = N -« _
R O e e ELC L Qo= V13, with o= 2=
U,
+2at 4+ 2TV (1 + e M), (31)
beinge, the mass porosity of the biofilm, e., the volume
with fraction of water in the total biomass volunmi& Thus, the
N = no total recombination probability is now nonlinear,
0T V(6o —a) y
r(n) ~an+ =n(n—1) (34)
It is convenient to rewrite this last equation in the static limit o

of the external noise)\~! — oo, and in the thermodynamic and the macroscopic rate equation reads
limit defined byn — oo, V' — oo, n/V =finite, which leads

to A2 SO =i =gy —r(n)=(B-a)n—nin-1). (35)
Xn =

Vdt
[ + (5o — ) 2 t °

Equations (28) and (32) show that the mean véfug))
is independent of the external noise, whergashave terms
that depend on both, internal and external fluctuations as ~
well. The latter contributions depend on the amplituNe Pn= |a(n +1) + m-n(n + 1)} Prt1+ B(n — 1)pn—1
of the dichotomic noise and remain finite in the thermody-
namic limit, but the contribution due to internal fluctuations _
vanishes in this limit.

The corresponding nonlinedd E for p,,(¢) per unit volume
is the following differential-difference equation

an + ln(n — 1) + fBn| pn, (36)
Qo

which using (6) may be rewritten in the more compact form
3. Effects of detachment

- - o
Biofilm cells may be dispersed either by shedding of Pn=o(E = Lnpn + B(E L)npn

doughter cell from actively growing cells, detachment as a +l(E — Dn(n — 1)p,. (37)
result of nutrient levels or quorum sensing, or shearing of Qo
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3.1. The systematic expansion a way that¢ turns out to be of order unity, by adjustirgt)
to follow the motion of the peak. As a consequengg(t)

The M E (36) is nonlinear in the sense thdt) is anonlinear  transforms into a probability density distributi®H¢, ¢) ac-
function ofn. This equation cannot be solved analytically in ¢o(ding to the relation

an exact form and it is necessary to develop an approximate
analytical solution. To this end we use van Kampen's gen- ,, ) = p(n, ) = p |Qob(t) + QY %¢,t| = TI(¢, ). (39)

eral method and expand (36) in powergbf! [15]. To this () () 0#(t) 0 (1)

end first note that the transition probabilities:) andg(n)  since the probability should be conserved in terms either of
are independent df and that we have to postulate the way ;, or ¢, it then follows that

in which p,,(t) depends orf). Following van Kampen, we

assume thap,, (t) has a sharp peak located at some value p(n,t) = 951/21'[(47 t) (40)

of order2 and located at the poif2¢(t), with a width of

orderQ'/2, This assumption is expressed formally by trans-and that the derivatives transform as

forming the stochastic variableto a new variabl& defined

11
by 92 (@1)
n = Qo(t) + QY% (38) n ¢
whereg(t) is some time dependent function that has to be deand P Ol do ol
termined. This assumption contains a central-limit theorem P _ o120 dooll (42)

= =Q )
argument and its correctness has to be justiéigubsteriori ot ot dt ¢

by showing that it is actually possible to choasgé) in such  Starting from (36), it is a matter of straightforward algebra to
| obtain the following transformed equation fd((, ¢)

Ol J1y2dg 011 1/ o _ 9 1
G~ S G = 0 laott) = B0(0) + 16 (D) 52} + 08l — B+ 290(0 S (C) + 5lad(t) + 56(0)
011 —1/2,Q 02 0 0? _:
601 g+ 05 SR SO + v (I + 05 (J 5 (D) + 005, (@)

This expansion leads to the following results. The lead-
ing terms are of ordef’* and they can be made to cancel lts solution is well known for the initial condition
by demanding thap(¢) should obey

d

W V(s - a)p- v (@)
which gives the macroscopic equation (35). Note that thisramely,
equation has the time independent solution

II(¢, 0) = 6(¢ = Co);

—(B—a)t]2
o' =(B-a) (45)  1i(c,t) ! o (Sl
(C? ) eXp _ —2(ﬁ—a)t il
. . . Br[) _ e—2(B-a)t] f l-e
corresponding to a stationary population B 49)
4
n® = Qoﬂ — 0‘7 (46)  and becomes a stationary Gaussian arapfiir ¢ — oo,
v
as follows from (35). To the next ord€ly, (43) reduces to I (¢) = RIS (50)
a linear Fokker -Planck per unit volume equation with time B ‘
dependent coefficients, namely,
%} = [27¢(t) — (8 — a)] 8(5?) 3.2. The Gaussian approximation

In the limit ¢ — oo it suffices to determine only the first
and second moments ®f((,¢). Although these quantities
can be obtained directly from Egs. (49) or (50), it is conve-
nient, for future reference, to derive the equations they satisfy
from (47). This leads to

2
+3 8-+ o) +16°()] 5.

For the stationary statg®, this equation reduces to the linear
Fokker -Planck equation with constant coefficients

o _ A AB—a)oLl

(47)

(48)
=7 (Q) =VI(B =) = 27(t)] (¢) (51)
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and
D) =2V [5— 0~ 20(0] (%)

+V [(B+ ) (t) +76°(1)] - (52)

These equations describe the time behaviof¢pfand ((?)
around any macroscopic state defined). For the partic-
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4. Results

In heterogeneous biofilms convection and not only diffusion,
may be a significant mechanism for nutrient mass transport,
a possibility that shows the complexity of biofilm processes.
However, since at present it is not yet possible to describe
or numerically simulate this complexity, average values of

ular macroscopic state defined as the stationary solution (45}iofilm thickness must still be used for modelling and design

Egs. (51), (52) reduce to

S = V(-0 () 59
and
0 s s 5(6 — Oé)
5 () =—2V(B—a) ()" + WE— (B9)

where the upperscript denotes the stationary case. The ex
act solutions of these equations for given

Ct=0)"=¢, (Ct=0))" =¢,

read
(€(t))* = Coexp [V (B — a)t] (55)
and
()" = G exp[-2V (B — )]
Jrg{l —exp[-2V (8 — a)t]}. (56)

From Egs. (55) and (56) it follows that the standard deviatio

o2(t) = ()" — [P

is given by
0= -ep[-2VE- a6
and the relative fluctuation,
i = O = lGOF
turns out to be
velt) = 2D V- gmnV(G—a)].  (58)

G

In terms of the number, of individuals present at time
t, from Eqgs. (38), (55), (56) and (57), it follows that

(n(t))” = noexp [~V (8 — a)t]

10 ep V(B a)]),  (59)
o2 (t) = on(t) (60)
and
Xn(t) = 2By
eVB=tsinh[V (8 — a)i] (61)

" Tyno — Qo(B — ) {1+ exp [V(B — a)]}]*
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purposes 3], [27]. Given this complexity and in order to
relate the predictions of our model with experimental results,
we recall that we have assumed that the biofilm is spatially
homogeneous. Moreover,if,, is the volume of an individ-
ual microorganism and its extracellular products, the volume
V,, of all the microorganisms and their metabolic products
is V. = v, Wheren is the number of individuals present
at timet. Since the porosity, of the biofilm is the volume
“fraction of water in the total biomass volurig

V=" n (62)
1-— €p

Now, since the thickness may be also defined as divided

by the aread,, of the solid surface to which the biofilm is at-

tached, the total thickneds of the biofilm can be expressed

as

Uy,

E@) = Ap(1 — &)

n(t) (63)

2l

n(t).

n Apart from E, another commonly used quantity to char-
acterize the accumulation of a biofilm, is its coefficient of
surface roughness or thickness variabilRy,It describes the
standard deviation aof,

R=\Joh = 5VaE.

(64)

4.1. Linear case

Using (28) and (63) we derive the following explicit expres-
sion for (E(t)) as a function of for the linear case,

L o+ V(8 — a)t].

- = (65)

(E(t)),
Note that it does not depend on the noise paramateso,
according to our model the average thickness is not sensitive
to the external noise in the linear case.

It is convenient to relate Eq. (65) with experimentally
measurable quantities. To this end recall that the areal den-
sity, .S, is the amount of dry biomass which is attached to
a unit area of substratum and that it depends on environ-
mental conditions. Since the dimensions of the substrate
loading rate,£ , are mass/(area-timey, and £ are related
by £ = S/t. On the other hand, volumetric densipy,, is
the amount of biomass in a given volume of biofilm and it is
reported as dry biomass per unit wet volume. This quantity is
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important in the mathematical modeling of biofilm processeghese experiments photomicrographic images of the biofilm’s
since biomass concentration is often related to the activity ofross section were captured and stored. The biofilm thick-

a biofilm. ness was measured evexyl0~%m. Since the width of the
Similarly, from (30) in the static limit and (64) we arrive sample wassz10~%m, it may be reasonably assumed that
at 1 A, = 10~m2. In the experiments it was estimated that
Ry(t) = 5\/V2A2t2 + 2V at — no, (66)  vm = 2.092107¥m3 ande, = 0.9. According to Eq. (63)

this yieldsQ—! = 2.09210~%m.

which depends explicitly on the external noise through It should be recalled that in Peyton’s experiments the re-

Using Eq. (65) we geR (t) in terms of (E(t))

L actor was cleaned up before each experiment and filled with
— 1 22 ST 2 nutrients, so that at the initial time there were no reproducing
Rr [<E(t>>[,] = QB — a){A & <E(t>>L microorganisms in the system. Thus, for the purpose of com-
) _ paring our theoretical predictions f()E(t)> in the linear and
+29 [O‘(ﬂo —a)—A ”0} <E(t)>L nonlinear cases, with the corresponding measured values, we

2 52 2\11/2 should setng = 0 in Eq. (65).
o (A no —fo o )} ' (67) A first comparison with experimental results is ob-

In contrast to(E(t)),, R.(t) depends on the exter- tained if (E(t)), vs. t is plotted from Eq.(65) optimizing
nal noise through\. However, in the absence of external ¥ = V (8, — «), so that in the time intervd) — 166.5 hr,
noise,A = 0, this equation shows that roughness increasethe sum of squared deviations between experimental and the-
with the average thickness. Note that from Eq. (67) it alsooretical values is minimized. The optimal values are given in
follows that roughnes£(t) increases when the observation Table I. In this way we get the theoretical straight lines shown
area, A, ~ (, of the biofilm decreases. This feature is alsoin Fig. 1.
consistent with experimental observations which show that By carrying out a linear regression for each straight line,
thickness data measured by optical methods at different lowe find the best fitting values for the slope,,,, with the cor-
cations, where the observed area is very small, provide inresponding correlation coefficie6f. The values ofn,, and
formation of roughness that can not be obtained by volumete€? are also given in Table I. Sinag? ~ 1, the adjustment is
ric displacement methods2]] We also know that the in- excellent. The relative per cent errér,between experimen-
creased surface roughness increases the mass transport taleoints and theoretical values is defined as

to the biofilm P8]. _ _
_ <E(t)>exp B <E(t)>theo
4.2. Nonlinear case 0= (E(t))
exp

x100.

Analogously, for the nonlinear case of Section 3, equiva-

lent expressions to (65)-(67) are obtained from (59) and (6072} 0, for each straight line in Fig. 1 is also given in Table I. It

s a result, the mean relative err@) of the absolute value

This leads to ranges from.8% t06.2%, and these values represent a good
(E(t)) = Lp-o {1—exp[-V (8- a)t]} fitting between the linear theory and the experimental results
NL Q v in the initial stage, from 0 to 166.5 hr, of the development of
no the growing process.
— — —a)t], 68 , ,
+ Q exp [~V (5 — ajt] (68) Let us now consider the behavior of roughness. Equa-

tion (67) gives a nonlinear dependencef(t) on (E(t)), .

Ry(t) = 1\/5 {1 —exp[-2V (B — a)t]}, (69) Note that this theoretical relation is more general that the lin-
Q ear one reported in the experimental measurements by Pey-
orin terms 0f<E(t)>NL ton (1996) in his Fig. 3. To identify the conditions under
which our result forRy, (¢) reduces to that of Peyton’s, we
_ 1 /8 1 recall that in the static limit of the external noise;! — oo,
Ryr [<E(t)>NL} “o\l~5o. - _ and in the thermodynamic limit defined by— oo, V' — oo,

Q2= _ . oo
T o n/V =finite, the relative fluctuation,, is given by Eq. (32).

- —a — If in this equation we set, = 0 we get
X{no[n0*290ﬁ7a]+29905,}/ <E(t)>NL q ’ ?
2 /N2 11/2 XE = (VA (71)
. . . or in terms ofR (t) and(E(t)) , this relation reduces to the
5. Comparison with experiment linear behavior

The thickness variability of a pure culture Bf Aeruginosa, VA =
as a function of time and for different values of the sub- Ry [<E(t)>L] T v <E(t)>L' (72)
strate loading ratel , was measured by Peyton2][ In
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or
TABLE I. VA - .
—st_—st72 770[ 1/2
L(mgm’lh’l) U(h™1) mepzl03(mh™t) C? <> (%) i [<E>L} <E>L [( v e Qv <E>Zt] - (74)
10.2 0.01771 3.701 0.9985 1.8
51.2 0.04299 8.985 0.9560 6.2 In the last two equations the parametéh , which mea-
02.2 0.13517 28.25 0.9652 5.7 sures the influence of the external noise is not known. The
value of the parameter = V' (3, — ) was optimized pre-
viously in the linear case and its values are given in Table I.
a5 To determine the best fitting value BfA we proceed as fol-
lows. First, for both Egs. (72) and (74) we determine the
value of VA and the curve that passing through the origin,
30 represents best all the experimental points of biofilm rough-
ness as a function of average biofilm thickness reported in
£ 5 Peyton’s Fig. 3 $]. These optimal values are given in Ta-
< ble Il for Eq. (72) andV A = 0.042 for Eq. (74). For both
= cases this behavior is shown in our Fig. 2, where the con-
g 50 tinuous line is the nonlinear model prediction and the broken
E line represents the adjustment of the experimental data given
E in Peyton’s Fig. 3. A linear regression analysis of the ex-
E 15 . perimental points yields a correlation coefficiert = 0.58.
% & //’ ¢ On the other hand, carrying out the same analysis for the first
g 10 Pl term on the right hand side of Eq. (72), yield$ = 0.44.
< -7 This shows that due to the dispersion of the experimental
. points, the model exhibits an adjustment as poor as the one
5 IR ) in Figure 3 of Peyton J]. This fact is a direct consequence
i of the absence of specific experimental data for each load-
§ | | ing rate. However, it should be pointed out that the theoret-
0 o5 50 2= 400 195 150 175 ical model consistently implies thaRL(t_) var_wishes_ fqr zero
Time () <E(t)>L,Whereas for Peyton’s regression line this is not the

case.

FIGURE 1 Time progression of the thickness averagit) , for From the above results we can now derive the condition
P. Aeruginosaas calculated from Eq. (37) for the parameters val-

uesQ-! = 2.09x 105 m, v,, = 2.00 X 108 m® € = 0.9 for which the second term on the right hand side of (74) may
The different curves correspond to the three substrate loading rate@€ Neglected with respect to the first. This occurs when
reported by Peyton, 1996 given in TableN,{ - -) Lo1 = 10.2,

(0,——) Lo =51.2,( ,—) Loz =92.2 (mgm~*h™1). Y’

— (VAP (E@®)" > Va.

5T (75)

When the above Ilimits are not considered, the

—, \1/2 . .
term~ (E(t)), " in (67) can not be neglected. To estimate,hioh this condition holds, is given in Table II. From these
a value for the resulting (¢) we use the stationary value of 4165 and those of given in the same Table II, we deter-
(E(t)),, (E),, , which corresponds to the plateau value of mine the corresponding value 6§ (Table II).
the average biofilm thickness in Fig. 1in Peytd] 4nd are When condition (75) is not fulfilledy’ « takes a value dif-

given in our Table Il, ferent from the one given in Table II. We shall take the value

The order of magnitude of the maximum valueslaf for

= (VA)? + 2Va 1 (73 Vo = 0.4385 in Fig. 2, which is one order of magnitud
P2 Qv <E>SL“ larger than those given in Table Il but still consistent with
TABLE II.
L(mgm™*h™1) E(t) ™ x 107%(m) T(h™h) AV(RTY aV(h™h) BoV (R™h)
10.2 4.52 0.0177 0.074 ~ 1072 0.0277
51.2 13.33 0.0430 0.116 ~ 107t 0.1430
92.2 31.00 0.1352 0.205 ~ 107" 0.2352
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FIGURE 2. Experimental ( - - - ) and theoretical (—) biofilm rough-
nessRy vs. average biofilm thicknessE(¢) for the parameters
given in Table Il. The points are data from all the experiments re-
ported by Peyton 7.

FIGURE 3. Experimental points and theoretical time progression
curves of the thickness averagé&(t) ~, for P. Aeruginosathe
same parameters as in Fig. 1. The different curves correspond to
the three substrate loading rates reported by Peyton, 1996: (- - -)
Loi = 10.2, (——) Loz = 51.2, (—) Loz = 92.2 (mgm ™~ *h™1).

Let us now turn our attention to the nonlinear case. Note
that ( 68) and Fig. 2, imply that the nonlinear model may
describe all the behavior of the experimental curves. Indeed,
calfj;ns%,ij 5(6‘8/)(26_D0|é())t<aEn((jt)t%g%(\)/;.irfezl:dpgféﬁqéigf;r?e are available, we can get an estimated limit value for each
for the time intervab — 350 hr, we get the curves plotted in of the experimental Iloadlng Eates as follows. Ff)m Eq. (68)
our Fig. 3. They show thafE(t)) ,, saturates after a defi- W€ 9et the asymptotic valugd(t — OO)>,NL. =(E®)y,
nite time interval for the different loading rates. The relative "€Ported in Table IV. Next, from Peyton's Fig. 3, we get esti-
error between experimental points and the theoretical value§)ated limitvalues fo? 4, by averaging the twaexperlmental
(), is calculated in the same way as for the linear case. Théata nearest to the determined values®tt))  , . Finally,
corresponding optimized values are given in Table IlI. from Eq. (76), we obtained the values of the paramgter

Notice that Eq. (69) predict®y . (¢) as a function of for each loading rate. For the same value¥ afiven in Table
t and~, separately. Since in the previous analysis we havéV, and the corresponding values 8f-, Eq.(69) is used to
only determined the optimal values @fy ;, for the different ~generate the analytical curves plotted in Fig. 4.

Although no explicit experimental results for this lindit

loading rates, it is necessary to determine fitsh an inde- From Figs. 3 and 4, we may identify two stages of the
pendent way. To this end, note that from Eq. (69) it followsbiofilm growing process. The first one is characterized by a
that ast — oo high growing rate of both( E(t)) .., and Ry (). Roughly,
1 /8 the high growing rate stage can be identified in both figures
RAER(t_’OO):ﬁ o (76)  aso <t < 50,0 <t < 100,and0 < t < 150 for £, £,

and £3, respectively. The second stage corresponds to a de-
creasing growing rate process leading to an asymptotic value
for (E(t)),, andR.

Equation (70) givesRn . [(E(t)), ] as a function of
(E(t)) ., » B/y and¥/(V~). This relation is represented
by the continuous curve in Fig. 5. As before, the broken

TABLE IlI.

Limgm™"h™') Tnr(h™') Vyzl0732(h™Y) < 6> (%)

(L1)10.2 0.0095 0.1596 6.66 curve is Peyton’s result. Finally, we compare the experimen-
(L2)51.2 0.0077 0.0404 6.73 tal and theoretical curves fat vs. (E(t)). The theoretical
(L3)92.2 0.0145 0.0408 9.29 curve wasobtained by minimizingthe errorbetweenthe experi-
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TABLE IV.
—1; -1 —1 - A —6 —6
L(mgm™"h™") Unr(h™) E(t) o, ©107°(m) B/~ R4xz107°(m)
(L1)10.2 0.0095 5.968 6.67567 5.40
(L2)51.2 0.0077 18.952 2.64560 10.75
(L3)92.2 0.0145 35.627 3.92871 13.10
14 A stochastic model which describes in a unified form

both, internal as well as external fluctuations in monospecies
biofilms was proposed. Itis important to stress that the model
is idealized in many respects. To begin with, it assumes that
all microorganisms have the same reproduction rate; it does
not include the spatial heterogeneity of the biofilm and there-
fore, does not take into account the changes of the state vari-
ables due to substrate diffusion within the biofilm. For spa-
tially inhomogeneous systems, fluctuations in the number of
individuals are a local phenomenon and their description re-
quires to known (7 ,t). This can be accomplished by in-
troducing the number density as a continuous random quan-
tity, which amounts to describe the system in terms of an in-
finite set of stochastic variables. Although this continuous
description may be achieved in a variety of way29,B0],

its implementation is not an easy task and one has to restore
to approximations, such as the method of compounding mo-
ments [5]. For this reason in this work we neglected spatial

Biofilm Roughness (10 m)

0+ ‘ ‘ ' ' ‘ ' effects. The spatial distribution of adherent bacteria on the
0 50 100 150 200 250 300 350 surface has been measured and taken into account in a de-
Time (hr) scription based on rate equations for the attached cells con-

FIGURE 4. Biofilm roughnessix., vs. ¢ as calculated from centrations. This leads to the consideration of effective at-
Eq. (69) for the same P. Aeruginosa biofilm for the parameterst@chment rate constants dependent on position, because the
given in Table IV, (- - - )Lo1 = 10.2, (— —) Loz = 51.2, (—) number of cells near the surface that available for attachment
Loz = 92.2 (mgm™'h™1). may vary with the position J1]. In this way a spatial de-
pendence in the transition probabilities per unit time could

mental data, while the theoretical value by optimizidg be introduced.

andV~. It is important to point out that in this procedure ~ The age of the biofilm was neglected because the mech-
only two parameters are optimized, namely/(V~) and  anisms that govern this phenomenon are not well known.
B/~. Their optimal values turned out to bk = (0.3486 However, this simplification is essential to use Markovian
andV~y = 4.96210~%. Note that the theoretical results show Stochastic processes in modelling the elementary events. This
a nonlinear increase dt(t) with (E(t)) in correspondence Wwas particularly useful since the theory of stochastic Marko-
with experimental observations2,[6, 10]. However, it also  Vvian process is much more developed than its non-Markovian
shows a tendency to saturate to a constant value, in contrasteeunterpart. On the other hand, the changes in the external
the numerical adjustment by Peyton. Therefore, we concludeonditions that necessarily influence the biofilm growth, were
that when the detachment of biomass exists, the nonlineanodeled through external noise in the rate of reproduction.

model exhibits the same basic behavior. Biofilm roughness is only one of a series of problems in
understanding biofilms. The internal structure of the biofilm
6. Concluding remarks (channels, pores, etc), state of the biomass (active, inactive,

areas of extracellular material) and diffusive and convective
In summary, in this work we have presented and developed fiows through this structure are also of important significance.
stochastic approach to describe the thickness and roughneldswever, in spite of its limitations, this stochastic model is
of a competitive growing population in a biofilm. To elabo- able to predict an explicit time dependence of average thick-
rate on the obtained results the following comments may ba&ess and roughness, as well as a relationship between these
useful. two quantities, as discussed in section 4, while determinis-
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