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The vector potentialsA(r) produced by spherical, cylindrical, and elipsoidal uniform superficial distributions of electrical charge rotating
at a constant angular velocityω, are found. This is done by modeling such a distributions as if they were simple bobbins made ofN loops
of a very thin coil carrying a currentI and calculating simply the dipolar potentialAdip(r) produced by them. Due that in the case of the
spherical geometry the potentialA(r) has already been calculated its value is used as a consistence test of the present approach, for the two
other geometries the analytical calculation of the potentials is not so trivial by this reason the equalness betweenAdip(r) andA(r) is proved
trough a numerical evaluation of the complex integrals appearing in the Biot-Savart expression forA(r). The respective magnetic fields
generated by these three rotating distributions have an identical structure: they are constant inside the surfaces while outside them they are
dipolar-like (nearby to radiation zone). An application of the above results to quark confinement inside hadrons is proposed.

Keywords: Rotating charge distribution; magnetic vector potential; bobbins; magnetic dipole expansion; quark confinement; magnetic field.

Se hallan los potenciales vectorialesA(r) producidos por distribuciones superficiales de carga eléctrica esferoidales, cilı́ndricas y elipsoidales
rotando en una velocidad angular constanteω. Esto es hecho modelando a estas distribuciones como si fueran bobinas deN vueltas de
alambre delgado portando una corrienteI y calculando simplemente los potenciales dipolaresAdip(r) producidos por ellas. Debido a que
en el caso de la geometrı́a esf́erica el potencialA(r) ya ha sido calculado, su valor es usado como prueba de la consistencia del presente
enfoque, para las otras dos geometrı́as el calculo analı́tico de los potenciales no es trivial lo cual nos obliga a probar la igualdad entreAdip(r)
y A(r) a trav́es de una evaluación nuḿerica de las complejas integrales que aparecen en la expresión Biot-Savart paraA(r). Los respectivos
campos magńeticos generados por estas tres distribuciones rotando tienen la misma estructura: son constantes adentro de ellas mientras que
afuera son de tipo dipolar cercana a la zona de radiación. Se propone una aplicación de los anteriores resultados al confinamiento de quarks
dentro de hadrones.

Descriptores: Distribución rotante de carga; potencial vectorial magnético; bobinas; expansión dipolar; magńetica; confinamiento de quark;
campo magńetico.

PACS: 41.20; 07.55.D

1. Introduction

It is well known about the difficulties concerning to the calcu-
lation of the exact value of the magnetic vector potentialA(r)
associated to an arbitrary superficial distribution of electric
chargeσ which is rotating at a constant angular velocityω.
In fact, this happens even for uniform and quite symmetrical
superficial distributions whereas the only well known exist-
ing analytic solution for this kind of devices is that of the
spherical distribution [1] and the most it has been done for
other different geometries is to find approximate solutions
[For points very far away of the sources it is possible to know
the values of the potentialsA(r) of several symmetrical dis-
tributions (e.g., cylindrical, elipsoidal, and conical) of electric
charge at uniform rotation [2]]. The main problem for per-
forming these calculations lies in the cumbersome integrals
appearing in the Biot-Savart expression forA(r). By focus-
ing on three surfaces (spherical, cylindrical and elipsoidal)
symmetrical enough which are uniformly charged, the pur-
pose of this work is to calculate the vector potentials pro-
duced by them when they are rotating at a constant angular
velocity. For accomplishing this task we shall go round to the

cumbersome analytical calculation of the integrals appearing
in the Biot-Savart expression forA(r) and model such a ro-
tating surfaces as if they were bobbins having the same shape
that the distributions and made ofN circular loops of a very
thin wire carrying a currentI, the vector potentialsA(r) as-
sociated to the rotating surfaces are simply the dipolar poten-
tialsAdip(r) produced by these bobbins. The way it is proved
the equalness betweenA(r) andAdip(r) is as follows:

i) In the case of the rotating sphere it is comparated the
value ofAdip(r) as it is predicted by the bobbins model
with the already known expression forA(r) obtained
in Ref. 1 through a formal calculation of the Biot-
Savart integral. Since it is found that both expressions
coincide, this encourage us to investigate the predic-
tions of the present approach for the cylindrical and
elipsoidal distributions.

ii) For these two geometries it is evaluated numerically
the respective integral appearing in the Biot-Savart ex-
pressions forA(r) and comparated this quantity with
Adip(r) finding that the dipolar potentials account very
well for the Biot-Savart potentials.
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In order to make the numerical integrals independent of some
particular value of the dimensions of the distributions it is
made a suitable change of coordinates into dimensionless
variables. It is necessary to observe that within bobbins im-
age, the uniformity of electric charge on the surfaces (σ = ct)
shall be understood as the condition that the linear density of
turns λ = dN/ds of the wire on the bobbins is constant.
Likewise, the determination of the values of the several pa-
rameters (e.g., λ, I, σ, etc) involved in the problem shall be
done through the assumption that the magnetic dipolar mo-
ments must have the same value in both of the images (e.g.,
bobbins and rotating surfaces). Our conclusions are mainly
two, the first one is that through the use of bobbins model it
is possible to calculate the previously unsolvedB = ∇×A
fields in a fashion which has the advantage of being mathe-
matically simpler than the method of calculating analytically
the non trivial integrals appearing in the Biot-Savart equation,
and the other is that the three fields calculated have in com-
mon a dipolar-like structure outside the distributions while
inside them they are constant.

The way we shall proceed in this work is as follows, in
Sec. 1 we give a survey of the known results on circular loops

carrying a currentI then in Sec. 2 it is calculated the dipolar
potentials and verify numerically the validity of our approxi-
mation. Finally in Sec. 3 it is given a brief discussion of our
findings.

2. Circular loops

Let us consider a circular bobbin consisting ofN circular
loops of radiusa carrying a current

J(r) = N I δ(z −H) δ(ρ− a) ϕ̂

with center at the origin and contained in a plane which is
paralell to theXY plane as it is sketched in Fig 1. The dipo-
lar magnetic moment generated by this current distribution
is

m =
1
2

∫
d3l l× J(l) = Nπa2Ik̂, (1)

while the respective Biot-Savart potential associated to this
current is

A(r) =
µo

4π

∫
J(l)

| r− l | =
µo

4π
NIa

(∫ ϕ′=2π

ϕ′=0

dϕ′ cos ϕ′√
ρ2 + a2 + 2 a ρ cos(ϕ− ϕ′) + (z − z′)2

)
ϕ̂. (2)

In the context of the present approach the above two equa-
tions are very useful so they will be used recurrently in the
following.

FIGURE 1. Plane circular circuit ofN loops of radiusa paralell to
theXY plane and carrying a currentI.

Let us now proceed to calculate the potentials of interest
for us.

3. Superficial charge distributions at uniform
rotation

An electrical chargeQ uniformely distributed on a surface of
particular shape which is rotating with respect to its symme-
try axis at a constant angular velocityω will be thought here
as a bobbin made ofN loops of coil carrying a constant cur-
rentI. The coil will be assumed to be twined around in such
a way it preserves the same shape of the rotating distribution.
In Figs. 2–4 are shown the three particular superficial (spher-
ical, cylindric and elispoidal) distributions of electric charge
under consideration together with their respective associated
bobbins.

3.1. Rotating sphere

According with the stated above, an spherical shell of ra-
dius R having a charge uniformly distributed according to
σ = Q/(4πR2) which is spinning round at uniform angular
velocity ω aroundZ− axis will have associated a one layer
spherical bobbin ofN turns wrapping up all of the sphere and
carrying a constant currentI = Qν = 2ωσR2 [The current
density associated to this device is
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FIGURE 2. (2a) Spherical shell of radiusR rotating uniformly with
angular velocityω alongZ axis and containing a chargeQ uni-
formly distributed on it according toσ = Q/(4πR2). (2b) Spher-
ical bobbin of radiusR made ofN loops and carrying a current
I = Qν = Qω/(2π).

J(r) = ρv = δ(r −R)σωϕ̂ = δ(r −R)
I sin θ

2R
ϕ̂ [1,3]].

This arrangement is sketched in Fig. 2. The linear density of
turns (=number of turns/meter) of the bobbin will be assumed
here to be constant at a value

λ =
dN

ds
=

1
R

dN

dθ
=

4
3

1
πR

.

In order to check the consistency of the present approach,
we first calculate the magnetization generated by theN loops
and compare the obtained result with the already known for
the rotating sphere found in Ref. 1.

From Eq. (1), the magnetic dipole momentdm generated
by dN = λRdθ turns on the sphere will be

dm = dNπρ2Ik̂ = λπR3I sin2 θdθk̂.

To be integrated this quantity over all of the distribution, the
total dipole moment generated by theN loops is

m =
1
2
λπ2R3Ik̂.

FIGURE 3. (3a) Cylindrical shell of radiusa and height2L rotating
uniformly with angular velocityω alongZ axis and containing a
chargeQ uniformly distributed on it according toσ = Q/(4πaL).
(3b) Cylindrical bobbin of radiusa and height2L made ofN loops
and carrying a currentI = Qν = Qω/(2π).

This value form leads to a magnetization

M =
m

(4/3)πR3
= σωRk̂. (3)

One must observe that the above values for bothm andM
coincide with those found in Ref. 1 through a quite lengthy
calculation of the integral

m =
1
2

∫
d3l l× J(l).

This encouraging result indicates a good signal of consistence
of our approach.

In order to proceed further, let us now calculate the re-
spective value of the dipole vector potentialAdip(r) produced
by m.

By using cylindrical coordinates (with the respective re-
placementa = ρ′) in Eq. (2) the potential produced by the
N turns twined around the surface of the sphere will be

A(r) =
µo

4π
λR2I

(∫ θ=π

θ′=0

dθ′ sin θ′
∫ ϕ′=2π

ϕ′=0

dϕ′ cos ϕ′√
r2 + R2 − 2[ρρ′ cos(ϕ− ϕ′) + zz′]

)
ϕ̂. (4)

In order to evaluate adequately the above integral it is necessary to consider two different cases.

3.1.1. A(r) inside the sphere:r ≤ R

By making an expansion in powers ofr
R in Eq. (4) it is obtained

A(r) =
µo

4π
λR2Iφ̂

∫ θ=2π

θ′=0

dθ′ sin θ′
∫ α=−ϕ+2π

α=−ϕ

dα cos α

{
1− 1

2

[( r

R

)2

− 2
(

ρ

R
cos α sin θ′ +

zz′

R2

)]

+
3
8

[( r

R

)2

− 2
(

ρ

R
cos α sin θ′ +

zz′

R2

)]2

− 5
16

[( r

R

)2

− 2
(

ρ

R
cosα sin θ′ +

zz′

R2

)]3

− · · ·
}

. (5)
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As it is easily observed in the last equation, the two
first integrals vanish while the third one also called dipolar
term, does not. In fact this term leads to a dipolar potential
Adip(r) = (µoπ/8)λIρϕ̂. By using that

λ =
4
3

1
πR

and I =
Qω

2π
,

the potential inside the spherical bobbin will take the form

Adip(r) =
µoRωσ

3
r sin θϕ̂ 0 ≤ r ≤ R. (6)

The above dipolar potential is exactly the same to the
Biot-Savart potential of the rotating spherical distribution
found in Ref. 1. This coincidence indicates that our ap-
proach works very well (at least for the internal region of the
sphere) and incidentally save us the cumbersome calculation
of the Biot-Savart potential generated by the rotating charged
sphere.

To make sure that our approach works completely well in
the case of the spherical geometry let us study now the other
region of interest.

3.1.2. A(r) outside the sphere:R < r

After doing an expansion in powers ofR/r in Eq. (4) and
keeping only the dipolar term, it is obtained

Adip(r) =
µoπ

8
λI

(R

r

)
ρϕ̂.

Using the prescribed values forλ andI this potential can be
written as

Adip(r) =
µoR

4ωσ

3
sin θ

r2
ϕ̂ R < r. (7)

This result also coincide exactly with the respective ex-
pression for the rotating sphere found in Ref. 1.

3.1.3. A(r) for the rotating sphere.

With Eqs. (6) and (7) the dipolar potential associated to the
spherical bobbin can be written in a simplified way as follows

Adip(r) = A(r) =
µoRσω

3





ρϕ̂ 0 < r ≤ R,
R3

r3
ρϕ̂ R < r.

(8)

The coincidence between the values of the dipolar and
Biot-Savart potentials, stimulates us to investigate whether if
our alternative and simpler approach works well for describ-
ing other different geometries at uniform rotation. Let us ex-
plore this possibility for both the cylindrical and elipsoidal
distributions.

FIGURE 4. (4a) Elipsoidal shell of minor axisa and major axis
c rotating uniformly with angular velocityω along Z axis and
containing a chargeQ uniformly distributed on it according to
σ = Q/S(e) whereS(e) is the elipsoid area. (4b) Elipsoidal bob-
bin of radiusa and major axisc made ofN loops and carrying a
currentI = Qν = Qω/(2π).

3.2. Rotating cylinder

Our next goal is now to determine whether if the present
method can be applied to the calculation of the vector po-
tential associated to a chargeQ uniformly distributed on the
side of a cylinder of heigth2L and radiusa which is spin-
ning round at uniform angular velocityω along its symmetry
(Z−)axis. In order to investigate a bit more on this matter let
us first calculate the linear density of turnsλ associated to a
cylindrical bobbin carrying a currentI which will be mod-
eling to the rotating cylinder as it is sketched in Fig 3. The
way it is determinedλ here is by making equal the value of
the magnetic dipole moment of the bobbin (depending onλ)
with the one of the rotating cylindrical surface. This simple
procedure is shown below.

Within the image of a cylindrical bobbin ofN turns car-
rying a currentI = Qν = 2Laωσ, the value of the associated
magnetic dipole moment will be

mcyl
bobbin =

∫
dm =

∫
dNπa2Ik̂

= λπa2I

∫ z=+L

z=−L

dz′k̂ = 2Lπa2Iλk̂.

On the other hand, the magnetic moment generated by the
rotating cylinder is the one generated by the current

J = δ(ρ′ − a)σω k̂× l = aωδ(ρ′ − a)σφ̂′,

that is

mcyl
rot =

1
2

∫
d3l l× J = πIa2k̂.

Therefore, by making equal the values ofmcyl
rot andmcyl

bobbin

it is obtainedλ = 1/2L. With this value forλ, the corre-
sponding magnetization in both of the images will be

Mcyl =
m

2πa2L
= awσk̂. (9)
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Once it is knownλ, we are now in position of calculating
the value of the dipolar vector potential as it is predicted by
the present approach.

According with Eq. (2) the potential associated to a cylin-
drical bobbin must have the form

A(r) =
µo

4π
Ia

∫
dN

∫
dϕ′ cos ϕ′√

r2 − 2r · l + l2
ϕ̂

=
µoIλ

4π

∫ z′=L

z′=−L

dz′√
r2 + l2

∫ 2π

0

dϕ′ cos ϕ′√
1− 2r·l

r2+l2

ϕ̂ (10)

wherel2 = a2 + z′2. By making an expansion in powers of
(2r · l)/(r2 + l2) in (9) and keeping only the dipolar term
(proportional to the first non vanishing integral) it is obtained
the general form for the dipolar potential

Adip(r) =
µo

4π
· ρ

(r2 + a2)
√

r2 + a2 + L2
m× ρ̂, (11)

wherem = πIa2k̂.
From the above expression it is obvious thatAdip(r) de-

pends on the correlation between the values ofρ, z, a, andL.
In order to obtain an expression forAdip(r) where it can be
seen in a more explicit way its behaviour, we have found con-
venient to divide the space basically in the four following re-
gions : Inside cylinder (0 ≤ ρ < a, −L < z < +L), Region
I (up and down external parts to cylinder lids:0 ≤ ρ < a,
L <| z |), Region II ( external regions to cylinder edges:
a < ρ, L <| z |), and Region III (external part to cylin-
der side: a < ρ, ≤| z |< L). In the above it is im-
plicitly understood that for each case the azimuthal angle
runs over all of its range0 ≤ ϕ ≤ 2π. In Figure 5 it is
sketched this single partition. From this figure one can see
that our election lies basically in the dominant spatial quan-
tities characterizing each one of these regions, that is: in-
side cylinder the dipolar expansion factor must be

√
a2 + L2

because for any field pointr = (x, y, z) inside it, it holds
thatr =

√
x2 + y2 + z2 ≤ √

a2 + L2; since for any source
point l on the cylinder it holds thatl ≤ √

a2 + L2, hence
in the Region I the corresponding dipolar expansion factor
must be

√
r2 + a2 where obviouslyL ≤ rand; in Region

II the expansion parameter isr because its minimal value is√
a2 + L2 ≤ r, and in Region III the respective parameter is√
r2 + L2 because the minimal value ofr there, isa.

According with the above, the expression for the potential
in terms of leading quantities is

A(o)
dip (r) =

µo

4π
m× ρ̂

×





ρ

(r2 + a2)3/2
, 0 < ρ < a; L <| z |

ρ

(r2 + a2)3/2
, a < ρ; L <| z |

ρ

(a2 + L2)3/2
, 0 < ρ < a; 0 <| z |< L

ρ

(r2 + L2)3/2
, a < ρ; 0 <| z |< L.

(12)

FIGURE 5. The four spatial regions of interest in the case of the
cylindrical bobbin of radiusa and height2L. It is implicitly as-
sumed that for each case the azimuthal angle runs over all of its
range0 ≤ ϕ ≤ 2π.

[The first order corrections toAdip(r) are

1− 1
2

L2

r2 + a2
, 1− 1

2
L2 + 5a2

r2
,

1− 1
2
5r2 − 4L2

a2 + L2
, and 1− 1

2
5a2 − 4L2

r2 + L2

for regions I, II, inside cylinder and III, respectively].
From the above expression it can be observed thatAdip(r)

has a dipolar-like structure which becomes more evident for
points very far away from the current. We may also note
from (12) that in the limit case of a very long cylinder
a << L, this potential has the same structure to the one of
the sphere given by Eqs. (6) and (7).

In order to be able of distinguishing whether ifAdip(r)
as predicted by bobbins method is equal to the Biot-Savart
potential

A(r) =
µo

4π

∫
J(l)

| r− l |

generated by the cylndrical surface distribution at rotation it
is neccesary to use numerical methods. This last obeys to the
fact that at the moment there is not reported any analytical
calculation of these integrals. In Fig. 6 it is plotted the re-
sult of performing the numerical integration ofA(r) and then
divided byAdip(r) against

r

L
=

√
ε2

(ρ

a

)2

+
( z

L

)2

for several values ofε = a/L << 1. The coordinatesz/L
andρ/a have been chosen to run in the range[0, 5] in steps
of 0.1. From this figure it is evident the good agreement be-
tweenAdip(r) andA(r) except at the edgesz = −L and
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z = +L of the cylinder and also on the sideρ = a of it. These
singular discrepancies come mainly from the Biot-Savart ex-
pression for the potential where at the side of the cylinder it
vanishesA(ρ = a, ϕ, z) = 0 while for | z |= L the diver-
gence is quite strong since it goes asε log ε beingε << 1.
For this reason these values were not included in Eq. (12).
The physical explanation about the null value ofA(r) at the
boundaryρ = a comes from the fact that always on the sur-
face of a perfect conductor the magnetic fieldB is zero pro-
viding that only tangentialB fields can exist [4] which is pre-
cisely the case. On the other hand, the steep value forA(r)
at | z |= L arise as a consequence that we have assumed a
cylindrical shell of finite height2L consequently it does not
have physical lids but it has hollows which deform strongly
both the line fields and the intensity of theB field. Once it
is clarified the above we can conclude reasonably from Fig-
ure 6 that the potential generated by a uniform distribution of
electric charge on a cylindrical shell at rotation is equal to a
dipolar vector potential produced by a cylindrical bobbin of
N turns.

3.3. Rotating elipsoid

As a last example of the eficiency of the bobbins method
let us find the vector potential generated by a chargeQ uni-
formly distributed on the surface of an elipsoid (of revolu-
tion) of heigth2c and major axis2a which is spinning round
at uniform angular velocityω along its symmetry (Z−)axis.
The calculation forA(r) in this case is not so difficult as
apparently it seems to be if one notes that under a transfor-
mation of coordinates from the usual set{x, y, z} to the hat
set{X̂=x/a, Ŷ =y/a, Ẑ=z/c}, the equation of the elipsoid
ρ2/a2 + z2/c2 = 1 becomes the equation of an sphere of ra-
diusR̂ = 1, that is%̂ 2 + Ẑ2 = 1, whereρ =

√
x2 + y2 and

%̂ =
√

X̂2 + Ŷ 2 respectively. Under this transformation the
elipsoidal problem is now reduced to the well known case of
the spherical geometry (in hat coordinates in this case) which
is given by Eqs. (6) and (7) and whose hat version is

A(r) =
µoR̂σ̂ω̂

3
̂̂ϕ





%̂ 0 < r̂ ≤ R̂,

R̂3

r̂3
%̂ R̂ < r̂.

(13)

It is worth it to remark at this point that the above ex-
pression is the one we are looking for providing the electrical
chargeQ is the same on both surfaces.

To give an explicit expression for (13) in terms of the
usual set of coordinates it is necessary first to state the rela-
tions beween the hat and non-hat physical quantities involved
in the problem. To begin with the azimuthal angle does not
change the

ϕ = arctan
y

x
= arctan

Ŷ

X̂
= ϕ̂

consequently the respective angular velocityω = dϕ/dt will
not change also. The first consequence of this is that current

FIGURE 6. Numerical value of the Biot-Savart potentialA(r) for
the case of cylindrical geometry divided by the dipolar potential
Adip(r) of the respective bobbin all as a function ofr/L and for
several values ofε = a/L << 1.

must be the same in both sets of coordinatesI=Î=Qω/(2π).
The surface of the unitary sphere iŝS = 4π and from
Q = Q̂ = σ̂Ŝ = σS it follows thatσ̂ = σ(S/Ŝ) where

S(e) =
2πa2

√
1− e2

ln

(
1 +

√
1− e2

1−√1− e2

)

is the elipsoid area ande = a/c its eccentricity If the density
current generated by the rotating elipsoid is

J(l) = δ(r′ − ro)σωρ′ϕ̂′

whereρ′ = r′ sin θ′ and

ro =
a√

1− (1− e2) cos2 θ′

then its magnetic moment will be

m =
1
2

∫
d3l l× J(l)

= πa4σωF (e)k̂, (14)

where

F (e) =
2
√

1− e2 − e2 ln
(

1+
√

1−e2

1−√1−e2

)

(1− e2)3/2
. (15)

The corresponding magnetization associated to the rotating
elipsoid is

Melips =
m

4
3πa2c

=
3
4
eaσωF (e)k̂. (16)

[In the limit case of an sphere wherea=c=R ande=a/c=1,
the area becomes

S = lime→1a
2

∫ ϕ=2π

ϕ=0

dϕ

∫ x=1

x=−1

dx

1− (1− e2)x2
= 4πR2
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while for e = 0 which corresponds to the degeneration of
the elipsoid into an infinite line (namely either of the straight
linesc →∞ or a → 0), the area diverges].

Let us observe that in the limit case of an spherea=c=R
(i.e. e=1) the current isJ(l) = δ(r′ − R)σωR sin θ′ϕ̂′ and
F (e = 1) = 4/3 with which (16) reduces consistently to (3).
Using the relations between the hat and non hat quantities
in (13) the potential can be written as

Adip(r) =
µo

16π2a4

S(e)
F (e)

m× ρ̂

×





ρ/a 0<

√(
ρ
a

)2 +
(

z
c

)2≤1,

1
[(

ρ
a

)2 +
(

z
c

)2
]3/2

ρ

a
1<

√(
ρ
a

)2 +
(

z
c

)2
.

(17)

where S(e) is the elipsoid area and F(e) is given by (15).
For the rotating elipsoid, the analytical solution of the

corresponding Biot-Savart equation

A(r) =
µo

4π

∫
J(l)

| r− l |

has not been done so far, consequently it is also necessary
in this case to use numerical methods in order to check the
coincidence between the values of Eq. (17) andA(r). In
Fig. 7 we have plotted the result of integrating numerically
Biot-Savart equation for several values of the eccentricitye
of the elipsoid. As it is seen from such a figure there is a
very good agreement betweenA(r) andAdip(r) whence it
is possible to conclude that the bobbin method also works in
this case. We may observe that similarly as it happened in
the above case of the cylinder, the coil method allows us also
to calculate the vector potential associated to the elipsoidal
superficial distribution of electric charge at uniform rotation
in both a simpler and precise way.

4. Conclusions

By observing that the potential of the sphere given by Eqs. (6)
and (7) can be written in terms of the magnetic moment as

A(r) =
µo

4π

m× ρ̂

R3

{
ρ 0 < r ≤ R

R3

r3 ρ R < r,
(18)

from this equation altogether with Eqs. (11), and (17) it re-
sults evident that the magnetic potentials generated by the
three superficial distributions at rotation considered in this
work have in common a dipolar-like structure.

Concerning in particular to the cylindrical distribution
let us observe that in the limit case of a very long cylinder
a << L there would be just two regions of interest, namely
the inner and the external (Region III) parts to the cylinder,

FIGURE 7. Numerical value ofA(r)a/ρ in the case of the elip-
soidal shell ( continued line ) and the respective dipolar potential
Adip(r) (dotted line) both as a function of

p
(ρ/a)2 + (z/L)2 for

several values of the eccentricity (0 < e = a/c < 1).

and in this limit case the potential (12) becomes

A(o)
dip (r)'µo

4π

m× ρ̂

L2
ε





ρ/a 0<ρ<a

ρ

a

1
[1 + (ρ/L)2]3/2

a<ρ
(19)

As it was expected of the symmetry of the problem, in this
limit there is not dependence onz.

It is convenient to stress also that for the cylinder case
we have plotted in Fig. 6A(r)/Adip(r) and not A(r)
againstr/L, this obeys to that in (12) there are involved many
regions in the partition of the space and it is easier to see the
behavior of the potential in this way. However, for the limit
case of a very long cylindera << L it is worth it to ver-
ify numerically whether if the dipolar potentialAdip(r) as
it is given by (12) is the same to the respective Biot-Savart
potentialA(r). The results of these numerical calculations
are shown in Fig. 8 where we have plottedA(r) andAdip(r)
againstρ. As it is easily seen from this figure these potentials
are the same.

Referring to the elipsoidal distribution at rotation let us
observe from Eq. (17) that the respective potential has sev-
eral particular characteristics, first of all and as it was nat-
urally expected the general expression forA(r) must have
an strong dependence on the eccentricitye. In addition to
this A(r) depends on both coordinatesρ/a andz/c and not
on ρ andz. In the limit case where the elipsoid becomes an
sphere (a = c = R), the area of the elipsoid isS = 4πR2

and Eq. (17) leads consistently to Eq. (18). For a degenerate
elipsoid into an infinity line (e = a/c → 0) the potential of
Eq. (17) diverges.

Concerning to the common characteristics of the poten-
tials (12), (17), and (18) we point out that there basically
three which are not difficult of seeing. The first one is that
they have azimuthal symmetry which was expected from the
symmetric shape of them aroundz axis. Another common

Rev. Mex. F́ıs. 49 (2) (2003) 182–190



MAGNETIC FIELDS OF SPHERICAL, CYLINDRICAL , AND ELIPSOIDAL ELECTRIC CHARGE SUPERFICIAL. . . 189

FIGURE 8. Numerical value ofA(r) for the case of a very long
cylinder (L >> a) together with the respective dipolar potential
Adip(r) both as a function ofρ.

behaviour is that these potentials vanish alongz−axis
(ρ = 0), this due to that the currentJ circulates alonĝϕ di-
rection. Finally let us observe that they behave is such a way
that their maximal value, for fixed values of the radial coor-
dinater = ct, is reached at theXY−plane (i.e. θ = π/2).

Let us calculate now theB fields generated by the three
rotating surfaces. The expression for the magnetic field
generated by the rotating sphere is easily calculated from
Eq. (18) and its value is

Bsph(r)=∇×A(r)

=
µo

4π

1
R3

{
2m, 0<r<R,

[3(m · r̂)r̂−m] R3

r3 , R<r.
(20)

The main characteristic of this potential is that it is con-
stant inside the sphere while outside it is dipolar-like, reach-
ing its minimum value forr = ct at theXY -plane, while
along positiveZ axis has its maximal value.

From Eq. (12) it is found that theB field generated by the rotating cylindrical shell is

Bcyl(r) = ∇×A(r) =
µo

4π

[
3(r2 + a2) + L2

(r2 + a2)2[r2 + a2 + L2]3/2
(m · r) r +

(z2 − ρ2) + 2(r2 + a2)(r2 + a2 + L2)
(r2 + a2)2[r2 + a2 + L2]3/2

m
]

' µo

4π

1
(a2 + L2)3/2





[3(m · r̂)r̂−m]
(a2 + L2)3/2

(r2 + a2)3/2
0 < ρ < a; L <| Z |

[3(m · r̂)r̂−m]
(a2 + L2)3/2

(r2 + a2)3/2
a < ρ; L <| Z |

2m 0 < ρ < a; 0 <| z |< L

[3(m · r̂)r̂−m]
(a2 + L2)3/2

(r2 + L2)3/2
a < ρ; 0 <| z |< L.

(21)

The structure of this field is quite the same to the one of
the sphere, it is constant inside the shell while outside it has
a dipolar-like behaviour.

Finally from Eq. (17) the magnetic field for the elipsoid
is

Belip(r) = ∇×A(r) =
µo

16π2a5

S(e)
F (e)

×





2m 0 <

√√√√
(

ρ

a

)2

+

(
z

c

)2

≤ 1

[3(m · r̂)r̂−m]



(
ρ

a

)2

+

(
z

c

)2



3/2
1 <

√√√√
(

ρ

a

)2

+

(
z

c

)2

.

(22)

As it is observed from the above equation,Belip(r) has also
exactly the same structure than those of the sphere and the
elipsoid.

Once calculated theB fields we were looking for, we
want to point out that there exist an interesting physical situ-
ation where it can be applied present results. Incidentally

we find that the magnetic fields (20), (21), and (22) have
interesting features which would be applied to the study of
some aspects of the Strong Interactions of Elementary Par-
ticles. In Quantum Chromodynamics (QCD) the more ac-
cepted theory, of the Strong Interactions of Elementary Par-
ticles [5] it is believed that intense Chromo Magnetic Fields
are generated inside hadrons which confine quarks inside
them. Nowadays, it is well known that one of the central
problems of QCD is about the precise structure of the confin-
ing potentials. Altough many phenomenological potentials
have been proposed in the literature accounting for such a
property, however the most extensively used in meson phe-
nomenology is the following

V (r) ≡ VCoul(r) + Vconf (r) = −ξ

r
+ κr, (23)

The first termVCoul in (23) is a color Coulomb potential
which accounts for the spectra while the otherVconf a linear
one, accounts for quark confinement [This is due that it ac-
counts successfully for quark confinement besides of repro-
ducting very well almost all of the mesonic spectra [6–8]].

According with the present approach whose main fea-
tures are given by Eqs. (20) (21), and (22) it is possible to
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show that (23) must be necessarily the structure of a quark-
quark potential inside a meson if we think of it as an spherical
colorless particle containing a quark (q) and anti-quark (q̄)
on whose surface is uniformly distributed a color chargeQ
(asigned to the quarkq) which is rotating at a constant veloc-
ity and where a point-like color charge−Q (corresponding to
an anti-quark̄q) ) is at rest on the center of the sphere (origin
of coordinates).

Concerning to the confining part of (23), it arises due that
as it is seen from Eq. (20) the chromoBc field inside hadron
must be constant, proportional to its magnetic moment, and
directed alongz-axis. Effectively, since the respective non
Abelian chromo electric fieldEc must be also constant in-
side hadrons and it must be on theXY -plane, that is

Ec = −ωBc × ϕ̂ = −ωBcρ̂

whereωBc = ct is its intensity, this makes that the structure
of the scalar chromo potential inside hadrons induced by the
rotating color chargeQ must be linear, that is

Vconf(r) = κr. (24)

On the other hand the Coulomb-like part of (23) comes from
the point-like color charge placed at the origin and it must be
of the form

VCoul(r) = −ξ

r
. (25)

The two above equations together with Superposition Princi-
ple guarantee the consistence of the mesonic potencial given
by Eq. (23).

Refering to the assumed spherical shape for a meson, it is
worthwhile to observe that Eqs. (24) and (25) would have
been derived anyway if instead we were assumed that the
meson was either cylindrical or elipsoidal. A good exam-
ple of the independence of these last equations on the shape
of the meson (either spherical, cylindrical or elipsoidal) is
that found in Ref. 9 where it was shown successfully that if
one thinks of a meson as a relativistic cylindrical tube flux it
leads to a reliable values of the so called Isgur-Wise function
describing hydrogen-like mesonic systems where one of the
quarks is very heavy and the other is very light.

From the discussed above we want to conclude the
present work by saying that the bobbins method allows to
calculate in a simple way the previously unsolved magnetic
fields generated by the spherical, elipsoidal, and cylindrical
charged surfaces at constant rotation. TheseB fields are the
dipolar fields generated by the bobbins and they are constant
inside the shells while outside they have a dipolar-like struc-
ture. We have also found that Eqs. (24) and (25) are a good
example of a possible theoretical utility of the present study.
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