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Dynamic specific heat of frustrated Ising spin rings
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The dynamic specific heatC(ω) is calculated exactly for rings of six coupled Ising spins within Glauber dynamics. We used the response of
the internal energy to small temperature oscillations to findC(ω). The spin glass(SG) and disordered ferromagnetic(DFM) rings showed
here have four energy minima and thus four diverging relaxation times in the time evolution of magnetization and three such times in the
evolution of energy. The properties of the real and imaginary parts of dynamic specific heat are investigated for different temperatures and
frequencies. The dynamic susceptibility is affected by the longest relaxing mode while the dynamic specific heat is not. Our results confirm
thatC(ω) is sensitive only to rapidly relaxing processes for ferromagnetic(FM) and anti-ferromagnetic(AFM) cases.

Keywords: Relaxation times; frequency; specific heat; spin glass; disordered ferromagnet.

Hemos calculado minuciosamente el calor dinámico especificoC(ω) de ćırculos que contienen seisIsing spinsconectados, utilizando la
dinámica de Glauber. Hemos utilizado la influencia de la energı́a interna sobre las oscilaciones de temperatura para calcular elC(ω). Los
ćırculos de cristal revuelto y ferromagnetizados desorganizados han demostrado que tienen cuatro niveles de energı́a, y por eso tienen cuatro
tiempos de divergencia durante la evolución de la magnetización. Sin embargo, tienen tres tiempos de divergencia durante la evolución
de enerǵıa. Hemos examinado las caracterı́sticas de las partes reales e imaginadas de laC(ω) en distintas temperaturas y frecuencias.
La susceptabilidad dińamica se influye por el tiempo de divergencia más largo, mientras que laC(ω) no se influye por el mismo. Los
resultados de nuestra investigación aseguran que laC(ω) es sensible solamente a los procesos de relajamiento rápidos para los casos de
ferromagneticos(FM) y antiferromagneticos(AFM) .

Descriptores: Tiempos de relajación; calor espećıfico; ćırculo de cristal revuelto; ferromagnetos desorganizados.

PACS: 75.10.Nr; 76.20 + q

1. Introduction

The specific heat yields information about the excitations of
a spin glass. It exhibits rather a broad peak at temperature
exceeding the freezing temperature(Tf ) by about 20% . For
T < Tf , it shows a linear temperature dependence, as ob-
served inCuMn, AuFe, EuSrSand other spin glasses [1-3].
There is no sharp cusp or singularity in the specific heat of
random systems. Unusual behaviour has been also observed
in many dynamic properties (very slow relaxation to equilib-
rium, the aging effect etc....). The heat capacity and magnetic
susceptibility of barium holmium, barium erbium floride and
barium thulium floride were measured by the magnetic res-
onance and optical absorption spectroscopy [4]. It is not
easy to determine the magnetic specific heat(CM ) accurately,
since it is only a small fraction of the total specific heat which
consists of vibrational, electronic and magnetic parts, and the
subtraction of the low temperature electronic contribution is
especially difficult [5].

The entropy difference up to a given temperature can be
found by using the specific heat. Al-Wahsh H.et al. [6]
calculated exactly the specific heatC(T) for finite N Ising
spins with antiferromagnetic couplings. They obtained round
peaks forC(T)versusT and found that in the thermodynamic
limit C(T)→ 0. The dynamic specific heat for glasses and
other systems with many modes of configurational relaxation

becomes an important tool to study the spectrum of relax-
ation times due to the even-spin correlations. On the other
hand, the dynamic susceptibility is interesting for investigat-
ing the relaxation times corresponding to the odd-spin corre-
lations. Recently Tien and others [7] measured the specific
heat ofPr2 CuGe6 in an adiabatic calorimeter by a modified
heat-pulse method. They found that it exhibits a short-range
spin glass-like order at low temperature.

Specific heat studies of magnetic materials are useful for
several reasons as characterization of the low temperature
properities in zero magnetic field, the nature of the mag-
netic transition and determination of the magnetic entropy
evolved. It is also helpful to know the temperature depen-
dence of the specific heat of any material used for magne-
tooptic recording when heating it from room temperature to
above the magnetic ordering temperature. Microcalorimeters
have been used to measure the temperature dependence of
the specific heatCp(T) of amorphusRx Fe100−x (R = Gd, Tb)
thin films prepared by both sputtering and e-beam coevapora-
tion [8]. All samples show a relatively sharp peak inCp(T) at
the Curie temperatureTc determined by magnetization mea-
surements.

The study of the effect of disorder on the critical be-
haviour of magnetic systems has been the subject of a great
amount of investigations during the last few decades, both
theoretically and experimentally [9]. From the theoreti-
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cal point of view, it is known that Ising-like models are
well suitable to describe the critical behaviour of insulating
anisotropic magnetic systems [10]. Disorder effects play a
particular role in one-dimensional systems since any small
deviations from regularity destabilize the pure phases. Real
experimental systems naturally contain impurities and other
types of disorder. Therefore, it is very important to under-
stand the influence of disorder on the properties of such sys-
tems in order to interpret experimental results. This is one of
the very important reasons why in recent years random spin
systems have been investigated intensively.

In recent years much interest has been given to the mag-
netism of systems with a small number of atoms, such as
small magnetic clusters and thin films [11]. The magnetic
properties depend on several geometric features which in turn
depend on the conditions during the growth. Thus the con-
nection between the experimental and theoretical results re-
quires a detailed study of the dependence of physical quanti-
ties on the geometry of the systems. Some specific properties
have already been considered in theoretical works, such as
the size and lattice structure of small clusters [12]. It thus
seems interesting to study well defined microscopic models
and to determine properties of their relaxational spectra. The
simplest of such models are small clusters of up to seven Ising
spins which undergo the Glauber dynamics [13]. The dynam-
ics of such systems are discussed in detail in Ref. 14 but they
didn’t study the dynamic specific heat and the disordered fer-
romagnetic systems.

The simplest models with this feature built-in are chains
or , if the periodic boundary conditions are imposed, rings
of the Ising spins coupled via the Gaussian interactions. The
properties of such rings have been studied in detail by Reger
and Binder [15] where they derived the configurationally
averaged dynamic susceptibility. However, a discussion of
the ω-dependent dynamic specific heat has not been within
their focus. The model discussed here displayed a zero-
temperature phase transition. It can be analyzed exactly and it
allows the study of several modes of behaviour depending on
the choice of the exchange couplingsJ. These choices will be
summarized in Sec. 2. We shall focus our attention on the fer-
romagnetic(FM), antiferromagnetic(AFM), spin glass(SG)
and disordered ferromagnetic(DFM) systems. We outline
the equations of motion for the spin correlations using single
spin-flip Glauber dynamics. A discussion on the spectrum of
relaxation times will be given in Sec. 3. In Sec. 4 we explain
the notion of the dynamic specific heat and derive expressions
for its real and imaginary parts for a system with coordination
number of 2. It was known that the dynamic susceptiblity is
given in terms of odd-spin correlations but (in this work) we
show that the dynamic specific heat couples to the time evo-
lution of even-spin correlations. The dynamic specific heat
allows us to investigate a different subset of the relaxational
spectrum than the one derived through the magnetization. Fi-
nally, we analyze the dynamic specific heat in Sec. 5 for the
models mentioned here .

2. The model and equations of motion

The energy of an Ising system ofN spins( Si = ± 1) could
be described by the Hamiltonian

H = −
N∑

i=1

Ji,i+1SiSi+1, (1)

whereJi,i+1’s are the exchange couplings restricted only to
the nearest neighbouring interactions. We impose the peri-
odic boundary conditionsSN+1 = S1. We study 6-spins
arranged in Fig. 1 and investigate various special configura-
tions of the following exchange couplings.

(i) SG:As an example, we takeJi,i+1’s as shown in Fig. 1.
The system has four non-trivial local energy minima.

(ii) DFM: The exchange couplings are taken to be the
absolute values of the exchange couplings shown in
Fig. 1. There are four non-trivial energy minima in
this systems.

For FM andAFM cases, the system has only one non-
trivial energy minimum of energy -6.

FIGURE 1. The six-spin model considered in this paper. The num-
bers generated from a Gaussian distribution of a unit dispersion
indicate values of the exchange couplings. Periodic boundary con-
ditions are assumed. The arrows indicate spin configurations in the
four local energy minima found in this model forSG and DFM
cases. The corresponding energies(E) and reversal energies(∆E)
are written to the right.
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Owing to the master equation of Glauber [13] with de-
tailed balance condition, the transition probabilityWi(Si ) for
flipping a spin at sitei is given by

Wi (Si) = (1/2τ0) [1− Si tanh βhi] . (2)

In this equationhi = Ji,i+1 Si+1 + Ji,i−1Si−1 is the local
exchange field acting onSi andτ0 is a microscopic flipping
time, andβ =1/kBT, whereT is the temperature andkB is
Boltzmann’s constant. For one-dimensional systems with the
coordination number 2, we have

tanh β hi = γi,i+1Si+1 + γi,i−1Si−1 (3)

The coefficientsγi,i±1 depend on temperature and all of the
exchange couplings associated with this site. Then

γi,i±1 =
1
2
(
tanh β (Ji,i+1 + Ji,i−1)

± tanh β (Ji,i+1 − Ji,i−1)
)
. (4)

In the six-spin problem considered here there are twelve
coefficients. The linear terms in (3), when used in the mas-
ter equation, couple the single-spin correlations to single-spin
correlations. The triple-spin correlations couple to single-
and triple-spin correlations and so on. Similarly, the two-
spin correlations couple to the two-spin correlations and the
four-spin ones, these in turn to the six-spin terms. If the sys-
tem is finite then it can be solved exactly. For systems with
a four-fold coordination, Eq. (3) should contain triple-order
terms as well.

In a system consisting ofN spins there are altogether
n = 2N -1 correlations. There aren0 = 2N−1 odd andn0 −1
even correlations. It is convenient to form a vector~V out of
these 63 correlations by placing first the single-spin correla-
tions, then triple, etc., until the firstn0 components are filled.
After that we place two-spin correlations, four-spin correla-
tions, and so on. Later on, it will turn out to be useful to
arrange the two-spin correlations in such a way that the com-
ponentsn0 +1 throughn0 +2N correspond to the correlations
between the neighbouring spins.

Regarding Refs. 13 and 14 in the absence of the external
magnetic field, the equations of motion can be written in the
form

τ0
∂

∂t
~V (T, t) = M̂ (T ) ~V (T, t) + ~L (T ) , (5)

where

M̂ (T ) =
[

A 0̂
0̂ B

]
(6)

and

L̂ (T ) =
[

~o
L′

]
, (7)

where0̂ and~o denote the zero matrix and zero vector, respec-
tively. The matrixA is of n0x n0 and it couples the odd-spin
correlations among themselves. The matrixB couples the
even-spin correlations. The inhomogeneous termL affects
the latter.

3. The relaxation times

The relaxation timesτv are obtained as the inverse of the
eigenvalues of the matrix –(1/τ0 )M. Out of then0 relaxation
times derived from the odd submatrixA there are some which
diverge whenT approaches zero. The number of diverging
relaxation times is equal to the number of non-trivial energy
minima [14] (by non-trivial we mean that we don’t consider a
state obtained by reversing all of the spins as a different mini-
mum). The ”even” submatrixB has been analyzed and found
that; in the limit of lowT the ”even” spectrum coincides with
the ”odd” one (see Fig. 2 atT = 0.4) while the longest relax-
ation times, being related to the reversal of the ground state,
belongs only to the odd part. Figure 2 shows how the long
relaxation times forSGandDFM cases compare to the re-
maining times at several values ofT. The spectrum ofτ0 is
presented in the logarithmic scale.

For bothSGandDFM systems shown, in Fig. 1 there are
four local energy minima and thus four diverging relaxation
times in the odd part denoted byτ1 which is the longest and
thenτ3 , τ5 andτ7. Meanwhile there are three diverging re-
laxation times in the even part taken asτ2 , τ4 and τ6. The
temperature variation of the relaxation times in the odd and
even parts are shown in Fig. 3.

FIGURE 2. The spectra of relaxation times ofSGandDFM systems
shown in Fig.1 for different temperatures(T’s) at the left.
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FIGURE 3. The inverse of the divergent relaxation times in units ofτ for SGandDFM systems shown in Fig. 1 vs. temperature (kBT is
measured in terms ofJ). The longest diverging relaxation times forFM andAFM systems are also apperead.

For uniform ferromagnets and antiferromagnets, in which
the ground state is the only local energy minimum, there is
only one diverging relaxation time as in Fig. 3. The even
part of the spectrum does not correspond to any long-lasting
processes.

Disordered ferromagnetic rings have as many local en-
ergy minima as the ”spin glassy” rings. The two systems
have also identical relaxational spectra. This, however, is the
peculiarity of the one-dimensional physics. It has also been
found that the spectrum of the coupled even-spin correlations
at low T coincides with the ”odd” spectrum [16]. The only
exception is that the longest time occurs exclusively in the
odd part. The longest time is related to the reversal of the
true ground state.

4. Dynamic specific heat

The temperature oscillations was caused by an oscillatory
heat as used in some experiments. For this reason, one can
define the same specific heat by inverting the situation.

Consider a system ofN Ising spins in a heat bath and let
the temperature changes periodically with time as follows:

T (t) = T + δT (t) , (8)

where

δT (t) = δT sin (ωt) . (9)

It is clear that in the absence of a static magnetic field, the
even correlations only are affected by the temperature oscilla-
tions. This property could be altered if a static magnetic field
is present. The perturbation (8) appears in a phase-shifted
oscillatory evolution of the internal energy. The average of
Hamiltonian,i.e., internal energy, of our investigated system
has the form

〈H〉 = −
N∑

i=1

Ji,,i+1 〈Si (t)Si+1 (t)〉 (10)

The energy depends on time then once the transients die
out this dependence becomes oscillatory. The average is
made with respect to an equilibrium ensemble.

Following some calculations the oscillatory part,δ 〈H〉,
of this Hamiltonian can be represented as

δ 〈H〉 = −
N∑

i=1

Ji,,i+1

n∑

i=1

Un0+i
υ Nυ (ω) (sin (ωt)

−ωτυ cos (ωt)) δT, (11)
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where

Nυ (ω) =
τυ/τ0

1 + ω2τ2
υ

[
λυ +

n∑

υ′=1

µυυ′Lυ′τυ′/τ0

]
, (12)

where

Lυ′ = uυ′~L (T ) , λυ = uυ
~λ (T ) andµυυ′ = uυµ̂ (T )Uυ.

~u is the left eigenvector of̂M (T ) andU i
υ is theith compo-

nent ofυth right eigenvectors of̂M (T ). n0 is the number of
odd spin correlations,n0 = 32 for our six-spin cluster.

Once the transients die out the realC’(ω) and imaginary
C”( ω) parts of the dynamic specific heat may be defined as
follows:

δ 〈H〉 /N = δT
(
C ′(ω) sin(ωt)− C ′′(ω) cos(ωt)

)
. (13)

Comparing Eqs. (17) and (18), one can write

C ′ (ω) = − 1
N

N∑

i=1

n∑
υ=1

Ji,i+1U
n0+i
υ Nυ (ω) (14)

and

C ′′ (ω) = − ω

N

N∑

i=1

n∑
υ=1

Ji,i+1U
n0+i
υ Nυ (ω) τυ (15)

The real part of dynamical specific heat,C’(ω), ap-
proaches the equilibrium,dc specific heat(C(0)) in the limit

of ω → 0. The imaginary part,C”( ω), is a measure of the
fluctuations in energy and will disappear in thedc limit i.e.,
C”(0) = 0 .

5. Results and discussion

Considering the 6-spin models shown in Fig.1 there are, al-
together, 31 even correlations. By simple numerical routines,
we are able to determine all the necessary eigenvectors. The
properties of the dynamic specific heat for various tempera-
tures and frequencies, will be discussed as follows:

5.1. Temperature dependence of the dynamic specific
heat

(i) For SG; Figure 4 shows the variation ofC’(ω) and
C”( ω) as a function ofT for several values ofω. At
high temperature,C’(ω) essentially follows the equi-
librium specific heat(Ceq). The longer the period of
oscillations(ω−1 ), the higher the maximum. However
ω, the maxima are very rounded peaks. A similar sit-
uation is encountered for the real part,χ’(ω), of the
dynamic susceptibility (see Ref. 17). In three dimen-
sional systems the maximum inCeq should also be at
higherT’s than the cusp inχ(ω) as found in real sys-
tems.

FIGURE 4. The realC’(ω) and imaginaryC”( ω) parts of dynamic specific heat in units ofk /spin, forSGsystem shown in Fig. 1 as a function
of T at differentω (kBT is measured in terms ofJ).
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The plots ofC”( ω) versusT resemble those ofC’(ω) ex-
cept that the zero frequency limit corresponds toC”( ω) =
0. Then the smaller the value ofω, the smaller and nar-
rower the maximum. The positions of maxima move towards
T = 0 on decreasingω. It is also found that, atω = 0.01τ−1

0

the maximum ofC”( ω) is greater and narrower than that at
ω = 0.1τ−1

0 . For ω = 0.01τ−1
0 , 0.1τ−1

0 the maximum does
not locate at the position forω = 1.5τ−1

0 , because of the big
difference betweenω = 0.01τ−1

0 andω = 1.5τ−1
0 .

(ii) For DFM; The plots ofC’(ω) andC”( ω) versusT (see
Fig. 5) are similar to those ofSG except for the fol-
lowing: the maximum ofC’(ω) at ω = 0 is not quite
rounded for theDFM. In addition the highest maxi-
mum ofC”( ω), for DFM is found at ω = 0.01τ−1

0 .

For FM and AFM, as examples for ordered systems,
we found that theT-dependence ofC’(ω) is qualita-
tively the same as for the spin-glassy couplings and
disordered ferromagnet. While in the case ofC”( ω)
versusT, the less theω, the greater the maximum as
shown in Fig. 5. For very smallω (e.g., ω = 0.01τ−1

0 )
the greater theω, the greater the maximum.

5.2. Frequency dependence of the dynamic specific heat

Figures 6 and 7 showC’(ω) andC”( ω) versuslog10 ω. It’s
known that the plot ofC’(ω) should consist of a sequence of
plateaus, whereas the plot ofC”( ω) should have a sequence
of corresponding maxima. The number of plateaus is equal to

the number of maxima which is also equal to the number of
divergent relaxation times due to the even-spin correlations.
The two parts of dynamic specific heat are connected via the
Kramers-Kronig relations.

(i) For SG;The log10 ω -dependence ofC’(ω) andC”( ω)
for several values ofT is shown in Figs. 6 and 7.
At low temperatures (e.g. T = 0.25and 0.3) C’(ω)
essentially displays three plateaus corresponding to
ω−1 = τ2 , τ4 andτ6 due to even-spin correlations.
These three plateaus are clear atT = 0.25and the two
upper ones overlap atT = 0.3 to merge in one plateau
gradually atT = 0.4. The third (down) plateau be-
comes very much obvious atT = 0.3, 0.4, 0.5, 0.55
and0.6. Finally, we got only one plateau atT = 2.0
(i.e., high T). We can also see that both of the length
of the most upper plateau and its height increase with
increasing temperature.

Figure 7 depicts the plot ofC” againstlog10 ω where
three clear maxima atT = 0.25 corresponding to the diver-
gent relaxation times due to even-spin correlations as stated
above inC’ are noticed. The first, on the left side, maximum
merges with the second to become only one, then two distin-
guished maxima will appear atT = 0.4. These two maxima
increase and are shifted to the right side with increasing ofT.
At T = 2.0, C” has only one maximum corresponding to the
one plateau appeared inC’(ω) versuslog10 ω (see Fig. 7).

FIGURE 5. The same as in Fig.4 but for the two ordered systems;FM andAFM which are coincident.
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FIGURE 6. TheC’(ω) part of dynamic specific heat versuslog10

ω for SGsystem shown in Fig. 1 at differentT. (ω is measured in
terms ofτ ). The enclosed figure is the same but forFM andAFM
systems.

FIGURE 7. The imaginaryC”( ω) part of dynamic specific heat
versuslog10 ω for SGsystem shown in Fig. 1 at differentT. (ω is
measured in terms ofτ ). The enclosed figure is the same but for
FM andAFM systems.

ForFM andAFM cases, thelog10 ω-dependence ofC’(ω)
andC”( ω) has only one plateau and also only one maximum
as plotted in Figs. 6 and 7. Each of these two ordered systems
has only one divergent relaxation time (see Fig. 2).

(ii) For DFM; The plots ofC’(ω) andC”( ω) versuslog10ω
are found to be qualitatively the same as for the spin-
glassy couplings as shown in Fig. 8. But the three
plateaus inC’(ω) and the corresponding three maxima
in C”( ω) are not sufficiently clear. The randomness
in DFM (i.e., |Jij |) is less than that inSG therefore
we might expect three obvious plateaus and maxima as
long asT< 0.25. In the case ofχ”( ω) as in Ref. 17, we
did not find any clear evidence for maxima atτ3 andτ5

either. These results indicate that theSGandDFM sys-
tems exhibit a phase transition from disordered state
into an ordered one.

Figure 9 shows the Cole-Cole plots on whichC”( ω) is
drawn as a function ofC’(ω) atT = 0.4, 0.6 and 2.0 for SG

FIGURE 8. The same as in Figs. 6 and 7 but forDFM system.

Rev. Mex. F́ıs. 49 (3) (2003) 194–202



DYNAMI C SPECIFIC HEAT OF FRUSTRATED ISING SPIN RINGS 201

FIGURE 9. The Cole-Cole plot (i.e. C’(ω) vs C”( ω)) for SGandDFM systems at different temperatures.

andDFM rings shown in Fig. 1. AtT = 0.4, the plot consists
of two overlapping semicircles, indicating the time separa-
tion of modes. The left circle is very small compared with
the right one. On increasingT beyond0.6, the left circle in-
creases gradually then these two semicircles merge together
to be only one atT = 2.0. At very low temperature, we got
three overlapping semicircles but we can not draw the third
one (lies on the left side). Its values are too small to be visible
with respect to others.

We investigated many other different samples for bothSG
and DFM systems and we obtained the same features and
properties like what we have here. More studies for spin sys-
tems might motivate experimentalists to undertake measure-
ments ofC(ω) for spin glasses and disordered ferromagnets.
The DFM rings are very much similar toSG ones and the
difference turns to be quantitative only.
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